Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rtelextdg2 Structured version   Visualization version   GIF version

Theorem rtelextdg2 33694
Description: If an element 𝑋 is a solution of a quadratic equation, then it is either in the base field, or the degree of its field extension is exactly 2. (Contributed by Thierry Arnoux, 22-Jun-2025.)
Hypotheses
Ref Expression
rtelextdg2.1 𝐾 = (𝐸s 𝐹)
rtelextdg2.2 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝑋})))
rtelextdg2.3 0 = (0g𝐸)
rtelextdg2.4 𝑃 = (Poly1𝐾)
rtelextdg2.5 𝑉 = (Base‘𝐸)
rtelextdg2.6 · = (.r𝐸)
rtelextdg2.7 + = (+g𝐸)
rtelextdg2.8 = (.g‘(mulGrp‘𝐸))
rtelextdg2.9 (𝜑𝐸 ∈ Field)
rtelextdg2.10 (𝜑𝐹 ∈ (SubDRing‘𝐸))
rtelextdg2.11 (𝜑𝑋𝑉)
rtelextdg2.12 (𝜑𝐴𝐹)
rtelextdg2.13 (𝜑𝐵𝐹)
rtelextdg2.14 (𝜑 → ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 )
Assertion
Ref Expression
rtelextdg2 (𝜑 → (𝑋𝐹 ∨ (𝐿[:]𝐾) = 2))

Proof of Theorem rtelextdg2
StepHypRef Expression
1 rtelextdg2.5 . . . . . 6 𝑉 = (Base‘𝐸)
2 rtelextdg2.9 . . . . . . 7 (𝜑𝐸 ∈ Field)
32flddrngd 20626 . . . . . 6 (𝜑𝐸 ∈ DivRing)
4 rtelextdg2.10 . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐸))
51sdrgss 20678 . . . . . . . 8 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹𝑉)
64, 5syl 17 . . . . . . 7 (𝜑𝐹𝑉)
7 rtelextdg2.11 . . . . . . . 8 (𝜑𝑋𝑉)
87snssd 4760 . . . . . . 7 (𝜑 → {𝑋} ⊆ 𝑉)
96, 8unssd 4143 . . . . . 6 (𝜑 → (𝐹 ∪ {𝑋}) ⊆ 𝑉)
101, 3, 9fldgenssid 33252 . . . . 5 (𝜑 → (𝐹 ∪ {𝑋}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝑋})))
11 ssun2 4130 . . . . . 6 {𝑋} ⊆ (𝐹 ∪ {𝑋})
12 snidg 4612 . . . . . . 7 (𝑋𝑉𝑋 ∈ {𝑋})
137, 12syl 17 . . . . . 6 (𝜑𝑋 ∈ {𝑋})
1411, 13sselid 3933 . . . . 5 (𝜑𝑋 ∈ (𝐹 ∪ {𝑋}))
1510, 14sseldd 3936 . . . 4 (𝜑𝑋 ∈ (𝐸 fldGen (𝐹 ∪ {𝑋})))
1615adantr 480 . . 3 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝑋 ∈ (𝐸 fldGen (𝐹 ∪ {𝑋})))
17 rtelextdg2.1 . . . . . . 7 𝐾 = (𝐸s 𝐹)
18 rtelextdg2.2 . . . . . . 7 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝑋})))
191, 17, 18, 2, 4, 8fldgenfldext 33635 . . . . . 6 (𝜑𝐿/FldExt𝐾)
20 extdg1id 33633 . . . . . 6 ((𝐿/FldExt𝐾 ∧ (𝐿[:]𝐾) = 1) → 𝐿 = 𝐾)
2119, 20sylan 580 . . . . 5 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝐿 = 𝐾)
2221fveq2d 6826 . . . 4 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (Base‘𝐿) = (Base‘𝐾))
231, 3, 9fldgenssv 33254 . . . . . 6 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝑋})) ⊆ 𝑉)
2418, 1ressbas2 17149 . . . . . 6 ((𝐸 fldGen (𝐹 ∪ {𝑋})) ⊆ 𝑉 → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿))
