Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rtelextdg2 Structured version   Visualization version   GIF version

Theorem rtelextdg2 33717
Description: If an element 𝑋 is a solution of a quadratic equation, then it is either in the base field, or the degree of its field extension is exactly 2. (Contributed by Thierry Arnoux, 22-Jun-2025.)
Hypotheses
Ref Expression
rtelextdg2.1 𝐾 = (𝐸s 𝐹)
rtelextdg2.2 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝑋})))
rtelextdg2.3 0 = (0g𝐸)
rtelextdg2.4 𝑃 = (Poly1𝐾)
rtelextdg2.5 𝑉 = (Base‘𝐸)
rtelextdg2.6 · = (.r𝐸)
rtelextdg2.7 + = (+g𝐸)
rtelextdg2.8 = (.g‘(mulGrp‘𝐸))
rtelextdg2.9 (𝜑𝐸 ∈ Field)
rtelextdg2.10 (𝜑𝐹 ∈ (SubDRing‘𝐸))
rtelextdg2.11 (𝜑𝑋𝑉)
rtelextdg2.12 (𝜑𝐴𝐹)
rtelextdg2.13 (𝜑𝐵𝐹)
rtelextdg2.14 (𝜑 → ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 )
Assertion
Ref Expression
rtelextdg2 (𝜑 → (𝑋𝐹 ∨ (𝐿[:]𝐾) = 2))

Proof of Theorem rtelextdg2
StepHypRef Expression
1 rtelextdg2.5 . . . . . 6 𝑉 = (Base‘𝐸)
2 rtelextdg2.9 . . . . . . 7 (𝜑𝐸 ∈ Field)
32flddrngd 20650 . . . . . 6 (𝜑𝐸 ∈ DivRing)
4 rtelextdg2.10 . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐸))
51sdrgss 20702 . . . . . . . 8 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹𝑉)
64, 5syl 17 . . . . . . 7 (𝜑𝐹𝑉)
7 rtelextdg2.11 . . . . . . . 8 (𝜑𝑋𝑉)
87snssd 4773 . . . . . . 7 (𝜑 → {𝑋} ⊆ 𝑉)
96, 8unssd 4155 . . . . . 6 (𝜑 → (𝐹 ∪ {𝑋}) ⊆ 𝑉)
101, 3, 9fldgenssid 33263 . . . . 5 (𝜑 → (𝐹 ∪ {𝑋}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝑋})))
11 ssun2 4142 . . . . . 6 {𝑋} ⊆ (𝐹 ∪ {𝑋})
12 snidg 4624 . . . . . . 7 (𝑋𝑉𝑋 ∈ {𝑋})
137, 12syl 17 . . . . . 6 (𝜑𝑋 ∈ {𝑋})
1411, 13sselid 3944 . . . . 5 (𝜑𝑋 ∈ (𝐹 ∪ {𝑋}))
1510, 14sseldd 3947 . . . 4 (𝜑𝑋 ∈ (𝐸 fldGen (𝐹 ∪ {𝑋})))
1615adantr 480 . . 3 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝑋 ∈ (𝐸 fldGen (𝐹 ∪ {𝑋})))
17 rtelextdg2.1 . . . . . . 7 𝐾 = (𝐸s 𝐹)
18 rtelextdg2.2 . . . . . . 7 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝑋})))
191, 17, 18, 2, 4, 8fldgenfldext 33663 . . . . . 6 (𝜑𝐿/FldExt𝐾)
20 extdg1id 33661 . . . . . 6 ((𝐿/FldExt𝐾 ∧ (𝐿[:]𝐾) = 1) → 𝐿 = 𝐾)
2119, 20sylan 580 . . . . 5 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝐿 = 𝐾)
2221fveq2d 6862 . . . 4 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (Base‘𝐿) = (Base‘𝐾))
231, 3, 9fldgenssv 33265 . . . . . 6 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝑋})) ⊆ 𝑉)
2418, 1ressbas2 17208 . . . . . 6 ((𝐸 fldGen (𝐹 ∪ {𝑋})) ⊆ 𝑉 → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿))
