| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rtelextdg2 | Structured version Visualization version GIF version | ||
| Description: If an element 𝑋 is a solution of a quadratic equation, then it is either in the base field, or the degree of its field extension is exactly 2. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
| Ref | Expression |
|---|---|
| rtelextdg2.1 | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
| rtelextdg2.2 | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
| rtelextdg2.3 | ⊢ 0 = (0g‘𝐸) |
| rtelextdg2.4 | ⊢ 𝑃 = (Poly1‘𝐾) |
| rtelextdg2.5 | ⊢ 𝑉 = (Base‘𝐸) |
| rtelextdg2.6 | ⊢ · = (.r‘𝐸) |
| rtelextdg2.7 | ⊢ + = (+g‘𝐸) |
| rtelextdg2.8 | ⊢ ↑ = (.g‘(mulGrp‘𝐸)) |
| rtelextdg2.9 | ⊢ (𝜑 → 𝐸 ∈ Field) |
| rtelextdg2.10 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| rtelextdg2.11 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| rtelextdg2.12 | ⊢ (𝜑 → 𝐴 ∈ 𝐹) |
| rtelextdg2.13 | ⊢ (𝜑 → 𝐵 ∈ 𝐹) |
| rtelextdg2.14 | ⊢ (𝜑 → ((2 ↑ 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 ) |
| Ref | Expression |
|---|---|
| rtelextdg2 | ⊢ (𝜑 → (𝑋 ∈ 𝐹 ∨ (𝐿[:]𝐾) = 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rtelextdg2.5 | . . . . . 6 ⊢ 𝑉 = (Base‘𝐸) | |
| 2 | rtelextdg2.9 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 3 | 2 | flddrngd 20657 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
| 4 | rtelextdg2.10 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 5 | 1 | sdrgss 20709 | . . . . . . . 8 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ⊆ 𝑉) |
| 6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ⊆ 𝑉) |
| 7 | rtelextdg2.11 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 8 | 7 | snssd 4776 | . . . . . . 7 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
| 9 | 6, 8 | unssd 4158 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∪ {𝑋}) ⊆ 𝑉) |
| 10 | 1, 3, 9 | fldgenssid 33270 | . . . . 5 ⊢ (𝜑 → (𝐹 ∪ {𝑋}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
| 11 | ssun2 4145 | . . . . . 6 ⊢ {𝑋} ⊆ (𝐹 ∪ {𝑋}) | |
| 12 | snidg 4627 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) | |
| 13 | 7, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ {𝑋}) |
| 14 | 11, 13 | sselid 3947 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝐹 ∪ {𝑋})) |
| 15 | 10, 14 | sseldd 3950 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝑋 ∈ (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
| 17 | rtelextdg2.1 | . . . . . . 7 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
| 18 | rtelextdg2.2 | . . . . . . 7 ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝑋}))) | |
| 19 | 1, 17, 18, 2, 4, 8 | fldgenfldext 33670 | . . . . . 6 ⊢ (𝜑 → 𝐿/FldExt𝐾) |
| 20 | extdg1id 33668 | . . . . . 6 ⊢ ((𝐿/FldExt𝐾 ∧ (𝐿[:]𝐾) = 1) → 𝐿 = 𝐾) | |
| 21 | 19, 20 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝐿 = 𝐾) |
| 22 | 21 | fveq2d 6865 | . . . 4 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (Base‘𝐿) = (Base‘𝐾)) |
| 23 | 1, 3, 9 | fldgenssv 33272 | . . . . . 6 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝑋})) ⊆ 𝑉) |