2523, 24syl 17 . . . . 5 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿))
2625adantr 480 . . . 4 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿))
2717, 1ressbas2 17149 . . . . . 6 (𝐹𝑉𝐹 = (Base‘𝐾))
286, 27syl 17 . . . . 5 (𝜑𝐹 = (Base‘𝐾))
2928adantr 480 . . . 4 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝐹 = (Base‘𝐾))
3022, 26, 293eqtr4d 2774 . . 3 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (𝐸 fldGen (𝐹 ∪ {𝑋})) = 𝐹)
3116, 30eleqtrd 2830 . 2 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝑋𝐹)
32 simpr 484 . 2 ((𝜑 ∧ (𝐿[:]𝐾) = 2) → (𝐿[:]𝐾) = 2)
33 1zzd 12506 . . . . 5 (𝜑 → 1 ∈ ℤ)
34 2z 12507 . . . . . 6 2 ∈ ℤ
3534a1i 11 . . . . 5 (𝜑 → 2 ∈ ℤ)
36 extdgcl 33623 . . . . . . . 8 (𝐿/FldExt𝐾 → (𝐿[:]𝐾) ∈ ℕ0*)
3719, 36syl 17 . . . . . . 7 (𝜑 → (𝐿[:]𝐾) ∈ ℕ0*)
38 2nn0 12401 . . . . . . . 8 2 ∈ ℕ0
3938a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℕ0)
40 rtelextdg2.3 . . . . . . . 8 0 = (0g𝐸)
41 rtelextdg2.4 . . . . . . . 8 𝑃 = (Poly1𝐾)
42 rtelextdg2.6 . . . . . . . 8 · = (.r𝐸)
43 rtelextdg2.7 . . . . . . . 8 + = (+g𝐸)
44 rtelextdg2.8 . . . . . . . 8 = (.g‘(mulGrp‘𝐸))
45 rtelextdg2.12 . . . . . . . 8 (𝜑𝐴𝐹)
46 rtelextdg2.13 . . . . . . . 8 (𝜑𝐵𝐹)
47 rtelextdg2.14 . . . . . . . 8 (𝜑 → ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 )
48 eqid 2729 . . . . . . . 8 (var1𝐾) = (var1𝐾)
49 eqid 2729 . . . . . . . 8 (+g𝑃) = (+g𝑃)
50 eqid 2729 . . . . . . . 8 (.r𝑃) = (.r𝑃)
51 eqid 2729 . . . . . . . 8 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
52 eqid 2729 . . . . . . . 8 (algSc‘𝑃) = (algSc‘𝑃)
53 eqid 2729 . . . . . . . 8 ((2(.g‘(mulGrp‘𝑃))(var1𝐾))(+g𝑃)((((algSc‘𝑃)‘𝐴)(.r𝑃)(var1𝐾))(+g𝑃)((algSc‘𝑃)‘𝐵))) = ((2(.g‘(mulGrp‘𝑃))(var1𝐾))(+g𝑃)((((algSc‘𝑃)‘𝐴)(.r𝑃)(var1𝐾))(+g𝑃)((algSc‘𝑃)‘𝐵)))
5417, 18, 40, 41, 1, 42, 43, 44, 2, 4, 7, 45, 46, 47, 48, 49, 50, 51, 52, 53rtelextdg2lem 33693 . . . . . . 7 (𝜑 → (𝐿[:]𝐾) ≤ 2)
55 xnn0lenn0nn0 13147 . . . . . . 7 (((𝐿[:]𝐾) ∈ ℕ0* ∧ 2 ∈ ℕ0 ∧ (𝐿[:]𝐾) ≤ 2) → (𝐿[:]𝐾) ∈ ℕ0)
5637, 39, 54, 55syl3anc 1373 . . . . . 6 (𝜑 → (𝐿[:]𝐾) ∈ ℕ0)
5756nn0zd 12497 . . . . 5 (𝜑 → (𝐿[:]𝐾) ∈ ℤ)
58 extdggt0 33624 . . . . . . 7 (𝐿/FldExt𝐾 → 0 < (𝐿[:]𝐾))
5919, 58syl 17 . . . . . 6 (𝜑 → 0 < (𝐿[:]𝐾))
60 zgt0ge1 12530 . . . . . . 7 ((𝐿[:]𝐾) ∈ ℤ → (0 < (𝐿[:]𝐾) ↔ 1 ≤ (𝐿[:]𝐾)))
6160biimpa 476 . . . . . 6 (((𝐿[:]𝐾) ∈ ℤ ∧ 0 < (𝐿[:]𝐾)) → 1 ≤ (𝐿[:]𝐾))
6257, 59, 61syl2anc 584 . . . . 5 (𝜑 → 1 ≤ (𝐿[:]𝐾))
6333, 35, 57, 62, 54elfzd 13418 . . . 4 (𝜑 → (𝐿[:]𝐾) ∈ (1...2))
64 fz12pr 13484 . . . 4 (1...2) = {1, 2}
6563, 64eleqtrdi 2838 . . 3 (𝜑 → (𝐿[:]𝐾) ∈ {1, 2})
