Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rtelextdg2 Structured version   Visualization version   GIF version

Theorem rtelextdg2 33761
Description: If an element 𝑋 is a solution of a quadratic equation, then it is either in the base field, or the degree of its field extension is exactly 2. (Contributed by Thierry Arnoux, 22-Jun-2025.)
Hypotheses
Ref Expression
rtelextdg2.1 𝐾 = (𝐸s 𝐹)
rtelextdg2.2 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝑋})))
rtelextdg2.3 0 = (0g𝐸)
rtelextdg2.4 𝑃 = (Poly1𝐾)
rtelextdg2.5 𝑉 = (Base‘𝐸)
rtelextdg2.6 · = (.r𝐸)
rtelextdg2.7 + = (+g𝐸)
rtelextdg2.8 = (.g‘(mulGrp‘𝐸))
rtelextdg2.9 (𝜑𝐸 ∈ Field)
rtelextdg2.10 (𝜑𝐹 ∈ (SubDRing‘𝐸))
rtelextdg2.11 (𝜑𝑋𝑉)
rtelextdg2.12 (𝜑𝐴𝐹)
rtelextdg2.13 (𝜑𝐵𝐹)
rtelextdg2.14 (𝜑 → ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 )
Assertion
Ref Expression
rtelextdg2 (𝜑 → (𝑋𝐹 ∨ (𝐿[:]𝐾) = 2))

Proof of Theorem rtelextdg2
StepHypRef Expression
1 rtelextdg2.5 . . . . . 6 𝑉 = (Base‘𝐸)
2 rtelextdg2.9 . . . . . . 7 (𝜑𝐸 ∈ Field)
32flddrngd 20701 . . . . . 6 (𝜑𝐸 ∈ DivRing)
4 rtelextdg2.10 . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐸))
51sdrgss 20753 . . . . . . . 8 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹𝑉)
64, 5syl 17 . . . . . . 7 (𝜑𝐹𝑉)
7 rtelextdg2.11 . . . . . . . 8 (𝜑𝑋𝑉)
87snssd 4785 . . . . . . 7 (𝜑 → {𝑋} ⊆ 𝑉)
96, 8unssd 4167 . . . . . 6 (𝜑 → (𝐹 ∪ {𝑋}) ⊆ 𝑉)
101, 3, 9fldgenssid 33307 . . . . 5 (𝜑 → (𝐹 ∪ {𝑋}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝑋})))
11 ssun2 4154 . . . . . 6 {𝑋} ⊆ (𝐹 ∪ {𝑋})
12 snidg 4636 . . . . . . 7 (𝑋𝑉𝑋 ∈ {𝑋})
137, 12syl 17 . . . . . 6 (𝜑𝑋 ∈ {𝑋})
1411, 13sselid 3956 . . . . 5 (𝜑𝑋 ∈ (𝐹 ∪ {𝑋}))
1510, 14sseldd 3959 . . . 4 (𝜑𝑋 ∈ (𝐸 fldGen (𝐹 ∪ {𝑋})))
1615adantr 480 . . 3 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝑋 ∈ (𝐸 fldGen (𝐹 ∪ {𝑋})))
17 rtelextdg2.1 . . . . . . 7 𝐾 = (𝐸s 𝐹)
18 rtelextdg2.2 . . . . . . 7 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝑋})))
191, 17, 18, 2, 4, 8fldgenfldext 33709 . . . . . 6 (𝜑𝐿/FldExt𝐾)
20 extdg1id 33707 . . . . . 6 ((𝐿/FldExt𝐾 ∧ (𝐿[:]𝐾) = 1) → 𝐿 = 𝐾)
2119, 20sylan 580 . . . . 5 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝐿 = 𝐾)
2221fveq2d 6880 . . . 4 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (Base‘𝐿) = (Base‘𝐾))
231, 3, 9fldgenssv 33309 . . . . . 6 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝑋})) ⊆ 𝑉)
2418, 1ressbas2 17259 . . . . . 6 ((𝐸 fldGen (𝐹 ∪ {𝑋})) ⊆ 𝑉 → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿))
2523, 24syl 17 . . . . 5 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿))
