![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rtelextdg2 | Structured version Visualization version GIF version |
Description: If an element 𝑋 is a solution of a quadratic equation, then it is either in the base field, or the degree of its field extension is exactly 2. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
Ref | Expression |
---|---|
rtelextdg2.1 | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
rtelextdg2.2 | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
rtelextdg2.3 | ⊢ 0 = (0g‘𝐸) |
rtelextdg2.4 | ⊢ 𝑃 = (Poly1‘𝐾) |
rtelextdg2.5 | ⊢ 𝑉 = (Base‘𝐸) |
rtelextdg2.6 | ⊢ · = (.r‘𝐸) |
rtelextdg2.7 | ⊢ + = (+g‘𝐸) |
rtelextdg2.8 | ⊢ ↑ = (.g‘(mulGrp‘𝐸)) |
rtelextdg2.9 | ⊢ (𝜑 → 𝐸 ∈ Field) |
rtelextdg2.10 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
rtelextdg2.11 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
rtelextdg2.12 | ⊢ (𝜑 → 𝐴 ∈ 𝐹) |
rtelextdg2.13 | ⊢ (𝜑 → 𝐵 ∈ 𝐹) |
rtelextdg2.14 | ⊢ (𝜑 → ((2 ↑ 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 ) |
Ref | Expression |
---|---|
rtelextdg2 | ⊢ (𝜑 → (𝑋 ∈ 𝐹 ∨ (𝐿[:]𝐾) = 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rtelextdg2.5 | . . . . . 6 ⊢ 𝑉 = (Base‘𝐸) | |
2 | rtelextdg2.9 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ Field) | |
3 | 2 | flddrngd 20763 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
4 | rtelextdg2.10 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
5 | 1 | sdrgss 20816 | . . . . . . . 8 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ⊆ 𝑉) |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ⊆ 𝑉) |
7 | rtelextdg2.11 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
8 | 7 | snssd 4834 | . . . . . . 7 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
9 | 6, 8 | unssd 4215 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∪ {𝑋}) ⊆ 𝑉) |
10 | 1, 3, 9 | fldgenssid 33280 | . . . . 5 ⊢ (𝜑 → (𝐹 ∪ {𝑋}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
11 | ssun2 4202 | . . . . . 6 ⊢ {𝑋} ⊆ (𝐹 ∪ {𝑋}) | |
12 | snidg 4682 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) | |
13 | 7, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ {𝑋}) |
14 | 11, 13 | sselid 4006 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝐹 ∪ {𝑋})) |
15 | 10, 14 | sseldd 4009 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
16 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝑋 ∈ (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
17 | rtelextdg2.1 | . . . . . . 7 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
18 | rtelextdg2.2 | . . . . . . 7 ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝑋}))) | |
19 | 1, 17, 18, 2, 4, 8 | fldgenfldext 33678 | . . . . . 6 ⊢ (𝜑 → 𝐿/FldExt𝐾) |
20 | extdg1id 33676 | . . . . . 6 ⊢ ((𝐿/FldExt𝐾 ∧ (𝐿[:]𝐾) = 1) → 𝐿 = 𝐾) | |
21 | 19, 20 | sylan 579 | . . . . 5 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝐿 = 𝐾) |
22 | 21 | fveq2d 6924 | . . . 4 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (Base‘𝐿) = (Base‘𝐾)) |
23 | 1, 3, 9 | fldgenssv 33282 | . . . . . 6 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝑋})) ⊆ 𝑉) |
