Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmirredb Structured version   Visualization version   GIF version

Theorem rprmirredb 33552
Description: In a principal ideal domain, the converse of rprmirred 33551 holds, i.e. irreducible elements are prime. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmirredb.p 𝑃 = (RPrime‘𝑅)
rprmirredb.i 𝐼 = (Irred‘𝑅)
rprmirredb.r (𝜑𝑅 ∈ PID)
Assertion
Ref Expression
rprmirredb (𝜑𝐼 = 𝑃)

Proof of Theorem rprmirredb
Dummy variables 𝑝 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rprmirredb.r . . . . . 6 (𝜑𝑅 ∈ PID)
21adantr 480 . . . . 5 ((𝜑𝑝𝐼) → 𝑅 ∈ PID)
3 rprmirredb.i . . . . . . . 8 𝐼 = (Irred‘𝑅)
4 eqid 2736 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
53, 4irredcl 20389 . . . . . . 7 (𝑝𝐼𝑝 ∈ (Base‘𝑅))
65adantl 481 . . . . . 6 ((𝜑𝑝𝐼) → 𝑝 ∈ (Base‘𝑅))
7 eqid 2736 . . . . . . . . 9 (Unit‘𝑅) = (Unit‘𝑅)
83, 7irrednu 20390 . . . . . . . 8 (𝑝𝐼 → ¬ 𝑝 ∈ (Unit‘𝑅))
98adantl 481 . . . . . . 7 ((𝜑𝑝𝐼) → ¬ 𝑝 ∈ (Unit‘𝑅))
10 df-pid 21303 . . . . . . . . . . . . 13 PID = (IDomn ∩ LPIR)
111, 10eleqtrdi 2845 . . . . . . . . . . . 12 (𝜑𝑅 ∈ (IDomn ∩ LPIR))
1211elin1d 4184 . . . . . . . . . . 11 (𝜑𝑅 ∈ IDomn)
1312idomringd 20693 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
1413adantr 480 . . . . . . . . 9 ((𝜑𝑝𝐼) → 𝑅 ∈ Ring)
15 simpr 484 . . . . . . . . 9 ((𝜑𝑝𝐼) → 𝑝𝐼)
16 eqid 2736 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
173, 16irredn0 20388 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑝𝐼) → 𝑝 ≠ (0g𝑅))
1814, 15, 17syl2anc 584 . . . . . . . 8 ((𝜑𝑝𝐼) → 𝑝 ≠ (0g𝑅))
19 nelsn 4647 . . . . . . . 8 (𝑝 ≠ (0g𝑅) → ¬ 𝑝 ∈ {(0g𝑅)})
2018, 19syl 17 . . . . . . 7 ((𝜑𝑝𝐼) → ¬ 𝑝 ∈ {(0g𝑅)})
21 eqid 2736 . . . . . . . 8 ((Unit‘𝑅) ∪ {(0g𝑅)}) = ((Unit‘𝑅) ∪ {(0g𝑅)})
22 nelun 32499 . . . . . . . 8 (((Unit‘𝑅) ∪ {(0g𝑅)}) = ((Unit‘𝑅) ∪ {(0g𝑅)}) → (¬ 𝑝 ∈ ((Unit‘𝑅) ∪ {(0g𝑅)}) ↔ (¬ 𝑝 ∈ (Unit‘𝑅) ∧ ¬ 𝑝 ∈ {(0g𝑅)})))
2321, 22ax-mp 5 . . . . . . 7 𝑝 ∈ ((Unit‘𝑅) ∪ {(0g𝑅)}) ↔ (¬ 𝑝 ∈ (Unit‘𝑅) ∧ ¬ 𝑝 ∈ {(0g𝑅)}))
249, 20, 23sylanbrc 583 . . . . . 6 ((𝜑𝑝𝐼) → ¬ 𝑝 ∈ ((Unit‘𝑅) ∪ {(0g𝑅)}))
256, 24eldifd 3942 . . . . 5 ((𝜑𝑝𝐼) → 𝑝 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ {(0g𝑅)})))
26 eqid 2736 . . . . . . . . . . 11 (RSpan‘𝑅) = (RSpan‘𝑅)
27 eqid 2736 . . . . . . . . . . 11 (∥r𝑅) = (∥r𝑅)
2814ad3antrrr 730 . . . . . . . . . . 11 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → 𝑅 ∈ Ring)
296ad3antrrr 730 . . . . . . . . . . 11 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → 𝑝 ∈ (Base‘𝑅))
304, 26, 27, 28, 29ellpi 33393 . . . . . . . . . 10 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → (𝑥 ∈ ((RSpan‘𝑅)‘{𝑝}) ↔ 𝑝(∥r𝑅)𝑥))
