![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rtelextdg2 | Structured version Visualization version GIF version |
Description: If an element 𝑋 is a solution of a quadratic equation, then it is either in the base field, or the degree of its field extension is exactly 2. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
Ref | Expression |
---|---|
rtelextdg2.1 | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
rtelextdg2.2 | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
rtelextdg2.3 | ⊢ 0 = (0g‘𝐸) |
rtelextdg2.4 | ⊢ 𝑃 = (Poly1‘𝐾) |
rtelextdg2.5 | ⊢ 𝑉 = (Base‘𝐸) |
rtelextdg2.6 | ⊢ · = (.r‘𝐸) |
rtelextdg2.7 | ⊢ + = (+g‘𝐸) |
rtelextdg2.8 | ⊢ ↑ = (.g‘(mulGrp‘𝐸)) |
rtelextdg2.9 | ⊢ (𝜑 → 𝐸 ∈ Field) |
rtelextdg2.10 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
rtelextdg2.11 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
rtelextdg2.12 | ⊢ (𝜑 → 𝐴 ∈ 𝐹) |
rtelextdg2.13 | ⊢ (𝜑 → 𝐵 ∈ 𝐹) |
rtelextdg2.14 | ⊢ (𝜑 → ((2 ↑ 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 ) |
Ref | Expression |
---|---|
rtelextdg2 | ⊢ (𝜑 → (𝑋 ∈ 𝐹 ∨ (𝐿[:]𝐾) = 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rtelextdg2.5 | . . . . . 6 ⊢ 𝑉 = (Base‘𝐸) | |
2 | rtelextdg2.9 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ Field) | |
3 | 2 | flddrngd 20715 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
4 | rtelextdg2.10 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
5 | 1 | sdrgss 20768 | . . . . . . . 8 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ⊆ 𝑉) |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ⊆ 𝑉) |
7 | rtelextdg2.11 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
8 | 7 | snssd 4808 | . . . . . . 7 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
9 | 6, 8 | unssd 4184 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∪ {𝑋}) ⊆ 𝑉) |
10 | 1, 3, 9 | fldgenssid 33168 | . . . . 5 ⊢ (𝜑 → (𝐹 ∪ {𝑋}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
11 | ssun2 4171 | . . . . . 6 ⊢ {𝑋} ⊆ (𝐹 ∪ {𝑋}) | |
12 | snidg 4657 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) | |
13 | 7, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ {𝑋}) |
14 | 11, 13 | sselid 3976 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝐹 ∪ {𝑋})) |
15 | 10, 14 | sseldd 3979 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
16 | 15 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝑋 ∈ (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
17 | rtelextdg2.1 | . . . . . . 7 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
18 | rtelextdg2.2 | . . . . . . 7 ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝑋}))) | |
19 | 1, 17, 18, 2, 4, 8 | fldgenfldext 33560 | . . . . . 6 ⊢ (𝜑 → 𝐿/FldExt𝐾) |
20 | extdg1id 33558 | . . . . . 6 ⊢ ((𝐿/FldExt𝐾 ∧ (𝐿[:]𝐾) = 1) → 𝐿 = 𝐾) | |
21 | 19, 20 | sylan 578 | . . . . 5 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝐿 = 𝐾) |
22 | 21 | fveq2d 6897 | . . . 4 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (Base‘𝐿) = (Base‘𝐾)) |
23 | 1, 3, 9 | fldgenssv 33170 | . . . . . 6 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝑋})) ⊆ 𝑉) |
24 | 18, 1 | ressbas2 17246 | . . . . . 6 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝑋})) ⊆ 𝑉 → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿)) |
25 | 23, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿)) |