24 | 18, 1 | ressbas2 17296 | . . . . . 6 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝑋})) ⊆ 𝑉 → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿)) |
25 | 23, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿)) |
26 | 25 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿)) |
27 | 17, 1 | ressbas2 17296 | . . . . . 6 ⊢ (𝐹 ⊆ 𝑉 → 𝐹 = (Base‘𝐾)) |
28 | 6, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 = (Base‘𝐾)) |
29 | 28 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝐹 = (Base‘𝐾)) |
30 | 22, 26, 29 | 3eqtr4d 2790 | . . 3 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (𝐸 fldGen (𝐹 ∪ {𝑋})) = 𝐹) |
31 | 16, 30 | eleqtrd 2846 | . 2 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝑋 ∈ 𝐹) |
32 | simpr 484 | . 2 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 2) → (𝐿[:]𝐾) = 2) | |
33 | 1zzd 12674 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℤ) | |
34 | 2z 12675 | . . . . . 6 ⊢ 2 ∈ ℤ | |
35 | 34 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℤ) |
36 | extdgcl 33669 | . . . . . . . 8 ⊢ (𝐿/FldExt𝐾 → (𝐿[:]𝐾) ∈ ℕ0*) | |
37 | 19, 36 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ ℕ0*) |
38 | 2nn0 12570 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
39 | 38 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 ∈ ℕ0) |
40 | rtelextdg2.3 | . . . . . . . 8 ⊢ 0 = (0g‘𝐸) | |
41 | rtelextdg2.4 | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘𝐾) | |
42 | rtelextdg2.6 | . . . . . . . 8 ⊢ · = (.r‘𝐸) | |
43 | rtelextdg2.7 | . . . . . . . 8 ⊢ + = (+g‘𝐸) | |
44 | rtelextdg2.8 | . . . . . . . 8 ⊢ ↑ = (.g‘(mulGrp‘𝐸)) | |
45 | rtelextdg2.12 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝐹) | |
46 | rtelextdg2.13 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ 𝐹) | |
47 | rtelextdg2.14 | . . . . . . . 8 ⊢ (𝜑 → ((2 ↑ 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 ) | |
48 | eqid 2740 | . . . . . . . 8 ⊢ (var1‘𝐾) = (var1‘𝐾) | |
49 | eqid 2740 | . . . . . . . 8 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
50 | eqid 2740 | . . . . . . . 8 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
51 | eqid 2740 | . . . . . . . 8 ⊢ (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃)) | |
52 | eqid 2740 | . . . . . . . 8 ⊢ (algSc‘𝑃) = (algSc‘𝑃) | |
53 | eqid 2740 | . . . . . . . 8 ⊢ ((2(.g‘(mulGrp‘𝑃))(var1‘𝐾))(+g‘𝑃)((((algSc‘𝑃)‘𝐴)(.r‘𝑃)(var1‘𝐾))(+g‘𝑃)((algSc‘𝑃)‘𝐵))) = ((2(.g‘(mulGrp‘𝑃))(var1‘𝐾))(+g‘𝑃)((((algSc‘𝑃)‘𝐴)(.r‘𝑃)(var1‘𝐾))(+g‘𝑃)((algSc‘𝑃)‘𝐵))) | |
54 | 17, 18, 40, 41, 1, 42, 43, 44, 2, 4, 7, 45, 46, 47, 48, 49, 50, 51, 52, 53 | rtelextdg2lem 33717 | . . . . . . 7 ⊢ (𝜑 → (𝐿[:]𝐾) ≤ 2) |
55 | xnn0lenn0nn0 13307 | . . . . . . 7 ⊢ (((𝐿[:]𝐾) ∈ ℕ0* ∧ 2 ∈ ℕ0 ∧ (𝐿[:]𝐾) ≤ 2) → (𝐿[:]𝐾) ∈ ℕ0) | |
56 | 37, 39, 54, 55 | syl3anc 1371 | . . . . . 6 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ ℕ0) |
57 | 56 | nn0zd 12665 | . . . . 5 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ ℤ) |
58 | extdggt0 33670 | . . . . . . 7 ⊢ (𝐿/FldExt𝐾 → 0 < (𝐿[:]𝐾)) | |
59 | 19, 58 | syl 17 | . . . . . 6 ⊢ (𝜑 → 0 < (𝐿[:]𝐾)) |
60 | zgt0ge1 12697 | . . . . . . 7 ⊢ ((𝐿[:]𝐾) ∈ ℤ → (0 < (𝐿[:]𝐾) ↔ 1 ≤ (𝐿[:]𝐾))) | |
