Step | Hyp | Ref
| Expression |
1 | | rprmirredb.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ PID) |
2 | 1 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐼) → 𝑅 ∈ PID) |
3 | | rprmirredb.i |
. . . . . . . 8
⊢ 𝐼 = (Irred‘𝑅) |
4 | | eqid 2726 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
5 | 3, 4 | irredcl 20406 |
. . . . . . 7
⊢ (𝑝 ∈ 𝐼 → 𝑝 ∈ (Base‘𝑅)) |
6 | 5 | adantl 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐼) → 𝑝 ∈ (Base‘𝑅)) |
7 | | eqid 2726 |
. . . . . . . . 9
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
8 | 3, 7 | irrednu 20407 |
. . . . . . . 8
⊢ (𝑝 ∈ 𝐼 → ¬ 𝑝 ∈ (Unit‘𝑅)) |
9 | 8 | adantl 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐼) → ¬ 𝑝 ∈ (Unit‘𝑅)) |
10 | | df-pid 21326 |
. . . . . . . . . . . . 13
⊢ PID =
(IDomn ∩ LPIR) |
11 | 1, 10 | eleqtrdi 2836 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ (IDomn ∩ LPIR)) |
12 | 11 | elin1d 4199 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ IDomn) |
13 | 12 | idomringd 20706 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ Ring) |
14 | 13 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐼) → 𝑅 ∈ Ring) |
15 | | simpr 483 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐼) → 𝑝 ∈ 𝐼) |
16 | | eqid 2726 |
. . . . . . . . . 10
⊢
(0g‘𝑅) = (0g‘𝑅) |
17 | 3, 16 | irredn0 20405 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈ 𝐼) → 𝑝 ≠ (0g‘𝑅)) |
18 | 14, 15, 17 | syl2anc 582 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐼) → 𝑝 ≠ (0g‘𝑅)) |
19 | | nelsn 4673 |
. . . . . . . 8
⊢ (𝑝 ≠ (0g‘𝑅) → ¬ 𝑝 ∈
{(0g‘𝑅)}) |
20 | 18, 19 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐼) → ¬ 𝑝 ∈ {(0g‘𝑅)}) |
21 | | eqid 2726 |
. . . . . . . 8
⊢
((Unit‘𝑅)
∪ {(0g‘𝑅)}) = ((Unit‘𝑅) ∪ {(0g‘𝑅)}) |
22 | | nelun 32439 |
. . . . . . . 8
⊢
(((Unit‘𝑅)
∪ {(0g‘𝑅)}) = ((Unit‘𝑅) ∪ {(0g‘𝑅)}) → (¬ 𝑝 ∈ ((Unit‘𝑅) ∪
{(0g‘𝑅)})
↔ (¬ 𝑝 ∈
(Unit‘𝑅) ∧ ¬
𝑝 ∈
{(0g‘𝑅)}))) |
23 | 21, 22 | ax-mp 5 |
. . . . . . 7
⊢ (¬
𝑝 ∈ ((Unit‘𝑅) ∪
{(0g‘𝑅)})
↔ (¬ 𝑝 ∈
(Unit‘𝑅) ∧ ¬
𝑝 ∈
{(0g‘𝑅)})) |
24 | 9, 20, 23 | sylanbrc 581 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐼) → ¬ 𝑝 ∈ ((Unit‘𝑅) ∪ {(0g‘𝑅)})) |
25 | 6, 24 | eldifd 3958 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐼) → 𝑝 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ {(0g‘𝑅)}))) |
26 | | eqid 2726 |
. . . . . . . . . . 11
⊢
(RSpan‘𝑅) =
(RSpan‘𝑅) |
27 | | eqid 2726 |
. . . . . . . . . . 11
⊢
(∥r‘𝑅) = (∥r‘𝑅) |
28 | 14 | ad3antrrr 728 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → 𝑅 ∈ Ring) |
29 | 6 | ad3antrrr 728 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → 𝑝 ∈ (Base‘𝑅)) |
30 | 4, 26, 27, 28, 29 | ellpi 33248 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → (𝑥 ∈ ((RSpan‘𝑅)‘{𝑝}) ↔ 𝑝(∥r‘𝑅)𝑥)) |
31 | 30 | biimpa 475 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑝 ∈ 𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) ∧ 𝑥 ∈ ((RSpan‘𝑅)‘{𝑝})) → 𝑝(∥r‘𝑅)𝑥) |
32 | 4, 26, 27, 28, 29 | ellpi 33248 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → (𝑦 ∈ ((RSpan‘𝑅)‘{𝑝}) ↔ 𝑝(∥r‘𝑅)𝑦)) |
33 | 32 | biimpa 475 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑝 ∈ 𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) ∧ 𝑦 ∈ ((RSpan‘𝑅)‘{𝑝})) → 𝑝(∥r‘𝑅)𝑦) |
34 | 12 | idomcringd 20705 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ CRing) |
35 | 34 | ad4antr 730 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → 𝑅 ∈ CRing) |
36 | 3 | eleq2i 2818 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 ∈ 𝐼 ↔ 𝑝 ∈ (Irred‘𝑅)) |
37 | 36 | biimpi 215 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ 𝐼 → 𝑝 ∈ (Irred‘𝑅)) |
38 | 37 | adantl 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐼) → 𝑝 ∈ (Irred‘𝑅)) |
39 | | eqid 2726 |
. . . . . . . . . . . . . 14
⊢
((RSpan‘𝑅)‘{𝑝}) = ((RSpan‘𝑅)‘{𝑝}) |
40 | 6 | snssd 4818 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐼) → {𝑝} ⊆ (Base‘𝑅)) |
41 | | eqid 2726 |
. . . . . . . . . . . . . . . 16