| 24 | 18, 1 | ressbas2 17215 | . . . . . 6 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝑋})) ⊆ 𝑉 → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿)) |
| 25 | 23, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿)) |
| 26 | 25 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿)) |
| 27 | 17, 1 | ressbas2 17215 | . . . . . 6 ⊢ (𝐹 ⊆ 𝑉 → 𝐹 = (Base‘𝐾)) |
| 28 | 6, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 = (Base‘𝐾)) |
| 29 | 28 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝐹 = (Base‘𝐾)) |
| 30 | 22, 26, 29 | 3eqtr4d 2775 | . . 3 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (𝐸 fldGen (𝐹 ∪ {𝑋})) = 𝐹) |
| 31 | 16, 30 | eleqtrd 2831 | . 2 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝑋 ∈ 𝐹) |
| 32 | simpr 484 | . 2 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 2) → (𝐿[:]𝐾) = 2) | |
| 33 | 1zzd 12571 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 34 | 2z 12572 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 35 | 34 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℤ) |
| 36 | extdgcl 33659 | . . . . . . . 8 ⊢ (𝐿/FldExt𝐾 → (𝐿[:]𝐾) ∈ ℕ0*) | |
| 37 | 19, 36 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ ℕ0*) |
| 38 | 2nn0 12466 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
| 39 | 38 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 ∈ ℕ0) |
| 40 | rtelextdg2.3 | . . . . . . . 8 ⊢ 0 = (0g‘𝐸) | |
| 41 | rtelextdg2.4 | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘𝐾) | |
| 42 | rtelextdg2.6 | . . . . . . . 8 ⊢ · = (.r‘𝐸) | |
| 43 | rtelextdg2.7 | . . . . . . . 8 ⊢ + = (+g‘𝐸) | |
| 44 | rtelextdg2.8 | . . . . . . . 8 ⊢ ↑ = (.g‘(mulGrp‘𝐸)) | |
| 45 | rtelextdg2.12 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝐹) | |
| 46 | rtelextdg2.13 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ 𝐹) | |
| 47 | rtelextdg2.14 | . . . . . . . 8 ⊢ (𝜑 → ((2 ↑ 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 ) | |
| 48 | eqid 2730 | . . . . . . . 8 ⊢ (var1‘𝐾) = (var1‘𝐾) | |
| 49 | eqid 2730 | . . . . . . . 8 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
| 50 | eqid 2730 | . . . . . . . 8 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
| 51 | eqid 2730 | . . . . . . . 8 ⊢ (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃)) | |
| 52 | eqid 2730 | . . . . . . . 8 ⊢ (algSc‘𝑃) = (algSc‘𝑃) | |
| 53 | eqid 2730 | . . . . . . . 8 ⊢ ((2(.g‘(mulGrp‘𝑃))(var1‘𝐾))(+g‘𝑃)((((algSc‘𝑃)‘𝐴)(.r‘𝑃)(var1‘𝐾))(+g‘𝑃)((algSc‘𝑃)‘𝐵))) = ((2(.g‘(mulGrp‘𝑃))(var1‘𝐾))(+g‘𝑃)((((algSc‘𝑃)‘𝐴)(.r‘𝑃)(var1‘𝐾))(+g‘𝑃)((algSc‘𝑃)‘𝐵))) | |
| 54 | 17, 18, 40, 41, 1, 42, 43, 44, 2, 4, 7, 45, 46, 47, 48, 49, 50, 51, 52, 53 | rtelextdg2lem 33723 | . . . . . . 7 ⊢ (𝜑 → (𝐿[:]𝐾) ≤ 2) |
| 55 | xnn0lenn0nn0 13212 | . . . . . . 7 ⊢ (((𝐿[:]𝐾) ∈ ℕ0* ∧ 2 ∈ ℕ0 ∧ (𝐿[:]𝐾) ≤ 2) → (𝐿[:]𝐾) ∈ ℕ0) | |
| 56 | 37, 39, 54, 55 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ ℕ0) |
| 57 | 56 | nn0zd 12562 | . . . . 5 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ ℤ) |
| 58 | extdggt0 33660 | . . . . . . 7 ⊢ (𝐿/FldExt𝐾 → 0 < (𝐿[:]𝐾)) | |
| 59 | 19, 58 | syl 17 | . . . . . 6 ⊢ (𝜑 → 0 < (𝐿[:]𝐾)) |
| 60 | zgt0ge1 12595 | . . . . . . 7 ⊢ ((𝐿[:]𝐾) ∈ ℤ → (0 < (𝐿[:]𝐾) ↔ 1 ≤ (𝐿[:]𝐾))) | |
