Step | Hyp | Ref
| Expression |
1 | | rsprprmprmidlb.k |
. . 3
⊢ 𝐾 = (RSpan‘𝑅) |
2 | | rsprprmprmidlb.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ IDomn) |
3 | 2 | idomcringd 20705 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ CRing) |
4 | 3 | adantr 479 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑃) → 𝑅 ∈ CRing) |
5 | | rsprprmprmidlb.p |
. . . . . 6
⊢ 𝑃 = (RPrime‘𝑅) |
6 | 5 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑃 = (RPrime‘𝑅)) |
7 | 6 | eleq2d 2812 |
. . . 4
⊢ (𝜑 → (𝑋 ∈ 𝑃 ↔ 𝑋 ∈ (RPrime‘𝑅))) |
8 | 7 | biimpa 475 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑃) → 𝑋 ∈ (RPrime‘𝑅)) |
9 | 1, 4, 8 | rsprprmprmidl 33397 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑃) → (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) |
10 | 2 | adantr 479 |
. . . 4
⊢ ((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) → 𝑅 ∈ IDomn) |
11 | | rsprprmprmidlb.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
12 | 11 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) → 𝑋 ∈ 𝐵) |
13 | | eqid 2726 |
. . . . . . . . 9
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
14 | | eqid 2726 |
. . . . . . . . 9
⊢ (𝐾‘{𝑋}) = (𝐾‘{𝑋}) |
15 | | rsprprmprmidlb.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑅) |
16 | 13, 1, 14, 15, 12, 10 | unitpidl1 33299 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) → ((𝐾‘{𝑋}) = 𝐵 ↔ 𝑋 ∈ (Unit‘𝑅))) |
17 | 16 | biimpar 476 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) ∧ 𝑋 ∈ (Unit‘𝑅)) → (𝐾‘{𝑋}) = 𝐵) |
18 | 10 | idomringd 20706 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) → 𝑅 ∈ Ring) |
19 | | eqid 2726 |
. . . . . . . . . . 11
⊢
(.r‘𝑅) = (.r‘𝑅) |
20 | 15, 19 | prmidlnr 33314 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) → (𝐾‘{𝑋}) ≠ 𝐵) |
21 | 18, 20 | sylancom 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) → (𝐾‘{𝑋}) ≠ 𝐵) |
22 | 21 | adantr 479 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) ∧ 𝑋 ∈ (Unit‘𝑅)) → (𝐾‘{𝑋}) ≠ 𝐵) |
23 | 22 | neneqd 2935 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) ∧ 𝑋 ∈ (Unit‘𝑅)) → ¬ (𝐾‘{𝑋}) = 𝐵) |
24 | 17, 23 | pm2.65da 815 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) → ¬ 𝑋 ∈ (Unit‘𝑅)) |
25 | | rsprprmprmidlb.1 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ≠ 0 ) |
26 | | nelsn 4673 |
. . . . . . . 8
⊢ (𝑋 ≠ 0 → ¬ 𝑋 ∈ { 0 }) |
27 | 25, 26 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑋 ∈ { 0 }) |
28 | 27 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) → ¬ 𝑋 ∈ { 0 }) |
29 | | eqid 2726 |
. . . . . . 7
⊢
((Unit‘𝑅)
∪ { 0
}) = ((Unit‘𝑅) ∪
{ 0
}) |
30 | | nelun 32439 |
. . . . . . 7
⊢
(((Unit‘𝑅)
∪ { 0
}) = ((Unit‘𝑅) ∪
{ 0 })
→ (¬ 𝑋 ∈
((Unit‘𝑅) ∪ {
0 })
↔ (¬ 𝑋 ∈
(Unit‘𝑅) ∧ ¬
𝑋 ∈ { 0
}))) |
31 | 29, 30 | ax-mp 5 |
. . . . . 6
⊢ (¬
𝑋 ∈ ((Unit‘𝑅) ∪ { 0 }) ↔ (¬ 𝑋 ∈ (Unit‘𝑅) ∧ ¬ 𝑋 ∈ { 0 })) |
32 | 24, 28, 31 | sylanbrc 581 |
. . . . 5
⊢ ((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) → ¬ 𝑋 ∈ ((Unit‘𝑅) ∪ { 0 })) |
33 | 12, 32 | eldifd 3958 |
. . . 4
⊢ ((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) → 𝑋 ∈ (𝐵 ∖ ((Unit‘𝑅) ∪ { 0 }))) |
