![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rtelextdg2 | Structured version Visualization version GIF version |
Description: If an element 𝑋 is a solution of a quadratic equation, then it is either in the base field, or the degree of its field extension is exactly 2. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
Ref | Expression |
---|---|
rtelextdg2.1 | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
rtelextdg2.2 | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
rtelextdg2.3 | ⊢ 0 = (0g‘𝐸) |
rtelextdg2.4 | ⊢ 𝑃 = (Poly1‘𝐾) |
rtelextdg2.5 | ⊢ 𝑉 = (Base‘𝐸) |
rtelextdg2.6 | ⊢ · = (.r‘𝐸) |
rtelextdg2.7 | ⊢ + = (+g‘𝐸) |
rtelextdg2.8 | ⊢ ↑ = (.g‘(mulGrp‘𝐸)) |
rtelextdg2.9 | ⊢ (𝜑 → 𝐸 ∈ Field) |
rtelextdg2.10 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
rtelextdg2.11 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
rtelextdg2.12 | ⊢ (𝜑 → 𝐴 ∈ 𝐹) |
rtelextdg2.13 | ⊢ (𝜑 → 𝐵 ∈ 𝐹) |
rtelextdg2.14 | ⊢ (𝜑 → ((2 ↑ 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 ) |
Ref | Expression |
---|---|
rtelextdg2 | ⊢ (𝜑 → (𝑋 ∈ 𝐹 ∨ (𝐿[:]𝐾) = 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rtelextdg2.5 | . . . . . 6 ⊢ 𝑉 = (Base‘𝐸) | |
2 | rtelextdg2.9 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ Field) | |
3 | 2 | flddrngd 20758 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
4 | rtelextdg2.10 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
5 | 1 | sdrgss 20811 | . . . . . . . 8 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ⊆ 𝑉) |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ⊆ 𝑉) |
7 | rtelextdg2.11 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
8 | 7 | snssd 4814 | . . . . . . 7 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
9 | 6, 8 | unssd 4202 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∪ {𝑋}) ⊆ 𝑉) |
10 | 1, 3, 9 | fldgenssid 33295 | . . . . 5 ⊢ (𝜑 → (𝐹 ∪ {𝑋}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
11 | ssun2 4189 | . . . . . 6 ⊢ {𝑋} ⊆ (𝐹 ∪ {𝑋}) | |
12 | snidg 4665 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) | |
13 | 7, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ {𝑋}) |
14 | 11, 13 | sselid 3993 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝐹 ∪ {𝑋})) |
15 | 10, 14 | sseldd 3996 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
16 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝑋 ∈ (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
17 | rtelextdg2.1 | . . . . . . 7 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
18 | rtelextdg2.2 | . . . . . . 7 ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝑋}))) | |
19 | 1, 17, 18, 2, 4, 8 | fldgenfldext 33693 | . . . . . 6 ⊢ (𝜑 → 𝐿/FldExt𝐾) |
20 | extdg1id 33691 | . . . . . 6 ⊢ ((𝐿/FldExt𝐾 ∧ (𝐿[:]𝐾) = 1) → 𝐿 = 𝐾) | |
21 | 19, 20 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝐿 = 𝐾) |
22 | 21 | fveq2d 6911 | . . . 4 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (Base‘𝐿) = (Base‘𝐾)) |
23 | 1, 3, 9 | fldgenssv 33297 | . . . . . 6 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝑋})) ⊆ 𝑉) |