2523, 24syl 17 . . . . 5 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿))
2625adantr 480 . . . 4 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿))
2717, 1ressbas2 17208 . . . . . 6 (𝐹𝑉𝐹 = (Base‘𝐾))
286, 27syl 17 . . . . 5 (𝜑𝐹 = (Base‘𝐾))
2928adantr 480 . . . 4 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝐹 = (Base‘𝐾))
3022, 26, 293eqtr4d 2774 . . 3 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (𝐸 fldGen (𝐹 ∪ {𝑋})) = 𝐹)
3116, 30eleqtrd 2830 . 2 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝑋𝐹)
32 simpr 484 . 2 ((𝜑 ∧ (𝐿[:]𝐾) = 2) → (𝐿[:]𝐾) = 2)
33 1zzd 12564 . . . . 5 (𝜑 → 1 ∈ ℤ)
34 2z 12565 . . . . . 6 2 ∈ ℤ
3534a1i 11 . . . . 5 (𝜑 → 2 ∈ ℤ)
36 extdgcl 33652 . . . . . . . 8 (𝐿/FldExt𝐾 → (𝐿[:]𝐾) ∈ ℕ0*)
3719, 36syl 17 . . . . . . 7 (𝜑 → (𝐿[:]𝐾) ∈ ℕ0*)
38 2nn0 12459 . . . . . . . 8 2 ∈ ℕ0
3938a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℕ0)
40 rtelextdg2.3 . . . . . . . 8 0 = (0g𝐸)
41 rtelextdg2.4 . . . . . . . 8 𝑃 = (Poly1𝐾)
42 rtelextdg2.6 . . . . . . . 8 · = (.r𝐸)
43 rtelextdg2.7 . . . . . . . 8 + = (+g𝐸)
44 rtelextdg2.8 . . . . . . . 8 = (.g‘(mulGrp‘𝐸))
45 rtelextdg2.12 . . . . . . . 8 (𝜑𝐴𝐹)
46 rtelextdg2.13 . . . . . . . 8 (𝜑𝐵𝐹)
47 rtelextdg2.14 . . . . . . . 8 (𝜑 → ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 )
48 eqid 2729 . . . . . . . 8 (var1𝐾) = (var1𝐾)
49 eqid 2729 . . . . . . . 8 (+g𝑃) = (+g𝑃)
50 eqid 2729 . . . . . . . 8 (.r𝑃) = (.r𝑃)
51 eqid 2729 . . . . . . . 8 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
52 eqid 2729 . . . . . . . 8 (algSc‘𝑃) = (algSc‘𝑃)
53 eqid 2729 . . . . . . . 8 ((2(.g‘(mulGrp‘𝑃))(var1𝐾))(+g𝑃)((((algSc‘𝑃)‘𝐴)(.r𝑃)(var1𝐾))(+g𝑃)((algSc‘𝑃)‘𝐵))) = ((2(.g‘(mulGrp‘𝑃))(var1𝐾))(+g𝑃)((((algSc‘𝑃)‘𝐴)(.r𝑃)(var1𝐾))(+g𝑃)((algSc‘𝑃)‘𝐵)))
5417, 18, 40, 41, 1, 42, 43, 44, 2, 4, 7, 45, 46, 47, 48, 49, 50, 51, 52, 53rtelextdg2lem 33716 . . . . . . 7 (𝜑 → (𝐿[:]𝐾) ≤ 2)
55 xnn0lenn0nn0 13205 . . . . . . 7 (((𝐿[:]𝐾) ∈ ℕ0* ∧ 2 ∈ ℕ0 ∧ (𝐿[:]𝐾) ≤ 2) → (𝐿[:]𝐾) ∈ ℕ0)
5637, 39, 54, 55syl3anc 1373 . . . . . 6 (𝜑 → (𝐿[:]𝐾) ∈ ℕ0)
5756nn0zd 12555 . . . . 5 (𝜑 → (𝐿[:]𝐾) ∈ ℤ)
58 extdggt0 33653 . . . . . . 7 (𝐿/FldExt𝐾 → 0 < (𝐿[:]𝐾))
5919, 58syl 17 . . . . . 6 (𝜑 → 0 < (𝐿[:]𝐾))
60 zgt0ge1 12588 . . . . . . 7 ((𝐿[:]𝐾) ∈ ℤ → (0 < (𝐿[:]𝐾) ↔ 1 ≤ (𝐿[:]𝐾)))
6160biimpa 476 . . . . . 6 (((𝐿[:]𝐾) ∈ ℤ ∧ 0 < (𝐿[:]𝐾)) → 1 ≤ (𝐿[:]𝐾))
6257, 59, 61syl2anc 584 . . . . 5 (𝜑 → 1 ≤ (𝐿[:]𝐾))
6333, 35, 57, 62, 54elfzd 13476 . . . 4 (𝜑 → (𝐿[:]𝐾) ∈ (1...2))