34 | | eqid 2726 |
. . . . . . . . . 10
⊢
(∥r‘𝑅) = (∥r‘𝑅) |
35 | 18 | ad3antrrr 728 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → 𝑅 ∈ Ring) |
36 | 11 | ad4antr 730 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → 𝑋 ∈ 𝐵) |
37 | 15, 1, 34, 35, 36 | ellpi 33248 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → (𝑥 ∈ (𝐾‘{𝑋}) ↔ 𝑋(∥r‘𝑅)𝑥)) |
38 | 37 | biimpa 475 |
. . . . . . . 8
⊢
((((((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) ∧ 𝑥 ∈ (𝐾‘{𝑋})) → 𝑋(∥r‘𝑅)𝑥) |
39 | 15, 1, 34, 35, 36 | ellpi 33248 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → (𝑦 ∈ (𝐾‘{𝑋}) ↔ 𝑋(∥r‘𝑅)𝑦)) |
40 | 39 | biimpa 475 |
. . . . . . . 8
⊢
((((((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) ∧ 𝑦 ∈ (𝐾‘{𝑋})) → 𝑋(∥r‘𝑅)𝑦) |
41 | 3 | ad4antr 730 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → 𝑅 ∈ CRing) |
42 | | simp-4r 782 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) |
43 | | simpllr 774 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → 𝑥 ∈ 𝐵) |
44 | | simplr 767 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → 𝑦 ∈ 𝐵) |
45 | 18 | ad2antrr 724 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑅 ∈ Ring) |
46 | 11 | ad3antrrr 728 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
47 | 15, 1, 34, 45, 46 | ellpi 33248 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑥(.r‘𝑅)𝑦) ∈ (𝐾‘{𝑋}) ↔ 𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦))) |
48 | 47 | biimpar 476 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → (𝑥(.r‘𝑅)𝑦) ∈ (𝐾‘{𝑋})) |
49 | 15, 19 | prmidlc 33323 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥(.r‘𝑅)𝑦) ∈ (𝐾‘{𝑋}))) → (𝑥 ∈ (𝐾‘{𝑋}) ∨ 𝑦 ∈ (𝐾‘{𝑋}))) |
50 | 41, 42, 43, 44, 48, 49 | syl23anc 1374 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → (𝑥 ∈ (𝐾‘{𝑋}) ∨ 𝑦 ∈ (𝐾‘{𝑋}))) |
51 | 38, 40, 50 | orim12da 32388 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → (𝑋(∥r‘𝑅)𝑥 ∨ 𝑋(∥r‘𝑅)𝑦)) |
52 | 51 | ex 411 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦) → (𝑋(∥r‘𝑅)𝑥 ∨ 𝑋(∥r‘𝑅)𝑦))) |
53 | 52 | anasss 465 |
. . . . 5
⊢ (((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦) → (𝑋(∥r‘𝑅)𝑥 ∨ 𝑋(∥r‘𝑅)𝑦))) |
54 | 53 | ralrimivva 3191 |
. . . 4
⊢ ((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦) → (𝑋(∥r‘𝑅)𝑥 ∨ 𝑋(∥r‘𝑅)𝑦))) |
55 | | rsprprmprmidlb.0 |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
56 | 15, 13, 55, 34, 19 | isrprm 33392 |
. . . . 5
⊢ (𝑅 ∈ IDomn → (𝑋 ∈ (RPrime‘𝑅) ↔ (𝑋 ∈ (𝐵 ∖ ((Unit‘𝑅) ∪ { 0 })) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦) → (𝑋(∥r‘𝑅)𝑥 ∨ 𝑋(∥r‘𝑅)𝑦))))) |
57 | 56 | biimpar 476 |
. . . 4
⊢ ((𝑅 ∈ IDomn ∧ (𝑋 ∈ (𝐵 ∖ ((Unit‘𝑅) ∪ { 0 })) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦) → (𝑋(∥r‘𝑅)𝑥 ∨ 𝑋(∥r‘𝑅)𝑦)))) → 𝑋 ∈ (RPrime‘𝑅)) |
58 | 10, 33, 54, 57 | syl12anc 835 |
. . 3
⊢ ((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) → 𝑋 ∈ (RPrime‘𝑅)) |
59 | 58, 5 | eleqtrrdi 2837 |
. 2
⊢ ((𝜑 ∧ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅)) → 𝑋 ∈ 𝑃) |
60 | 9, 59 | impbida 799 |
1
⊢ (𝜑 → (𝑋 ∈ 𝑃 ↔ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅))) |