Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rtelextdg2 Structured version   Visualization version   GIF version

Theorem rtelextdg2 33724
Description: If an element 𝑋 is a solution of a quadratic equation, then it is either in the base field, or the degree of its field extension is exactly 2. (Contributed by Thierry Arnoux, 22-Jun-2025.)
Hypotheses
Ref Expression
rtelextdg2.1 𝐾 = (𝐸s 𝐹)
rtelextdg2.2 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝑋})))
rtelextdg2.3 0 = (0g𝐸)
rtelextdg2.4 𝑃 = (Poly1𝐾)
rtelextdg2.5 𝑉 = (Base‘𝐸)
rtelextdg2.6 · = (.r𝐸)
rtelextdg2.7 + = (+g𝐸)
rtelextdg2.8 = (.g‘(mulGrp‘𝐸))
rtelextdg2.9 (𝜑𝐸 ∈ Field)
rtelextdg2.10 (𝜑𝐹 ∈ (SubDRing‘𝐸))
rtelextdg2.11 (𝜑𝑋𝑉)
rtelextdg2.12 (𝜑𝐴𝐹)
rtelextdg2.13 (𝜑𝐵𝐹)
rtelextdg2.14 (𝜑 → ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 )
Assertion
Ref Expression
rtelextdg2 (𝜑 → (𝑋𝐹 ∨ (𝐿[:]𝐾) = 2))

Proof of Theorem rtelextdg2
StepHypRef Expression
1 rtelextdg2.5 . . . . . 6 𝑉 = (Base‘𝐸)
2 rtelextdg2.9 . . . . . . 7 (𝜑𝐸 ∈ Field)
32flddrngd 20657 . . . . . 6 (𝜑𝐸 ∈ DivRing)
4 rtelextdg2.10 . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐸))
51sdrgss 20709 . . . . . . . 8 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹𝑉)
64, 5syl 17 . . . . . . 7 (𝜑𝐹𝑉)
7 rtelextdg2.11 . . . . . . . 8 (𝜑𝑋𝑉)
87snssd 4776 . . . . . . 7 (𝜑 → {𝑋} ⊆ 𝑉)
96, 8unssd 4158 . . . . . 6 (𝜑 → (𝐹 ∪ {𝑋}) ⊆ 𝑉)
101, 3, 9fldgenssid 33270 . . . . 5 (𝜑 → (𝐹 ∪ {𝑋}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝑋})))
11 ssun2 4145 . . . . . 6 {𝑋} ⊆ (𝐹 ∪ {𝑋})
12 snidg 4627 . . . . . . 7 (𝑋𝑉𝑋 ∈ {𝑋})
137, 12syl 17 . . . . . 6 (𝜑𝑋 ∈ {𝑋})
1411, 13sselid 3947 . . . . 5 (𝜑𝑋 ∈ (𝐹 ∪ {𝑋}))
1510, 14sseldd 3950 . . . 4 (𝜑𝑋 ∈ (𝐸 fldGen (𝐹 ∪ {𝑋})))
1615adantr 480 . . 3 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝑋 ∈ (𝐸 fldGen (𝐹 ∪ {𝑋})))
17 rtelextdg2.1 . . . . . . 7 𝐾 = (𝐸s 𝐹)
18 rtelextdg2.2 . . . . . . 7 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝑋})))
191, 17, 18, 2, 4, 8fldgenfldext 33670 . . . . . 6 (𝜑𝐿/FldExt𝐾)
20 extdg1id 33668 . . . . . 6 ((𝐿/FldExt𝐾 ∧ (𝐿[:]𝐾) = 1) → 𝐿 = 𝐾)
2119, 20sylan 580 . . . . 5 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝐿 = 𝐾)
2221fveq2d 6865 . . . 4 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (Base‘𝐿) = (Base‘𝐾))
231, 3, 9fldgenssv 33272 . . . . . 6 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝑋})) ⊆ 𝑉)
