Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmirredb Structured version   Visualization version   GIF version

Theorem rprmirredb 33497
Description: In a principal ideal domain, the converse of rprmirred 33496 holds, i.e. irreducible elements are prime. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmirredb.p 𝑃 = (RPrime‘𝑅)
rprmirredb.i 𝐼 = (Irred‘𝑅)
rprmirredb.r (𝜑𝑅 ∈ PID)
Assertion
Ref Expression
rprmirredb (𝜑𝐼 = 𝑃)

Proof of Theorem rprmirredb
Dummy variables 𝑝 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rprmirredb.r . . . . . 6 (𝜑𝑅 ∈ PID)
21adantr 480 . . . . 5 ((𝜑𝑝𝐼) → 𝑅 ∈ PID)
3 rprmirredb.i . . . . . . . 8 𝐼 = (Irred‘𝑅)
4 eqid 2731 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
53, 4irredcl 20342 . . . . . . 7 (𝑝𝐼𝑝 ∈ (Base‘𝑅))
65adantl 481 . . . . . 6 ((𝜑𝑝𝐼) → 𝑝 ∈ (Base‘𝑅))
7 eqid 2731 . . . . . . . . 9 (Unit‘𝑅) = (Unit‘𝑅)
83, 7irrednu 20343 . . . . . . . 8 (𝑝𝐼 → ¬ 𝑝 ∈ (Unit‘𝑅))
98adantl 481 . . . . . . 7 ((𝜑𝑝𝐼) → ¬ 𝑝 ∈ (Unit‘𝑅))
10 df-pid 21274 . . . . . . . . . . . . 13 PID = (IDomn ∩ LPIR)
111, 10eleqtrdi 2841 . . . . . . . . . . . 12 (𝜑𝑅 ∈ (IDomn ∩ LPIR))
1211elin1d 4151 . . . . . . . . . . 11 (𝜑𝑅 ∈ IDomn)
1312idomringd 20643 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
1413adantr 480 . . . . . . . . 9 ((𝜑𝑝𝐼) → 𝑅 ∈ Ring)
15 simpr 484 . . . . . . . . 9 ((𝜑𝑝𝐼) → 𝑝𝐼)
16 eqid 2731 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
173, 16irredn0 20341 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑝𝐼) → 𝑝 ≠ (0g𝑅))
1814, 15, 17syl2anc 584 . . . . . . . 8 ((𝜑𝑝𝐼) → 𝑝 ≠ (0g𝑅))
19 nelsn 4616 . . . . . . . 8 (𝑝 ≠ (0g𝑅) → ¬ 𝑝 ∈ {(0g𝑅)})
2018, 19syl 17 . . . . . . 7 ((𝜑𝑝𝐼) → ¬ 𝑝 ∈ {(0g𝑅)})
21 eqid 2731 . . . . . . . 8 ((Unit‘𝑅) ∪ {(0g𝑅)}) = ((Unit‘𝑅) ∪ {(0g𝑅)})
22 nelun 32493 . . . . . . . 8 (((Unit‘𝑅) ∪ {(0g𝑅)}) = ((Unit‘𝑅) ∪ {(0g𝑅)}) → (¬ 𝑝 ∈ ((Unit‘𝑅) ∪ {(0g𝑅)}) ↔ (¬ 𝑝 ∈ (Unit‘𝑅) ∧ ¬ 𝑝 ∈ {(0g𝑅)})))
2321, 22ax-mp 5 . . . . . . 7 𝑝 ∈ ((Unit‘𝑅) ∪ {(0g𝑅)}) ↔ (¬ 𝑝 ∈ (Unit‘𝑅) ∧ ¬ 𝑝 ∈ {(0g𝑅)}))
249, 20, 23sylanbrc 583 . . . . . 6 ((𝜑𝑝𝐼) → ¬ 𝑝 ∈ ((Unit‘𝑅) ∪ {(0g𝑅)}))
256, 24eldifd 3908 . . . . 5 ((𝜑𝑝𝐼) → 𝑝 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ {(0g𝑅)})))
26 eqid 2731 . . . . . . . . . . 11 (RSpan‘𝑅) = (RSpan‘𝑅)
27 eqid 2731 . . . . . . . . . . 11 (∥r𝑅) = (∥r𝑅)
2814ad3antrrr 730 . . . . . . . . . . 11 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → 𝑅 ∈ Ring)
296ad3antrrr 730 . . . . . . . . . . 11 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → 𝑝 ∈ (Base‘𝑅))
304, 26, 27, 28, 29ellpi 33338 . . . . . . . . . 10 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → (𝑥 ∈ ((RSpan‘𝑅)‘{𝑝}) ↔ 𝑝(∥r𝑅)𝑥))