2625adantr 480 . . . 4 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿))
2717, 1ressbas2 17259 . . . . . 6 (𝐹𝑉𝐹 = (Base‘𝐾))
286, 27syl 17 . . . . 5 (𝜑𝐹 = (Base‘𝐾))
2928adantr 480 . . . 4 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝐹 = (Base‘𝐾))
3022, 26, 293eqtr4d 2780 . . 3 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (𝐸 fldGen (𝐹 ∪ {𝑋})) = 𝐹)
3116, 30eleqtrd 2836 . 2 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝑋𝐹)
32 simpr 484 . 2 ((𝜑 ∧ (𝐿[:]𝐾) = 2) → (𝐿[:]𝐾) = 2)
33 1zzd 12623 . . . . 5 (𝜑 → 1 ∈ ℤ)
34 2z 12624 . . . . . 6 2 ∈ ℤ
3534a1i 11 . . . . 5 (𝜑 → 2 ∈ ℤ)
36 extdgcl 33698 . . . . . . . 8 (𝐿/FldExt𝐾 → (𝐿[:]𝐾) ∈ ℕ0*)
3719, 36syl 17 . . . . . . 7 (𝜑 → (𝐿[:]𝐾) ∈ ℕ0*)
38 2nn0 12518 . . . . . . . 8 2 ∈ ℕ0
3938a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℕ0)
40 rtelextdg2.3 . . . . . . . 8 0 = (0g𝐸)
41 rtelextdg2.4 . . . . . . . 8 𝑃 = (Poly1𝐾)
42 rtelextdg2.6 . . . . . . . 8 · = (.r𝐸)
43 rtelextdg2.7 . . . . . . . 8 + = (+g𝐸)
44 rtelextdg2.8 . . . . . . . 8 = (.g‘(mulGrp‘𝐸))
45 rtelextdg2.12 . . . . . . . 8 (𝜑𝐴𝐹)
46 rtelextdg2.13 . . . . . . . 8 (𝜑𝐵𝐹)
47 rtelextdg2.14 . . . . . . . 8 (𝜑 → ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 )
48 eqid 2735 . . . . . . . 8 (var1𝐾) = (var1𝐾)
49 eqid 2735 . . . . . . . 8 (+g𝑃) = (+g𝑃)
50 eqid 2735 . . . . . . . 8 (.r𝑃) = (.r𝑃)
51 eqid 2735 . . . . . . . 8 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
52 eqid 2735 . . . . . . . 8 (algSc‘𝑃) = (algSc‘𝑃)
53 eqid 2735 . . . . . . . 8 ((2(.g‘(mulGrp‘𝑃))(var1𝐾))(+g𝑃)((((algSc‘𝑃)‘𝐴)(.r𝑃)(var1𝐾))(+g𝑃)((algSc‘𝑃)‘𝐵))) = ((2(.g‘(mulGrp‘𝑃))(var1𝐾))(+g𝑃)((((algSc‘𝑃)‘𝐴)(.r𝑃)(var1𝐾))(+g𝑃)((algSc‘𝑃)‘𝐵)))
5417, 18, 40, 41, 1, 42, 43, 44, 2, 4, 7, 45, 46, 47, 48, 49, 50, 51, 52, 53rtelextdg2lem 33760 . . . . . . 7 (𝜑 → (𝐿[:]𝐾) ≤ 2)
55 xnn0lenn0nn0 13261 . . . . . . 7 (((𝐿[:]𝐾) ∈ ℕ0* ∧ 2 ∈ ℕ0 ∧ (𝐿[:]𝐾) ≤ 2) → (𝐿[:]𝐾) ∈ ℕ0)
5637, 39, 54, 55syl3anc 1373 . . . . . 6 (𝜑 → (𝐿[:]𝐾) ∈ ℕ0)
5756nn0zd 12614 . . . . 5 (𝜑 → (𝐿[:]𝐾) ∈ ℤ)
58 extdggt0 33699 . . . . . . 7 (𝐿/FldExt𝐾 → 0 < (𝐿[:]𝐾))
5919, 58syl 17 . . . . . 6 (𝜑 → 0 < (𝐿[:]𝐾))
60 zgt0ge1 12647 . . . . . . 7 ((𝐿[:]𝐾) ∈ ℤ → (0 < (𝐿[:]𝐾) ↔ 1 ≤ (𝐿[:]𝐾)))
6160biimpa 476 . . . . . 6 (((𝐿[:]𝐾) ∈ ℤ ∧ 0 < (𝐿[:]𝐾)) → 1 ≤ (𝐿[:]𝐾))
6257, 59, 61syl2anc 584 . . . . 5 (𝜑 → 1 ≤ (𝐿[:]𝐾))
6333, 35, 57, 62, 54elfzd 13532 . . . 4 (𝜑 → (𝐿[:]𝐾) ∈ (1...2))
64 fz12pr 13598 . . . 4 (1...2) = {1, 2}
6563, 64eleqtrdi 2844 . . 3 (𝜑 → (𝐿[:]𝐾) ∈ {1, 2})
66 elpri 4625 . . 3 ((𝐿[:]𝐾) ∈ {1, 2} → ((𝐿[:]𝐾) = 1 ∨ (𝐿[:]𝐾) = 2))