3130biimpa 476 . . . . . . . . 9 ((((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) ∧ 𝑥 ∈ ((RSpan‘𝑅)‘{𝑝})) → 𝑝(∥r𝑅)𝑥)
324, 26, 27, 28, 29ellpi 33393 . . . . . . . . . 10 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → (𝑦 ∈ ((RSpan‘𝑅)‘{𝑝}) ↔ 𝑝(∥r𝑅)𝑦))
3332biimpa 476 . . . . . . . . 9 ((((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) ∧ 𝑦 ∈ ((RSpan‘𝑅)‘{𝑝})) → 𝑝(∥r𝑅)𝑦)
3412idomcringd 20692 . . . . . . . . . . 11 (𝜑𝑅 ∈ CRing)
3534ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → 𝑅 ∈ CRing)
363eleq2i 2827 . . . . . . . . . . . . . . 15 (𝑝𝐼𝑝 ∈ (Irred‘𝑅))
3736biimpi 216 . . . . . . . . . . . . . 14 (𝑝𝐼𝑝 ∈ (Irred‘𝑅))
3837adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑝𝐼) → 𝑝 ∈ (Irred‘𝑅))
39 eqid 2736 . . . . . . . . . . . . . 14 ((RSpan‘𝑅)‘{𝑝}) = ((RSpan‘𝑅)‘{𝑝})
406snssd 4790 . . . . . . . . . . . . . . 15 ((𝜑𝑝𝐼) → {𝑝} ⊆ (Base‘𝑅))
41 eqid 2736 . . . . . . . . . . . . . . . 16 (LIdeal‘𝑅) = (LIdeal‘𝑅)
4226, 4, 41rspcl 21201 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ {𝑝} ⊆ (Base‘𝑅)) → ((RSpan‘𝑅)‘{𝑝}) ∈ (LIdeal‘𝑅))
4314, 40, 42syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑝𝐼) → ((RSpan‘𝑅)‘{𝑝}) ∈ (LIdeal‘𝑅))
444, 26, 16, 39, 2, 6, 18, 43mxidlirred 33492 . . . . . . . . . . . . 13 ((𝜑𝑝𝐼) → (((RSpan‘𝑅)‘{𝑝}) ∈ (MaxIdeal‘𝑅) ↔ 𝑝 ∈ (Irred‘𝑅)))
4538, 44mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑝𝐼) → ((RSpan‘𝑅)‘{𝑝}) ∈ (MaxIdeal‘𝑅))
4645ad3antrrr 730 . . . . . . . . . . 11 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → ((RSpan‘𝑅)‘{𝑝}) ∈ (MaxIdeal‘𝑅))
47 eqid 2736 . . . . . . . . . . . 12 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
4847mxidlprm 33490 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ ((RSpan‘𝑅)‘{𝑝}) ∈ (MaxIdeal‘𝑅)) → ((RSpan‘𝑅)‘{𝑝}) ∈ (PrmIdeal‘𝑅))
4935, 46, 48syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → ((RSpan‘𝑅)‘{𝑝}) ∈ (PrmIdeal‘𝑅))
50 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → 𝑥 ∈ (Base‘𝑅))
51 simplr 768 . . . . . . . . . 10 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → 𝑦 ∈ (Base‘𝑅))
52 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦))
534, 26, 27, 28, 29ellpi 33393 . . . . . . . . . . 11 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → ((𝑥(.r𝑅)𝑦) ∈ ((RSpan‘𝑅)‘{𝑝}) ↔ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)))
5452, 53mpbird 257 . . . . . . . . . 10 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → (𝑥(.r𝑅)𝑦) ∈ ((RSpan‘𝑅)‘{𝑝}))
55 eqid 2736 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