3130biimpa 476 . . . . . . . . 9 ((((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) ∧ 𝑥 ∈ ((RSpan‘𝑅)‘{𝑝})) → 𝑝(∥r𝑅)𝑥)
324, 26, 27, 28, 29ellpi 33338 . . . . . . . . . 10 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → (𝑦 ∈ ((RSpan‘𝑅)‘{𝑝}) ↔ 𝑝(∥r𝑅)𝑦))
3332biimpa 476 . . . . . . . . 9 ((((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) ∧ 𝑦 ∈ ((RSpan‘𝑅)‘{𝑝})) → 𝑝(∥r𝑅)𝑦)
3412idomcringd 20642 . . . . . . . . . . 11 (𝜑𝑅 ∈ CRing)
3534ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → 𝑅 ∈ CRing)
363eleq2i 2823 . . . . . . . . . . . . . . 15 (𝑝𝐼𝑝 ∈ (Irred‘𝑅))
3736biimpi 216 . . . . . . . . . . . . . 14 (𝑝𝐼𝑝 ∈ (Irred‘𝑅))
3837adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑝𝐼) → 𝑝 ∈ (Irred‘𝑅))
39 eqid 2731 . . . . . . . . . . . . . 14 ((RSpan‘𝑅)‘{𝑝}) = ((RSpan‘𝑅)‘{𝑝})
406snssd 4758 . . . . . . . . . . . . . . 15 ((𝜑𝑝𝐼) → {𝑝} ⊆ (Base‘𝑅))
41 eqid 2731 . . . . . . . . . . . . . . . 16 (LIdeal‘𝑅) = (LIdeal‘𝑅)
4226, 4, 41rspcl 21172 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ {𝑝} ⊆ (Base‘𝑅)) → ((RSpan‘𝑅)‘{𝑝}) ∈ (LIdeal‘𝑅))
4314, 40, 42syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑝𝐼) → ((RSpan‘𝑅)‘{𝑝}) ∈ (LIdeal‘𝑅))
444, 26, 16, 39, 2, 6, 18, 43mxidlirred 33437 . . . . . . . . . . . . 13 ((𝜑𝑝𝐼) → (((RSpan‘𝑅)‘{𝑝}) ∈ (MaxIdeal‘𝑅) ↔ 𝑝 ∈ (Irred‘𝑅)))
4538, 44mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑝𝐼) → ((RSpan‘𝑅)‘{𝑝}) ∈ (MaxIdeal‘𝑅))
4645ad3antrrr 730 . . . . . . . . . . 11 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → ((RSpan‘𝑅)‘{𝑝}) ∈ (MaxIdeal‘𝑅))
47 eqid 2731 . . . . . . . . . . . 12 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
4847mxidlprm 33435 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ ((RSpan‘𝑅)‘{𝑝}) ∈ (MaxIdeal‘𝑅)) → ((RSpan‘𝑅)‘{𝑝}) ∈ (PrmIdeal‘𝑅))
4935, 46, 48syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → ((RSpan‘𝑅)‘{𝑝}) ∈ (PrmIdeal‘𝑅))
50 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → 𝑥 ∈ (Base‘𝑅))
51 simplr 768 . . . . . . . . . 10 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → 𝑦 ∈ (Base‘𝑅))
52 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦))
534, 26, 27, 28, 29ellpi 33338 . . . . . . . . . . 11 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → ((𝑥(.r𝑅)𝑦) ∈ ((RSpan‘𝑅)‘{𝑝}) ↔ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)))
5452, 53mpbird 257 . . . . . . . . . 10 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → (𝑥(.r𝑅)𝑦) ∈ ((RSpan‘𝑅)‘{𝑝}))
55 eqid 2731 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