24 | 18, 1 | ressbas2 17283 | . . . . . 6 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝑋})) ⊆ 𝑉 → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿)) |
25 | 23, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿)) |
26 | 25 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿)) |
27 | 17, 1 | ressbas2 17283 | . . . . . 6 ⊢ (𝐹 ⊆ 𝑉 → 𝐹 = (Base‘𝐾)) |
28 | 6, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 = (Base‘𝐾)) |
29 | 28 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝐹 = (Base‘𝐾)) |
30 | 22, 26, 29 | 3eqtr4d 2785 | . . 3 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (𝐸 fldGen (𝐹 ∪ {𝑋})) = 𝐹) |
31 | 16, 30 | eleqtrd 2841 | . 2 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝑋 ∈ 𝐹) |
32 | simpr 484 | . 2 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 2) → (𝐿[:]𝐾) = 2) | |
33 | 1zzd 12646 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℤ) | |
34 | 2z 12647 | . . . . . 6 ⊢ 2 ∈ ℤ | |
35 | 34 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℤ) |
36 | extdgcl 33684 | . . . . . . . 8 ⊢ (𝐿/FldExt𝐾 → (𝐿[:]𝐾) ∈ ℕ0*) | |
37 | 19, 36 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ ℕ0*) |
38 | 2nn0 12541 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
39 | 38 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 ∈ ℕ0) |
40 | rtelextdg2.3 | . . . . . . . 8 ⊢ 0 = (0g‘𝐸) | |
41 | rtelextdg2.4 | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘𝐾) | |
42 | rtelextdg2.6 | . . . . . . . 8 ⊢ · = (.r‘𝐸) | |
43 | rtelextdg2.7 | . . . . . . . 8 ⊢ + = (+g‘𝐸) | |
44 | rtelextdg2.8 | . . . . . . . 8 ⊢ ↑ = (.g‘(mulGrp‘𝐸)) | |
45 | rtelextdg2.12 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝐹) | |
46 | rtelextdg2.13 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ 𝐹) | |
47 | rtelextdg2.14 | . . . . . . . 8 ⊢ (𝜑 → ((2 ↑ 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 ) | |
48 | eqid 2735 | . . . . . . . 8 ⊢ (var1‘𝐾) = (var1‘𝐾) | |
49 | eqid 2735 | . . . . . . . 8 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
50 | eqid 2735 | . . . . . . . 8 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
51 | eqid 2735 | . . . . . . . 8 ⊢ (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃)) | |
52 | eqid 2735 | . . . . . . . 8 ⊢ (algSc‘𝑃) = (algSc‘𝑃) | |
53 | eqid 2735 | . . . . . . . 8 ⊢ ((2(.g‘(mulGrp‘𝑃))(var1‘𝐾))(+g‘𝑃)((((algSc‘𝑃)‘𝐴)(.r‘𝑃)(var1‘𝐾))(+g‘𝑃)((algSc‘𝑃)‘𝐵))) = ((2(.g‘(mulGrp‘𝑃))(var1‘𝐾))(+g‘𝑃)((((algSc‘𝑃)‘𝐴)(.r‘𝑃)(var1‘𝐾))(+g‘𝑃)((algSc‘𝑃)‘𝐵))) | |
54 | 17, 18, 40, 41, 1, 42, 43, 44, 2, 4, 7, 45, 46, 47, 48, 49, 50, 51, 52, 53 | rtelextdg2lem 33732 | . . . . . . 7 ⊢ (𝜑 → (𝐿[:]𝐾) ≤ 2) |
55 | xnn0lenn0nn0 13284 | . . . . . . 7 ⊢ (((𝐿[:]𝐾) ∈ ℕ0* ∧ 2 ∈ ℕ0 ∧ (𝐿[:]𝐾) ≤ 2) → (𝐿[:]𝐾) ∈ ℕ0) | |
56 | 37, 39, 54, 55 | syl3anc 1370 | . . . . . 6 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ ℕ0) |
57 | 56 | nn0zd 12637 | . . . . 5 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ ℤ) |
58 | extdggt0 33685 | . . . . . . 7 ⊢ (𝐿/FldExt𝐾 → 0 < (𝐿[:]𝐾)) | |
59 | 19, 58 | syl 17 | . . . . . 6 ⊢ (𝜑 → 0 < (𝐿[:]𝐾)) |
60 | zgt0ge1 12670 | . . . . . . 7 ⊢ ((𝐿[:]𝐾) ∈ ℤ → (0 < (𝐿[:]𝐾) ↔ 1 ≤ (𝐿[:]𝐾))) | |
61 | 60 | biimpa 476 | . . . . . 6 ⊢ (((𝐿[:]𝐾) ∈ ℤ ∧ 0 < (𝐿[:]𝐾)) → 1 ≤ (𝐿[:]𝐾)) |