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
42 | 26, 4, 41 | rspcl 21224 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ {𝑝} ⊆ (Base‘𝑅)) → ((RSpan‘𝑅)‘{𝑝}) ∈ (LIdeal‘𝑅)) |
43 | 14, 40, 42 | syl2anc 582 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐼) → ((RSpan‘𝑅)‘{𝑝}) ∈ (LIdeal‘𝑅)) |
44 | 4, 26, 16, 39, 2, 6, 18, 43 | mxidlirred 33347 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐼) → (((RSpan‘𝑅)‘{𝑝}) ∈ (MaxIdeal‘𝑅) ↔ 𝑝 ∈ (Irred‘𝑅))) |
45 | 38, 44 | mpbird 256 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐼) → ((RSpan‘𝑅)‘{𝑝}) ∈ (MaxIdeal‘𝑅)) |
46 | 45 | ad3antrrr 728 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → ((RSpan‘𝑅)‘{𝑝}) ∈ (MaxIdeal‘𝑅)) |
47 | | eqid 2726 |
. . . . . . . . . . . 12
⊢
(LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅)) |
48 | 47 | mxidlprm 33345 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧
((RSpan‘𝑅)‘{𝑝}) ∈ (MaxIdeal‘𝑅)) → ((RSpan‘𝑅)‘{𝑝}) ∈ (PrmIdeal‘𝑅)) |
49 | 35, 46, 48 | syl2anc 582 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → ((RSpan‘𝑅)‘{𝑝}) ∈ (PrmIdeal‘𝑅)) |
50 | | simpllr 774 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → 𝑥 ∈ (Base‘𝑅)) |
51 | | simplr 767 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → 𝑦 ∈ (Base‘𝑅)) |
52 | | simpr 483 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → 𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) |
53 | 4, 26, 27, 28, 29 | ellpi 33248 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → ((𝑥(.r‘𝑅)𝑦) ∈ ((RSpan‘𝑅)‘{𝑝}) ↔ 𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦))) |
54 | 52, 53 | mpbird 256 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → (𝑥(.r‘𝑅)𝑦) ∈ ((RSpan‘𝑅)‘{𝑝})) |
55 | | eqid 2726 |
. . . . . . . . . . 11
⊢
(.r‘𝑅) = (.r‘𝑅) |
56 | 4, 55 | prmidlc 33323 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧
((RSpan‘𝑅)‘{𝑝}) ∈ (PrmIdeal‘𝑅)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ (𝑥(.r‘𝑅)𝑦) ∈ ((RSpan‘𝑅)‘{𝑝}))) → (𝑥 ∈ ((RSpan‘𝑅)‘{𝑝}) ∨ 𝑦 ∈ ((RSpan‘𝑅)‘{𝑝}))) |
57 | 35, 49, 50, 51, 54, 56 | syl23anc 1374 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → (𝑥 ∈ ((RSpan‘𝑅)‘{𝑝}) ∨ 𝑦 ∈ ((RSpan‘𝑅)‘{𝑝}))) |
58 | 31, 33, 57 | orim12da 32388 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) → (𝑝(∥r‘𝑅)𝑥 ∨ 𝑝(∥r‘𝑅)𝑦)) |
59 | 58 | ex 411 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑝 ∈ 𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦) → (𝑝(∥r‘𝑅)𝑥 ∨ 𝑝(∥r‘𝑅)𝑦))) |
60 | 59 | anasss 465 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑝 ∈ 𝐼) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦) → (𝑝(∥r‘𝑅)𝑥 ∨ 𝑝(∥r‘𝑅)𝑦))) |
61 | 60 | ralrimivva 3191 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐼) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦) → (𝑝(∥r‘𝑅)𝑥 ∨ 𝑝(∥r‘𝑅)𝑦))) |
62 | 4, 7, 16, 27, 55 | isrprm 33392 |
. . . . . 6
⊢ (𝑅 ∈ PID → (𝑝 ∈ (RPrime‘𝑅) ↔ (𝑝 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ {(0g‘𝑅)})) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦) → (𝑝(∥r‘𝑅)𝑥 ∨ 𝑝(∥r‘𝑅)𝑦))))) |
63 | 62 | biimpar 476 |
. . . . 5
⊢ ((𝑅 ∈ PID ∧ (𝑝 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪
{(0g‘𝑅)}))
∧ ∀𝑥 ∈
(Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑝(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦) → (𝑝(∥r‘𝑅)𝑥 ∨ 𝑝(∥r‘𝑅)𝑦)))) → 𝑝 ∈ (RPrime‘𝑅)) |
64 | 2, 25, 61, 63 | syl12anc 835 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐼) → 𝑝 ∈ (RPrime‘𝑅)) |
65 | | rprmirredb.p |
. . . 4
⊢ 𝑃 = (RPrime‘𝑅) |
66 | 64, 65 | eleqtrrdi 2837 |
. . 3
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐼) → 𝑝 ∈ 𝑃) |
67 | | simpr 483 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝑝 ∈ 𝑃) |
68 | 12 | adantr 479 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝑅 ∈ IDomn) |
69 | 65, 3, 67, 68 | rprmirred 33406 |
. . 3
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝑝 ∈ 𝐼) |
70 | 66, 69 | impbida 799 |
. 2
⊢ (𝜑 → (𝑝 ∈ 𝐼 ↔ 𝑝 ∈ 𝑃)) |
71 | 70 | eqrdv 2724 |
1
⊢ (𝜑 → 𝐼 = 𝑃) |