564, 55prmidlc 33468 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ ((RSpan‘𝑅)‘{𝑝}) ∈ (PrmIdeal‘𝑅)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ (𝑥(.r𝑅)𝑦) ∈ ((RSpan‘𝑅)‘{𝑝}))) → (𝑥 ∈ ((RSpan‘𝑅)‘{𝑝}) ∨ 𝑦 ∈ ((RSpan‘𝑅)‘{𝑝})))
5735, 49, 50, 51, 54, 56syl23anc 1379 . . . . . . . . 9 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → (𝑥 ∈ ((RSpan‘𝑅)‘{𝑝}) ∨ 𝑦 ∈ ((RSpan‘𝑅)‘{𝑝})))
5831, 33, 57orim12da 32444 . . . . . . . 8 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → (𝑝(∥r𝑅)𝑥𝑝(∥r𝑅)𝑦))
5958ex 412 . . . . . . 7 ((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦) → (𝑝(∥r𝑅)𝑥𝑝(∥r𝑅)𝑦)))
6059anasss 466 . . . . . 6 (((𝜑𝑝𝐼) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦) → (𝑝(∥r𝑅)𝑥𝑝(∥r𝑅)𝑦)))
6160ralrimivva 3188 . . . . 5 ((𝜑𝑝𝐼) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦) → (𝑝(∥r𝑅)𝑥𝑝(∥r𝑅)𝑦)))
624, 7, 16, 27, 55isrprm 33537 . . . . . 6 (𝑅 ∈ PID → (𝑝 ∈ (RPrime‘𝑅) ↔ (𝑝 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ {(0g𝑅)})) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦) → (𝑝(∥r𝑅)𝑥𝑝(∥r𝑅)𝑦)))))
6362biimpar 477 . . . . 5 ((𝑅 ∈ PID ∧ (𝑝 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ {(0g𝑅)})) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦) → (𝑝(∥r𝑅)𝑥𝑝(∥r𝑅)𝑦)))) → 𝑝 ∈ (RPrime‘𝑅))
642, 25, 61, 63syl12anc 836 . . . 4 ((𝜑𝑝𝐼) → 𝑝 ∈ (RPrime‘𝑅))
65 rprmirredb.p . . . 4 𝑃 = (RPrime‘𝑅)
6664, 65eleqtrrdi 2846 . . 3 ((𝜑𝑝𝐼) → 𝑝𝑃)
67 simpr 484 . . . 4 ((𝜑𝑝𝑃) → 𝑝𝑃)
6812adantr 480 . . . 4 ((𝜑𝑝𝑃) → 𝑅 ∈ IDomn)
6965, 3, 67, 68rprmirred 33551 . . 3 ((𝜑𝑝𝑃) → 𝑝𝐼)
7066, 69impbida 800 . 2 (𝜑 → (𝑝𝐼𝑝𝑃))
7170eqrdv 2734 1 (𝜑𝐼 = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2933  wral 3052  cdif 3928  cun 3929  cin 3930  wss 3931  {csn 4606   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  .rcmulr 17277  0gc0g 17458  LSSumclsm 19620  mulGrpcmgp 20105  Ringcrg 20198  CRingccrg 20199  rcdsr 20319  Unitcui 20320  Irredcir 20321  RPrimecrpm 20397  IDomncidom 20658  LIdealclidl 21172  RSpancrsp 21173  LPIRclpir 21287  PIDcpid 21302  PrmIdealcprmidl 33455  MaxIdealcmxidl 33479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-cntz 19305  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-irred 20324  df-invr 20353  df-rprm 20398  df-nzr 20478  df-subrg 20535  df-domn 20660  df-idom 20661  df-lmod 20824  df-lss 20894  df-lsp 20934  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-rsp 21175  df-lpidl 21288  df-lpir 21289  df-pid 21303  df-prmidl 33456  df-mxidl 33480
This theorem is referenced by:  dfprm3  33573
  Copyright terms: Public domain W3C validator