62 | 57, 59, 61 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 1 ≤ (𝐿[:]𝐾)) |
63 | 33, 35, 57, 62, 54 | elfzd 13552 | . . . 4 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ (1...2)) |
64 | fz12pr 13618 | . . . 4 ⊢ (1...2) = {1, 2} | |
65 | 63, 64 | eleqtrdi 2849 | . . 3 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ {1, 2}) |
66 | elpri 4654 | . . 3 ⊢ ((𝐿[:]𝐾) ∈ {1, 2} → ((𝐿[:]𝐾) = 1 ∨ (𝐿[:]𝐾) = 2)) | |
67 | 65, 66 | syl 17 | . 2 ⊢ (𝜑 → ((𝐿[:]𝐾) = 1 ∨ (𝐿[:]𝐾) = 2)) |
68 | 31, 32, 67 | orim12da 32487 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝐹 ∨ (𝐿[:]𝐾) = 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ∪ cun 3961 ⊆ wss 3963 {csn 4631 {cpr 4633 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 0cc0 11153 1c1 11154 < clt 11293 ≤ cle 11294 2c2 12319 ℕ0cn0 12524 ℕ0*cxnn0 12597 ℤcz 12611 ...cfz 13544 Basecbs 17245 ↾s cress 17274 +gcplusg 17298 .rcmulr 17299 0gc0g 17486 .gcmg 19098 mulGrpcmgp 20152 Fieldcfield 20747 SubDRingcsdrg 20804 algSccascl 21890 var1cv1 22193 Poly1cpl1 22194 fldGen cfldgen 33292 /FldExtcfldext 33666 [:]cextdg 33669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-reg 9630 ax-inf2 9679 ax-ac2 10501 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-rpss 7742 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-er 8744 df-ec 8746 df-qs 8750 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-inf 9481 df-oi 9548 df-r1 9802 df-rank 9803 df-dju 9939 df-card 9977 df-acn 9980 df-ac 10154 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-xnn0 12598 df-z 12612 df-dec 12732 df-uz 12877 df-ico 13390 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ocomp 17319 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-imas 17555 df-qus 17556 df-mre 17631 df-mrc 17632 df-mri 17633 df-acs 17634 df-proset 18352 df-drs 18353 df-poset 18371 df-ipo 18586 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-nsg 19155 df-eqg 19156 df-ghm 19244 df-gim 19290 df-cntz 19348 df-oppg 19377 df-lsm 19669 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-srg 20205 df-ring 20253 df-cring 20254 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-irred 20376 df-invr 20405 df-dvr 20418 df-rhm 20489 df-nzr 20530 df-subrng 20563 df-subrg 20587 df-rlreg 20711 df-domn 20712 df-idom 20713 df-drng 20748 df-field 20749 df-sdrg 20805 df-lmod 20877 df-lss 20948 df-lsp 20988 df-lmhm 21039 df-lmim 21040 df-lmic 21041 df-lbs 21092 df-lvec 21120 df-sra 21190 df-rgmod 21191 df-lidl 21236 df-rsp 21237 df-2idl 21278 df-lpidl 21350 df-lpir 21351 df-pid 21365 df-cnfld 21383 df-dsmm 21770 df-frlm 21785 df-uvc 21821 df-lindf 21844 df-linds 21845 df-assa 21891 df-asp 21892 df-ascl 21893 df-psr 21947 df-mvr 21948 df-mpl 21949 df-opsr 21951 df-evls 22116 df-evl 22117 df-psr1 22197 df-vr1 22198 df-ply1 22199 df-coe1 22200 df-evls1 22335 df-evl1 22336 df-mdeg 26109 df-deg1 26110 df-mon1 26185 df-uc1p 26186 df-q1p 26187 df-r1p 26188 df-ig1p 26189 df-fldgen 33293 df-mxidl 33468 df-dim 33627 df-fldext 33670 df-extdg 33671 df-irng 33699 df-minply 33708 |
This theorem is referenced by: constrelextdg2 33752 |
Copyright terms: Public domain | W3C validator |