| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rtelextdg2 | Structured version Visualization version GIF version | ||
| Description: If an element 𝑋 is a solution of a quadratic equation, then it is either in the base field, or the degree of its field extension is exactly 2. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
| Ref | Expression |
|---|---|
| rtelextdg2.1 | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
| rtelextdg2.2 | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
| rtelextdg2.3 | ⊢ 0 = (0g‘𝐸) |
| rtelextdg2.4 | ⊢ 𝑃 = (Poly1‘𝐾) |
| rtelextdg2.5 | ⊢ 𝑉 = (Base‘𝐸) |
| rtelextdg2.6 | ⊢ · = (.r‘𝐸) |
| rtelextdg2.7 | ⊢ + = (+g‘𝐸) |
| rtelextdg2.8 | ⊢ ↑ = (.g‘(mulGrp‘𝐸)) |
| rtelextdg2.9 | ⊢ (𝜑 → 𝐸 ∈ Field) |
| rtelextdg2.10 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| rtelextdg2.11 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| rtelextdg2.12 | ⊢ (𝜑 → 𝐴 ∈ 𝐹) |
| rtelextdg2.13 | ⊢ (𝜑 → 𝐵 ∈ 𝐹) |
| rtelextdg2.14 | ⊢ (𝜑 → ((2 ↑ 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 ) |
| Ref | Expression |
|---|---|
| rtelextdg2 | ⊢ (𝜑 → (𝑋 ∈ 𝐹 ∨ (𝐿[:]𝐾) = 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rtelextdg2.5 | . . . . . 6 ⊢ 𝑉 = (Base‘𝐸) | |
| 2 | rtelextdg2.9 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 3 | 2 | flddrngd 20626 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
| 4 | rtelextdg2.10 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 5 | 1 | sdrgss 20678 | . . . . . . . 8 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ⊆ 𝑉) |
| 6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ⊆ 𝑉) |
| 7 | rtelextdg2.11 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 8 | 7 | snssd 4760 | . . . . . . 7 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
| 9 | 6, 8 | unssd 4143 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∪ {𝑋}) ⊆ 𝑉) |
| 10 | 1, 3, 9 | fldgenssid 33252 | . . . . 5 ⊢ (𝜑 → (𝐹 ∪ {𝑋}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
| 11 | ssun2 4130 | . . . . . 6 ⊢ {𝑋} ⊆ (𝐹 ∪ {𝑋}) | |
| 12 | snidg 4612 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) | |
| 13 | 7, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ {𝑋}) |
| 14 | 11, 13 | sselid 3933 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝐹 ∪ {𝑋})) |
| 15 | 10, 14 | sseldd 3936 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝑋 ∈ (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
| 17 | rtelextdg2.1 | . . . . . . 7 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
| 18 | rtelextdg2.2 | . . . . . . 7 ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝑋}))) | |
| 19 | 1, 17, 18, 2, 4, 8 | fldgenfldext 33635 | . . . . . 6 ⊢ (𝜑 → 𝐿/FldExt𝐾) |
| 20 | extdg1id 33633 | . . . . . 6 ⊢ ((𝐿/FldExt𝐾 ∧ (𝐿[:]𝐾) = 1) → 𝐿 = 𝐾) | |
| 21 | 19, 20 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝐿 = 𝐾) |
| 22 | 21 | fveq2d 6826 | . . . 4 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (Base‘𝐿) = (Base‘𝐾)) |
| 23 | 1, 3, 9 | fldgenssv 33254 | . . . . . 6 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝑋})) ⊆ 𝑉) |