6765, 66syl 17 . 2 (𝜑 → ((𝐿[:]𝐾) = 1 ∨ (𝐿[:]𝐾) = 2))
6831, 32, 67orim12da 32439 1 (𝜑 → (𝑋𝐹 ∨ (𝐿[:]𝐾) = 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  cun 3924  wss 3926  {csn 4601  {cpr 4603   class class class wbr 5119  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130   < clt 11269  cle 11270  2c2 12295  0cn0 12501  0*cxnn0 12574  cz 12588  ...cfz 13524  Basecbs 17228  s cress 17251  +gcplusg 17271  .rcmulr 17272  0gc0g 17453  .gcmg 19050  mulGrpcmgp 20100  Fieldcfield 20690  SubDRingcsdrg 20746  algSccascl 21812  var1cv1 22111  Poly1cpl1 22112   fldGen cfldgen 33304  /FldExtcfldext 33678  [:]cextdg 33681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-reg 9606  ax-inf2 9655  ax-ac2 10477  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-rpss 7717  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-inf 9455  df-oi 9524  df-r1 9778  df-rank 9779  df-dju 9915  df-card 9953  df-acn 9956  df-ac 10130  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-ico 13368  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ocomp 17292  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-imas 17522  df-qus 17523  df-mre 17598  df-mrc 17599  df-mri 17600  df-acs 17601  df-proset 18306  df-drs 18307  df-poset 18325  df-ipo 18538  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-nsg 19107  df-eqg 19108  df-ghm 19196  df-gim 19242  df-cntz 19300  df-oppg 19329  df-lsm 19617  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-srg 20147  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-irred 20319  df-invr 20348  df-dvr 20361  df-rhm 20432  df-nzr 20473  df-subrng 20506  df-subrg 20530  df-rlreg 20654  df-domn 20655  df-idom 20656  df-drng 20691  df-field 20692  df-sdrg 20747  df-lmod 20819  df-lss 20889  df-lsp 20929  df-lmhm 20980  df-lmim 20981  df-lmic 20982  df-lbs 21033  df-lvec 21061  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170  df-2idl 21211  df-lpidl 21283  df-lpir 21284  df-pid 21298  df-cnfld 21316  df-dsmm 21692  df-frlm 21707  df-uvc 21743  df-lindf 21766  df-linds 21767  df-assa 21813  df-asp 21814  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-evls 22032  df-evl 22033  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118  df-evls1 22253  df-evl1 22254  df-mdeg 26012  df-deg1 26013  df-mon1 26088  df-uc1p 26089  df-q1p 26090  df-r1p 26091  df-ig1p 26092  df-fldgen 33305  df-mxidl 33475  df-dim 33639  df-fldext 33682  df-extdg 33683  df-irng 33725  df-minply 33734
This theorem is referenced by:  constrelextdg2  33781
  Copyright terms: Public domain W3C validator