| 61 | 60 | biimpa 476 | . . . . . 6 ⊢ (((𝐿[:]𝐾) ∈ ℤ ∧ 0 < (𝐿[:]𝐾)) → 1 ≤ (𝐿[:]𝐾)) |
| 62 | 57, 59, 61 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 1 ≤ (𝐿[:]𝐾)) |
| 63 | 33, 35, 57, 62, 54 | elfzd 13483 | . . . 4 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ (1...2)) |
| 64 | fz12pr 13549 | . . . 4 ⊢ (1...2) = {1, 2} | |
| 65 | 63, 64 | eleqtrdi 2839 | . . 3 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ {1, 2}) |
| 66 | elpri 4616 | . . 3 ⊢ ((𝐿[:]𝐾) ∈ {1, 2} → ((𝐿[:]𝐾) = 1 ∨ (𝐿[:]𝐾) = 2)) | |
| 67 | 65, 66 | syl 17 | . 2 ⊢ (𝜑 → ((𝐿[:]𝐾) = 1 ∨ (𝐿[:]𝐾) = 2)) |
| 68 | 31, 32, 67 | orim12da 32394 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝐹 ∨ (𝐿[:]𝐾) = 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 ⊆ wss 3917 {csn 4592 {cpr 4594 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 < clt 11215 ≤ cle 11216 2c2 12248 ℕ0cn0 12449 ℕ0*cxnn0 12522 ℤcz 12536 ...cfz 13475 Basecbs 17186 ↾s cress 17207 +gcplusg 17227 .rcmulr 17228 0gc0g 17409 .gcmg 19006 mulGrpcmgp 20056 Fieldcfield 20646 SubDRingcsdrg 20702 algSccascl 21768 var1cv1 22067 Poly1cpl1 22068 fldGen cfldgen 33267 /FldExtcfldext 33641 [:]cextdg 33643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-reg 9552 ax-inf2 9601 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-rpss 7702 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-ec 8676 df-qs 8680 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-inf 9401 df-oi 9470 df-r1 9724 df-rank 9725 df-dju 9861 df-card 9899 df-acn 9902 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-xnn0 12523 df-z 12537 df-dec 12657 df-uz 12801 df-ico 13319 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ocomp 17248 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-imas 17478 df-qus 17479 df-mre 17554 df-mrc 17555 df-mri 17556 df-acs 17557 df-proset 18262 df-drs 18263 df-poset 18281 df-ipo 18494 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-nsg 19063 df-eqg 19064 df-ghm 19152 df-gim 19198 df-cntz 19256 df-oppg 19285 df-lsm 19573 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-srg 20103 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-irred 20275 df-invr 20304 df-dvr 20317 df-rhm 20388 df-nzr 20429 df-subrng 20462 df-subrg 20486 df-rlreg 20610 df-domn 20611 df-idom 20612 df-drng 20647 df-field 20648 df-sdrg 20703 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lmhm 20936 df-lmim 20937 df-lmic 20938 df-lbs 20989 df-lvec 21017 df-sra 21087 df-rgmod 21088 df-lidl 21125 df-rsp 21126 df-2idl 21167 df-lpidl 21239 df-lpir 21240 df-pid 21254 df-cnfld 21272 df-dsmm 21648 df-frlm 21663 df-uvc 21699 df-lindf 21722 df-linds 21723 df-assa 21769 df-asp 21770 df-ascl 21771 df-psr 21825 df-mvr 21826 df-mpl 21827 df-opsr 21829 df-evls 21988 df-evl 21989 df-psr1 22071 df-vr1 22072 df-ply1 22073 df-coe1 22074 df-evls1 22209 df-evl1 22210 df-mdeg 25967 df-deg1 25968 df-mon1 26043 df-uc1p 26044 df-q1p 26045 df-r1p 26046 df-ig1p 26047 df-fldgen 33268 df-mxidl 33438 df-dim 33602 df-fldext 33644 df-extdg 33645 df-irng 33686 df-minply 33697 |
| This theorem is referenced by: constrelextdg2 33744 |
| Copyright terms: Public domain | W3C validator |