| 24 | 18, 1 | ressbas2 17149 | . . . . . 6 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝑋})) ⊆ 𝑉 → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿)) |
| 25 | 23, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿)) |
| 26 | 25 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿)) |
| 27 | 17, 1 | ressbas2 17149 | . . . . . 6 ⊢ (𝐹 ⊆ 𝑉 → 𝐹 = (Base‘𝐾)) |
| 28 | 6, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 = (Base‘𝐾)) |
| 29 | 28 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝐹 = (Base‘𝐾)) |
| 30 | 22, 26, 29 | 3eqtr4d 2774 | . . 3 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (𝐸 fldGen (𝐹 ∪ {𝑋})) = 𝐹) |
| 31 | 16, 30 | eleqtrd 2830 | . 2 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝑋 ∈ 𝐹) |
| 32 | simpr 484 | . 2 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 2) → (𝐿[:]𝐾) = 2) | |
| 33 | 1zzd 12506 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 34 | 2z 12507 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 35 | 34 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℤ) |
| 36 | extdgcl 33623 | . . . . . . . 8 ⊢ (𝐿/FldExt𝐾 → (𝐿[:]𝐾) ∈ ℕ0*) | |
| 37 | 19, 36 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ ℕ0*) |
| 38 | 2nn0 12401 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
| 39 | 38 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 ∈ ℕ0) |
| 40 | rtelextdg2.3 | . . . . . . . 8 ⊢ 0 = (0g‘𝐸) | |
| 41 | rtelextdg2.4 | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘𝐾) | |
| 42 | rtelextdg2.6 | . . . . . . . 8 ⊢ · = (.r‘𝐸) | |
| 43 | rtelextdg2.7 | . . . . . . . 8 ⊢ + = (+g‘𝐸) | |
| 44 | rtelextdg2.8 | . . . . . . . 8 ⊢ ↑ = (.g‘(mulGrp‘𝐸)) | |
| 45 | rtelextdg2.12 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝐹) | |
| 46 | rtelextdg2.13 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ 𝐹) | |
| 47 | rtelextdg2.14 | . . . . . . . 8 ⊢ (𝜑 → ((2 ↑ 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 ) | |
| 48 | eqid 2729 | . . . . . . . 8 ⊢ (var1‘𝐾) = (var1‘𝐾) | |
| 49 | eqid 2729 | . . . . . . . 8 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
| 50 | eqid 2729 | . . . . . . . 8 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
| 51 | eqid 2729 | . . . . . . . 8 ⊢ (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃)) | |
| 52 | eqid 2729 | . . . . . . . 8 ⊢ (algSc‘𝑃) = (algSc‘𝑃) | |
| 53 | eqid 2729 | . . . . . . . 8 ⊢ ((2(.g‘(mulGrp‘𝑃))(var1‘𝐾))(+g‘𝑃)((((algSc‘𝑃)‘𝐴)(.r‘𝑃)(var1‘𝐾))(+g‘𝑃)((algSc‘𝑃)‘𝐵))) = ((2(.g‘(mulGrp‘𝑃))(var1‘𝐾))(+g‘𝑃)((((algSc‘𝑃)‘𝐴)(.r‘𝑃)(var1‘𝐾))(+g‘𝑃)((algSc‘𝑃)‘𝐵))) | |
| 54 | 17, 18, 40, 41, 1, 42, 43, 44, 2, 4, 7, 45, 46, 47, 48, 49, 50, 51, 52, 53 | rtelextdg2lem 33693 | . . . . . . 7 ⊢ (𝜑 → (𝐿[:]𝐾) ≤ 2) |
| 55 | xnn0lenn0nn0 13147 | . . . . . . 7 ⊢ (((𝐿[:]𝐾) ∈ ℕ0* ∧ 2 ∈ ℕ0 ∧ (𝐿[:]𝐾) ≤ 2) → (𝐿[:]𝐾) ∈ ℕ0) | |
| 56 | 37, 39, 54, 55 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ ℕ0) |
| 57 | 56 | nn0zd 12497 | . . . . 5 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ ℤ) |
| 58 | extdggt0 33624 | . . . . . . 7 ⊢ (𝐿/FldExt𝐾 → 0 < (𝐿[:]𝐾)) | |
| 59 | 19, 58 | syl 17 | . . . . . 6 ⊢ (𝜑 → 0 < (𝐿[:]𝐾)) |
| 60 | zgt0ge1 12530 | . . . . . . 7 ⊢ ((𝐿[:]𝐾) ∈ ℤ → (0 < (𝐿[:]𝐾) ↔ 1 ≤ (𝐿[:]𝐾))) | |