64 fz12pr 13542 . . . 4 (1...2) = {1, 2}
6563, 64eleqtrdi 2838 . . 3 (𝜑 → (𝐿[:]𝐾) ∈ {1, 2})
66 elpri 4613 . . 3 ((𝐿[:]𝐾) ∈ {1, 2} → ((𝐿[:]𝐾) = 1 ∨ (𝐿[:]𝐾) = 2))
6765, 66syl 17 . 2 (𝜑 → ((𝐿[:]𝐾) = 1 ∨ (𝐿[:]𝐾) = 2))
6831, 32, 67orim12da 32387 1 (𝜑 → (𝑋𝐹 ∨ (𝐿[:]𝐾) = 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  cun 3912  wss 3914  {csn 4589  {cpr 4591   class class class wbr 5107  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   < clt 11208  cle 11209  2c2 12241  0cn0 12442  0*cxnn0 12515  cz 12529  ...cfz 13468  Basecbs 17179  s cress 17200  +gcplusg 17220  .rcmulr 17221  0gc0g 17402  .gcmg 18999  mulGrpcmgp 20049  Fieldcfield 20639  SubDRingcsdrg 20695  algSccascl 21761  var1cv1 22060  Poly1cpl1 22061   fldGen cfldgen 33260  /FldExtcfldext 33634  [:]cextdg 33636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-rpss 7699  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-inf 9394  df-oi 9463  df-r1 9717  df-rank 9718  df-dju 9854  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-ico 13312  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ocomp 17241  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-imas 17471  df-qus 17472  df-mre 17547  df-mrc 17548  df-mri 17549  df-acs 17550  df-proset 18255  df-drs 18256  df-poset 18274  df-ipo 18487  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-nsg 19056  df-eqg 19057  df-ghm 19145  df-gim 19191  df-cntz 19249  df-oppg 19278  df-lsm 19566  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-irred 20268  df-invr 20297  df-dvr 20310  df-rhm 20381  df-nzr 20422  df-subrng 20455  df-subrg 20479  df-rlreg 20603  df-domn 20604  df-idom 20605  df-drng 20640  df-field 20641  df-sdrg 20696  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lmhm 20929  df-lmim 20930  df-lmic 20931  df-lbs 20982  df-lvec 21010  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-2idl 21160  df-lpidl 21232  df-lpir 21233  df-pid 21247  df-cnfld 21265  df-dsmm 21641  df-frlm 21656  df-uvc 21692  df-lindf 21715  df-linds 21716  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-evls1 22202  df-evl1 22203  df-mdeg 25960  df-deg1 25961  df-mon1 26036  df-uc1p 26037  df-q1p 26038  df-r1p 26039  df-ig1p 26040  df-fldgen 33261  df-mxidl 33431  df-dim 33595  df-fldext 33637  df-extdg 33638  df-irng 33679  df-minply 33690
This theorem is referenced by:  constrelextdg2  33737
  Copyright terms: Public domain W3C validator