26 | 25 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿)) |
27 | 17, 1 | ressbas2 17246 | . . . . . 6 ⊢ (𝐹 ⊆ 𝑉 → 𝐹 = (Base‘𝐾)) |
28 | 6, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 = (Base‘𝐾)) |
29 | 28 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝐹 = (Base‘𝐾)) |
30 | 22, 26, 29 | 3eqtr4d 2776 | . . 3 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (𝐸 fldGen (𝐹 ∪ {𝑋})) = 𝐹) |
31 | 16, 30 | eleqtrd 2828 | . 2 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝑋 ∈ 𝐹) |
32 | simpr 483 | . 2 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 2) → (𝐿[:]𝐾) = 2) | |
33 | 1zzd 12639 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℤ) | |
34 | 2z 12640 | . . . . . 6 ⊢ 2 ∈ ℤ | |
35 | 34 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℤ) |
36 | extdgcl 33551 | . . . . . . . 8 ⊢ (𝐿/FldExt𝐾 → (𝐿[:]𝐾) ∈ ℕ0*) | |
37 | 19, 36 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ ℕ0*) |
38 | 2nn0 12535 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
39 | 38 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 ∈ ℕ0) |
40 | rtelextdg2.3 | . . . . . . . 8 ⊢ 0 = (0g‘𝐸) | |
41 | rtelextdg2.4 | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘𝐾) | |
42 | rtelextdg2.6 | . . . . . . . 8 ⊢ · = (.r‘𝐸) | |
43 | rtelextdg2.7 | . . . . . . . 8 ⊢ + = (+g‘𝐸) | |
44 | rtelextdg2.8 | . . . . . . . 8 ⊢ ↑ = (.g‘(mulGrp‘𝐸)) | |
45 | rtelextdg2.12 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝐹) | |
46 | rtelextdg2.13 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ 𝐹) | |
47 | rtelextdg2.14 | . . . . . . . 8 ⊢ (𝜑 → ((2 ↑ 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 ) | |
48 | eqid 2726 | . . . . . . . 8 ⊢ (var1‘𝐾) = (var1‘𝐾) | |
49 | eqid 2726 | . . . . . . . 8 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
50 | eqid 2726 | . . . . . . . 8 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
51 | eqid 2726 | . . . . . . . 8 ⊢ (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃)) | |
52 | eqid 2726 | . . . . . . . 8 ⊢ (algSc‘𝑃) = (algSc‘𝑃) | |
53 | eqid 2726 | . . . . . . . 8 ⊢ ((2(.g‘(mulGrp‘𝑃))(var1‘𝐾))(+g‘𝑃)((((algSc‘𝑃)‘𝐴)(.r‘𝑃)(var1‘𝐾))(+g‘𝑃)((algSc‘𝑃)‘𝐵))) = ((2(.g‘(mulGrp‘𝑃))(var1‘𝐾))(+g‘𝑃)((((algSc‘𝑃)‘𝐴)(.r‘𝑃)(var1‘𝐾))(+g‘𝑃)((algSc‘𝑃)‘𝐵))) | |
54 | 17, 18, 40, 41, 1, 42, 43, 44, 2, 4, 7, 45, 46, 47, 48, 49, 50, 51, 52, 53 | rtelextdg2lem 33599 | . . . . . . 7 ⊢ (𝜑 → (𝐿[:]𝐾) ≤ 2) |
55 | xnn0lenn0nn0 13272 | . . . . . . 7 ⊢ (((𝐿[:]𝐾) ∈ ℕ0* ∧ 2 ∈ ℕ0 ∧ (𝐿[:]𝐾) ≤ 2) → (𝐿[:]𝐾) ∈ ℕ0) | |
56 | 37, 39, 54, 55 | syl3anc 1368 | . . . . . 6 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ ℕ0) |
57 | 56 | nn0zd 12630 | . . . . 5 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ ℤ) |
58 | extdggt0 33552 | . . . . . . 7 ⊢ (𝐿/FldExt𝐾 → 0 < (𝐿[:]𝐾)) | |
59 | 19, 58 | syl 17 | . . . . . 6 ⊢ (𝜑 → 0 < (𝐿[:]𝐾)) |
60 | zgt0ge1 12662 | . . . . . . 7 ⊢ ((𝐿[:]𝐾) ∈ ℤ → (0 < (𝐿[:]𝐾) ↔ 1 ≤ (𝐿[:]𝐾))) | |
61 | 60 | biimpa 475 | . . . . . 6 ⊢ (((𝐿[:]𝐾) ∈ ℤ ∧ 0 < (𝐿[:]𝐾)) → 1 ≤ (𝐿[:]𝐾)) |
62 | 57, 59, 61 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → 1 ≤ (𝐿[:]𝐾)) |
63 | 33, 35, 57, 62, 54 | elfzd 13540 | . . . 4 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ (1...2)) |
64 | fz12pr 13606 | . . . 4 ⊢ (1...2) = {1, 2} | |
65 | 63, 64 | eleqtrdi 2836 | . . 3 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ {1, 2}) |