2418, 1ressbas2 17215 . . . . . 6 ((𝐸 fldGen (𝐹 ∪ {𝑋})) ⊆ 𝑉 → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿))
2523, 24syl 17 . . . . 5 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿))
2625adantr 480 . . . 4 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿))
2717, 1ressbas2 17215 . . . . . 6 (𝐹𝑉𝐹 = (Base‘𝐾))
286, 27syl 17 . . . . 5 (𝜑𝐹 = (Base‘𝐾))
2928adantr 480 . . . 4 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝐹 = (Base‘𝐾))
3022, 26, 293eqtr4d 2775 . . 3 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (𝐸 fldGen (𝐹 ∪ {𝑋})) = 𝐹)
3116, 30eleqtrd 2831 . 2 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝑋𝐹)
32 simpr 484 . 2 ((𝜑 ∧ (𝐿[:]𝐾) = 2) → (𝐿[:]𝐾) = 2)
33 1zzd 12571 . . . . 5 (𝜑 → 1 ∈ ℤ)
34 2z 12572 . . . . . 6 2 ∈ ℤ
3534a1i 11 . . . . 5 (𝜑 → 2 ∈ ℤ)
36 extdgcl 33659 . . . . . . . 8 (𝐿/FldExt𝐾 → (𝐿[:]𝐾) ∈ ℕ0*)
3719, 36syl 17 . . . . . . 7 (𝜑 → (𝐿[:]𝐾) ∈ ℕ0*)
38 2nn0 12466 . . . . . . . 8 2 ∈ ℕ0
3938a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℕ0)
40 rtelextdg2.3 . . . . . . . 8 0 = (0g𝐸)
41 rtelextdg2.4 . . . . . . . 8 𝑃 = (Poly1𝐾)
42 rtelextdg2.6 . . . . . . . 8 · = (.r𝐸)
43 rtelextdg2.7 . . . . . . . 8 + = (+g𝐸)
44 rtelextdg2.8 . . . . . . . 8 = (.g‘(mulGrp‘𝐸))
45 rtelextdg2.12 . . . . . . . 8 (𝜑𝐴𝐹)
46 rtelextdg2.13 . . . . . . . 8 (𝜑𝐵𝐹)
47 rtelextdg2.14 . . . . . . . 8 (𝜑 → ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 )
48 eqid 2730 . . . . . . . 8 (var1𝐾) = (var1𝐾)
49 eqid 2730 . . . . . . . 8 (+g𝑃) = (+g𝑃)
50 eqid 2730 . . . . . . . 8 (.r𝑃) = (.r𝑃)
51 eqid 2730 . . . . . . . 8 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
52 eqid 2730 . . . . . . . 8 (algSc‘𝑃) = (algSc‘𝑃)
53 eqid 2730 . . . . . . . 8 ((2(.g‘(mulGrp‘𝑃))(var1𝐾))(+g𝑃)((((algSc‘𝑃)‘𝐴)(.r𝑃)(var1𝐾))(+g𝑃)((algSc‘𝑃)‘𝐵))) = ((2(.g‘(mulGrp‘𝑃))(var1𝐾))(+g𝑃)((((algSc‘𝑃)‘𝐴)(.r𝑃)(var1𝐾))(+g𝑃)((algSc‘𝑃)‘𝐵)))
5417, 18, 40, 41, 1, 42, 43, 44, 2, 4, 7, 45, 46, 47, 48, 49, 50, 51, 52, 53rtelextdg2lem 33723 . . . . . . 7 (𝜑 → (𝐿[:]𝐾) ≤ 2)
55 xnn0lenn0nn0 13212 . . . . . . 7 (((𝐿[:]𝐾) ∈ ℕ0* ∧ 2 ∈ ℕ0 ∧ (𝐿[:]𝐾) ≤ 2) → (𝐿[:]𝐾) ∈ ℕ0)
5637, 39, 54, 55syl3anc 1373 . . . . . 6 (𝜑 → (𝐿[:]𝐾) ∈ ℕ0)
5756nn0zd 12562 . . . . 5 (𝜑 → (𝐿[:]𝐾) ∈ ℤ)
58 extdggt0 33660 . . . . . . 7 (𝐿/FldExt𝐾 → 0 < (𝐿[:]𝐾))
5919, 58syl 17 . . . . . 6 (𝜑 → 0 < (𝐿[:]𝐾))
60 zgt0ge1 12595 . . . . . . 7 ((𝐿[:]𝐾) ∈ ℤ → (0 < (𝐿[:]𝐾) ↔ 1 ≤ (𝐿[:]𝐾)))
6160biimpa 476 . . . . . 6 (((𝐿[:]𝐾) ∈ ℤ ∧ 0 < (𝐿[:]𝐾)) → 1 ≤ (𝐿[:]𝐾))
6257, 59, 61syl2anc 584 . . . . 5 (𝜑 → 1 ≤ (𝐿[:]𝐾))