564, 55prmidlc 33413 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ ((RSpan‘𝑅)‘{𝑝}) ∈ (PrmIdeal‘𝑅)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ (𝑥(.r𝑅)𝑦) ∈ ((RSpan‘𝑅)‘{𝑝}))) → (𝑥 ∈ ((RSpan‘𝑅)‘{𝑝}) ∨ 𝑦 ∈ ((RSpan‘𝑅)‘{𝑝})))
5735, 49, 50, 51, 54, 56syl23anc 1379 . . . . . . . . 9 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → (𝑥 ∈ ((RSpan‘𝑅)‘{𝑝}) ∨ 𝑦 ∈ ((RSpan‘𝑅)‘{𝑝})))
5831, 33, 57orim12da 32437 . . . . . . . 8 (((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦)) → (𝑝(∥r𝑅)𝑥𝑝(∥r𝑅)𝑦))
5958ex 412 . . . . . . 7 ((((𝜑𝑝𝐼) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦) → (𝑝(∥r𝑅)𝑥𝑝(∥r𝑅)𝑦)))
6059anasss 466 . . . . . 6 (((𝜑𝑝𝐼) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦) → (𝑝(∥r𝑅)𝑥𝑝(∥r𝑅)𝑦)))
6160ralrimivva 3175 . . . . 5 ((𝜑𝑝𝐼) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦) → (𝑝(∥r𝑅)𝑥𝑝(∥r𝑅)𝑦)))
624, 7, 16, 27, 55isrprm 33482 . . . . . 6 (𝑅 ∈ PID → (𝑝 ∈ (RPrime‘𝑅) ↔ (𝑝 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ {(0g𝑅)})) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦) → (𝑝(∥r𝑅)𝑥𝑝(∥r𝑅)𝑦)))))
6362biimpar 477 . . . . 5 ((𝑅 ∈ PID ∧ (𝑝 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ {(0g𝑅)})) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑝(∥r𝑅)(𝑥(.r𝑅)𝑦) → (𝑝(∥r𝑅)𝑥𝑝(∥r𝑅)𝑦)))) → 𝑝 ∈ (RPrime‘𝑅))
642, 25, 61, 63syl12anc 836 . . . 4 ((𝜑𝑝𝐼) → 𝑝 ∈ (RPrime‘𝑅))
65 rprmirredb.p . . . 4 𝑃 = (RPrime‘𝑅)
6664, 65eleqtrrdi 2842 . . 3 ((𝜑𝑝𝐼) → 𝑝𝑃)
67 simpr 484 . . . 4 ((𝜑𝑝𝑃) → 𝑝𝑃)
6812adantr 480 . . . 4 ((𝜑𝑝𝑃) → 𝑅 ∈ IDomn)
6965, 3, 67, 68rprmirred 33496 . . 3 ((𝜑𝑝𝑃) → 𝑝𝐼)
7066, 69impbida 800 . 2 (𝜑 → (𝑝𝐼𝑝𝑃))
7170eqrdv 2729 1 (𝜑𝐼 = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wral 3047  cdif 3894  cun 3895  cin 3896  wss 3897  {csn 4573   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  .rcmulr 17162  0gc0g 17343  LSSumclsm 19546  mulGrpcmgp 20058  Ringcrg 20151  CRingccrg 20152  rcdsr 20272  Unitcui 20273  Irredcir 20274  RPrimecrpm 20350  IDomncidom 20608  LIdealclidl 21143  RSpancrsp 21144  LPIRclpir 21258  PIDcpid 21273  PrmIdealcprmidl 33400  MaxIdealcmxidl 33424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19229  df-lsm 19548  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-irred 20277  df-invr 20306  df-rprm 20351  df-nzr 20428  df-subrg 20485  df-domn 20610  df-idom 20611  df-lmod 20795  df-lss 20865  df-lsp 20905  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-rsp 21146  df-lpidl 21259  df-lpir 21260  df-pid 21274  df-prmidl 33401  df-mxidl 33425
This theorem is referenced by:  dfprm3  33518
  Copyright terms: Public domain W3C validator