61 | 60 | biimpa 476 | . . . . . 6 ⊢ (((𝐿[:]𝐾) ∈ ℤ ∧ 0 < (𝐿[:]𝐾)) → 1 ≤ (𝐿[:]𝐾)) |
62 | 57, 59, 61 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 1 ≤ (𝐿[:]𝐾)) |
63 | 33, 35, 57, 62, 54 | elfzd 13575 | . . . 4 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ (1...2)) |
64 | fz12pr 13641 | . . . 4 ⊢ (1...2) = {1, 2} | |
65 | 63, 64 | eleqtrdi 2854 | . . 3 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ {1, 2}) |
66 | elpri 4671 | . . 3 ⊢ ((𝐿[:]𝐾) ∈ {1, 2} → ((𝐿[:]𝐾) = 1 ∨ (𝐿[:]𝐾) = 2)) | |
67 | 65, 66 | syl 17 | . 2 ⊢ (𝜑 → ((𝐿[:]𝐾) = 1 ∨ (𝐿[:]𝐾) = 2)) |
68 | 31, 32, 67 | orim12da 32487 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝐹 ∨ (𝐿[:]𝐾) = 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 {csn 4648 {cpr 4650 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 < clt 11324 ≤ cle 11325 2c2 12348 ℕ0cn0 12553 ℕ0*cxnn0 12625 ℤcz 12639 ...cfz 13567 Basecbs 17258 ↾s cress 17287 +gcplusg 17311 .rcmulr 17312 0gc0g 17499 .gcmg 19107 mulGrpcmgp 20161 Fieldcfield 20752 SubDRingcsdrg 20809 algSccascl 21895 var1cv1 22198 Poly1cpl1 22199 fldGen cfldgen 33277 /FldExtcfldext 33651 [:]cextdg 33654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-reg 9661 ax-inf2 9710 ax-ac2 10532 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-rpss 7758 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-ec 8765 df-qs 8769 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-inf 9512 df-oi 9579 df-r1 9833 df-rank 9834 df-dju 9970 df-card 10008 df-acn 10011 df-ac 10185 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-ico 13413 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ocomp 17332 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-imas 17568 df-qus 17569 df-mre 17644 df-mrc 17645 df-mri 17646 df-acs 17647 df-proset 18365 df-drs 18366 df-poset 18383 df-ipo 18598 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-nsg 19164 df-eqg 19165 df-ghm 19253 df-gim 19299 df-cntz 19357 df-oppg 19386 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-srg 20214 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-irred 20385 df-invr 20414 df-dvr 20427 df-rhm 20498 df-nzr 20539 df-subrng 20572 df-subrg 20597 df-rlreg 20716 df-domn 20717 df-idom 20718 df-drng 20753 df-field 20754 df-sdrg 20810 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lmhm 21044 df-lmim 21045 df-lmic 21046 df-lbs 21097 df-lvec 21125 df-sra 21195 df-rgmod 21196 df-lidl 21241 df-rsp 21242 df-2idl 21283 df-lpidl 21355 df-lpir 21356 df-pid 21370 df-cnfld 21388 df-dsmm 21775 df-frlm 21790 df-uvc 21826 df-lindf 21849 df-linds 21850 df-assa 21896 df-asp 21897 df-ascl 21898 df-psr 21952 df-mvr 21953 df-mpl 21954 df-opsr 21956 df-evls 22121 df-evl 22122 df-psr1 22202 df-vr1 22203 df-ply1 22204 df-coe1 22205 df-evls1 22340 df-evl1 22341 df-mdeg 26114 df-deg1 26115 df-mon1 26190 df-uc1p 26191 df-q1p 26192 df-r1p 26193 df-ig1p 26194 df-fldgen 33278 df-mxidl 33453 df-dim 33612 df-fldext 33655 df-extdg 33656 df-irng 33684 df-minply 33693 |
This theorem is referenced by: constrelextdg2 33737 |
Copyright terms: Public domain | W3C validator |