66 | elpri 4646 | . . 3 ⊢ ((𝐿[:]𝐾) ∈ {1, 2} → ((𝐿[:]𝐾) = 1 ∨ (𝐿[:]𝐾) = 2)) | |
67 | 65, 66 | syl 17 | . 2 ⊢ (𝜑 → ((𝐿[:]𝐾) = 1 ∨ (𝐿[:]𝐾) = 2)) |
68 | 31, 32, 67 | orim12da 32385 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝐹 ∨ (𝐿[:]𝐾) = 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1534 ∈ wcel 2099 ∪ cun 3944 ⊆ wss 3946 {csn 4623 {cpr 4625 class class class wbr 5145 ‘cfv 6546 (class class class)co 7416 0cc0 11149 1c1 11150 < clt 11289 ≤ cle 11290 2c2 12313 ℕ0cn0 12518 ℕ0*cxnn0 12590 ℤcz 12604 ...cfz 13532 Basecbs 17208 ↾s cress 17237 +gcplusg 17261 .rcmulr 17262 0gc0g 17449 .gcmg 19057 mulGrpcmgp 20113 Fieldcfield 20704 SubDRingcsdrg 20761 algSccascl 21846 var1cv1 22161 Poly1cpl1 22162 fldGen cfldgen 33165 /FldExtcfldext 33533 [:]cextdg 33536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-reg 9628 ax-inf2 9677 ax-ac2 10497 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-pre-sup 11227 ax-addf 11228 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-iin 4996 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-isom 6555 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-ofr 7683 df-rpss 7726 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-er 8726 df-ec 8728 df-qs 8732 df-map 8849 df-pm 8850 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9399 df-sup 9478 df-inf 9479 df-oi 9546 df-r1 9800 df-rank 9801 df-dju 9937 df-card 9975 df-acn 9978 df-ac 10152 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-n0 12519 df-xnn0 12591 df-z 12605 df-dec 12724 df-uz 12869 df-ico 13378 df-fz 13533 df-fzo 13676 df-seq 14016 df-hash 14343 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-starv 17276 df-sca 17277 df-vsca 17278 df-ip 17279 df-tset 17280 df-ple 17281 df-ocomp 17282 df-ds 17283 df-unif 17284 df-hom 17285 df-cco 17286 df-0g 17451 df-gsum 17452 df-prds 17457 df-pws 17459 df-imas 17518 df-qus 17519 df-mre 17594 df-mrc 17595 df-mri 17596 df-acs 17597 df-proset 18315 df-drs 18316 df-poset 18333 df-ipo 18548 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-mhm 18768 df-submnd 18769 df-grp 18926 df-minusg 18927 df-sbg 18928 df-mulg 19058 df-subg 19113 df-nsg 19114 df-eqg 19115 df-ghm 19203 df-gim 19249 df-cntz 19307 df-oppg 19336 df-lsm 19630 df-cmn 19776 df-abl 19777 df-mgp 20114 df-rng 20132 df-ur 20161 df-srg 20166 df-ring 20214 df-cring 20215 df-oppr 20312 df-dvdsr 20335 df-unit 20336 df-irred 20337 df-invr 20366 df-dvr 20379 df-rhm 20450 df-nzr 20491 df-subrng 20524 df-subrg 20549 df-rlreg 20668 df-domn 20669 df-idom 20670 df-drng 20705 df-field 20706 df-sdrg 20762 df-lmod 20834 df-lss 20905 df-lsp 20945 df-lmhm 20996 df-lmim 20997 df-lmic 20998 df-lbs 21049 df-lvec 21077 df-sra 21147 df-rgmod 21148 df-lidl 21193 df-rsp 21194 df-2idl 21235 df-lpidl 21307 df-lpir 21308 df-pid 21322 df-cnfld 21340 df-dsmm 21726 df-frlm 21741 df-uvc 21777 df-lindf 21800 df-linds 21801 df-assa 21847 df-asp 21848 df-ascl 21849 df-psr 21902 df-mvr 21903 df-mpl 21904 df-opsr 21906 df-evls 22083 df-evl 22084 df-psr1 22165 df-vr1 22166 df-ply1 22167 df-coe1 22168 df-evls1 22303 df-evl1 22304 df-mdeg 26076 df-deg1 26077 df-mon1 26155 df-uc1p 26156 df-q1p 26157 df-r1p 26158 df-ig1p 26159 df-fldgen 33166 df-mxidl 33341 df-dim 33500 df-fldext 33537 df-extdg 33538 df-irng 33566 df-minply 33575 |
This theorem is referenced by: constrelextdg2 33619 |
Copyright terms: Public domain | W3C validator |