| 61 | 60 | biimpa 476 | . . . . . 6 ⊢ (((𝐿[:]𝐾) ∈ ℤ ∧ 0 < (𝐿[:]𝐾)) → 1 ≤ (𝐿[:]𝐾)) |
| 62 | 57, 59, 61 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 1 ≤ (𝐿[:]𝐾)) |
| 63 | 33, 35, 57, 62, 54 | elfzd 13418 | . . . 4 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ (1...2)) |
| 64 | fz12pr 13484 | . . . 4 ⊢ (1...2) = {1, 2} | |
| 65 | 63, 64 | eleqtrdi 2838 | . . 3 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ {1, 2}) |
| 66 | elpri 4601 | . . 3 ⊢ ((𝐿[:]𝐾) ∈ {1, 2} → ((𝐿[:]𝐾) = 1 ∨ (𝐿[:]𝐾) = 2)) | |
| 67 | 65, 66 | syl 17 | . 2 ⊢ (𝜑 → ((𝐿[:]𝐾) = 1 ∨ (𝐿[:]𝐾) = 2)) |
| 68 | 31, 32, 67 | orim12da 32402 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝐹 ∨ (𝐿[:]𝐾) = 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cun 3901 ⊆ wss 3903 {csn 4577 {cpr 4579 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 < clt 11149 ≤ cle 11150 2c2 12183 ℕ0cn0 12384 ℕ0*cxnn0 12457 ℤcz 12471 ...cfz 13410 Basecbs 17120 ↾s cress 17141 +gcplusg 17161 .rcmulr 17162 0gc0g 17343 .gcmg 18946 mulGrpcmgp 20025 Fieldcfield 20615 SubDRingcsdrg 20671 algSccascl 21759 var1cv1 22058 Poly1cpl1 22059 fldGen cfldgen 33249 /FldExtcfldext 33605 [:]cextdg 33607 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-reg 9484 ax-inf2 9537 ax-ac2 10357 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-ofr 7614 df-rpss 7659 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-er 8625 df-ec 8627 df-qs 8631 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-inf 9333 df-oi 9402 df-r1 9660 df-rank 9661 df-dju 9797 df-card 9835 df-acn 9838 df-ac 10010 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-xnn0 12458 df-z 12472 df-dec 12592 df-uz 12736 df-ico 13254 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ocomp 17182 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-imas 17412 df-qus 17413 df-mre 17488 df-mrc 17489 df-mri 17490 df-acs 17491 df-proset 18200 df-drs 18201 df-poset 18219 df-ipo 18434 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-nsg 19003 df-eqg 19004 df-ghm 19092 df-gim 19138 df-cntz 19196 df-oppg 19225 df-lsm 19515 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-irred 20244 df-invr 20273 df-dvr 20286 df-rhm 20357 df-nzr 20398 df-subrng 20431 df-subrg 20455 df-rlreg 20579 df-domn 20580 df-idom 20581 df-drng 20616 df-field 20617 df-sdrg 20672 df-lmod 20765 df-lss 20835 df-lsp 20875 df-lmhm 20926 df-lmim 20927 df-lmic 20928 df-lbs 20979 df-lvec 21007 df-sra 21077 df-rgmod 21078 df-lidl 21115 df-rsp 21116 df-2idl 21157 df-lpidl 21229 df-lpir 21230 df-pid 21244 df-cnfld 21262 df-dsmm 21639 df-frlm 21654 df-uvc 21690 df-lindf 21713 df-linds 21714 df-assa 21760 df-asp 21761 df-ascl 21762 df-psr 21816 df-mvr 21817 df-mpl 21818 df-opsr 21820 df-evls 21979 df-evl 21980 df-psr1 22062 df-vr1 22063 df-ply1 22064 df-coe1 22065 df-evls1 22200 df-evl1 22201 df-mdeg 25958 df-deg1 25959 df-mon1 26034 df-uc1p 26035 df-q1p 26036 df-r1p 26037 df-ig1p 26038 df-fldgen 33250 df-mxidl 33397 df-dim 33566 df-fldext 33608 df-extdg 33609 df-irng 33651 df-minply 33667 |
| This theorem is referenced by: constrelextdg2 33714 |
| Copyright terms: Public domain | W3C validator |