66 elpri 4601 . . 3 ((𝐿[:]𝐾) ∈ {1, 2} → ((𝐿[:]𝐾) = 1 ∨ (𝐿[:]𝐾) = 2))
6765, 66syl 17 . 2 (𝜑 → ((𝐿[:]𝐾) = 1 ∨ (𝐿[:]𝐾) = 2))
6831, 32, 67orim12da 32402 1 (𝜑 → (𝑋𝐹 ∨ (𝐿[:]𝐾) = 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  cun 3901  wss 3903  {csn 4577  {cpr 4579   class class class wbr 5092  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010   < clt 11149  cle 11150  2c2 12183  0cn0 12384  0*cxnn0 12457  cz 12471  ...cfz 13410  Basecbs 17120  s cress 17141  +gcplusg 17161  .rcmulr 17162  0gc0g 17343  .gcmg 18946  mulGrpcmgp 20025  Fieldcfield 20615  SubDRingcsdrg 20671  algSccascl 21759  var1cv1 22058  Poly1cpl1 22059   fldGen cfldgen 33249  /FldExtcfldext 33605  [:]cextdg 33607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-rpss 7659  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-inf 9333  df-oi 9402  df-r1 9660  df-rank 9661  df-dju 9797  df-card 9835  df-acn 9838  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-ico 13254  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ocomp 17182  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-imas 17412  df-qus 17413  df-mre 17488  df-mrc 17489  df-mri 17490  df-acs 17491  df-proset 18200  df-drs 18201  df-poset 18219  df-ipo 18434  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-nsg 19003  df-eqg 19004  df-ghm 19092  df-gim 19138  df-cntz 19196  df-oppg 19225  df-lsm 19515  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-irred 20244  df-invr 20273  df-dvr 20286  df-rhm 20357  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-domn 20580  df-idom 20581  df-drng 20616  df-field 20617  df-sdrg 20672  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lmhm 20926  df-lmim 20927  df-lmic 20928  df-lbs 20979  df-lvec 21007  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-rsp 21116  df-2idl 21157  df-lpidl 21229  df-lpir 21230  df-pid 21244  df-cnfld 21262  df-dsmm 21639  df-frlm 21654  df-uvc 21690  df-lindf 21713  df-linds 21714  df-assa 21760  df-asp 21761  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-evls 21979  df-evl 21980  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065  df-evls1 22200  df-evl1 22201  df-mdeg 25958  df-deg1 25959  df-mon1 26034  df-uc1p 26035  df-q1p 26036  df-r1p 26037  df-ig1p 26038  df-fldgen 33250  df-mxidl 33397  df-dim 33566  df-fldext 33608  df-extdg 33609  df-irng 33651  df-minply 33667
This theorem is referenced by:  constrelextdg2  33714
  Copyright terms: Public domain W3C validator