6333, 35, 57, 62, 54elfzd 13483 . . . 4 (𝜑 → (𝐿[:]𝐾) ∈ (1...2))
64 fz12pr 13549 . . . 4 (1...2) = {1, 2}
6563, 64eleqtrdi 2839 . . 3 (𝜑 → (𝐿[:]𝐾) ∈ {1, 2})
66 elpri 4616 . . 3 ((𝐿[:]𝐾) ∈ {1, 2} → ((𝐿[:]𝐾) = 1 ∨ (𝐿[:]𝐾) = 2))
6765, 66syl 17 . 2 (𝜑 → ((𝐿[:]𝐾) = 1 ∨ (𝐿[:]𝐾) = 2))
6831, 32, 67orim12da 32394 1 (𝜑 → (𝑋𝐹 ∨ (𝐿[:]𝐾) = 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  cun 3915  wss 3917  {csn 4592  {cpr 4594   class class class wbr 5110  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   < clt 11215  cle 11216  2c2 12248  0cn0 12449  0*cxnn0 12522  cz 12536  ...cfz 13475  Basecbs 17186  s cress 17207  +gcplusg 17227  .rcmulr 17228  0gc0g 17409  .gcmg 19006  mulGrpcmgp 20056  Fieldcfield 20646  SubDRingcsdrg 20702  algSccascl 21768  var1cv1 22067  Poly1cpl1 22068   fldGen cfldgen 33267  /FldExtcfldext 33641  [:]cextdg 33643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-rpss 7702  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-inf 9401  df-oi 9470  df-r1 9724  df-rank 9725  df-dju 9861  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-ico 13319  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ocomp 17248  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-imas 17478  df-qus 17479  df-mre 17554  df-mrc 17555  df-mri 17556  df-acs 17557  df-proset 18262  df-drs 18263  df-poset 18281  df-ipo 18494  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-gim 19198  df-cntz 19256  df-oppg 19285  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-irred 20275  df-invr 20304  df-dvr 20317  df-rhm 20388  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-idom 20612  df-drng 20647  df-field 20648  df-sdrg 20703  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lmhm 20936  df-lmim 20937  df-lmic 20938  df-lbs 20989  df-lvec 21017  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-2idl 21167  df-lpidl 21239  df-lpir 21240  df-pid 21254  df-cnfld 21272  df-dsmm 21648  df-frlm 21663  df-uvc 21699  df-lindf 21722  df-linds 21723  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-evls1 22209  df-evl1 22210  df-mdeg 25967  df-deg1 25968  df-mon1 26043  df-uc1p 26044  df-q1p 26045  df-r1p 26046  df-ig1p 26047  df-fldgen 33268  df-mxidl 33438  df-dim 33602  df-fldext 33644  df-extdg 33645  df-irng 33686  df-minply 33697
This theorem is referenced by:  constrelextdg2  33744
  Copyright terms: Public domain W3C validator