| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rtelextdg2 | Structured version Visualization version GIF version | ||
| Description: If an element 𝑋 is a solution of a quadratic equation, then it is either in the base field, or the degree of its field extension is exactly 2. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
| Ref | Expression |
|---|---|
| rtelextdg2.1 | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
| rtelextdg2.2 | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
| rtelextdg2.3 | ⊢ 0 = (0g‘𝐸) |
| rtelextdg2.4 | ⊢ 𝑃 = (Poly1‘𝐾) |
| rtelextdg2.5 | ⊢ 𝑉 = (Base‘𝐸) |
| rtelextdg2.6 | ⊢ · = (.r‘𝐸) |
| rtelextdg2.7 | ⊢ + = (+g‘𝐸) |
| rtelextdg2.8 | ⊢ ↑ = (.g‘(mulGrp‘𝐸)) |
| rtelextdg2.9 | ⊢ (𝜑 → 𝐸 ∈ Field) |
| rtelextdg2.10 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| rtelextdg2.11 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| rtelextdg2.12 | ⊢ (𝜑 → 𝐴 ∈ 𝐹) |
| rtelextdg2.13 | ⊢ (𝜑 → 𝐵 ∈ 𝐹) |
| rtelextdg2.14 | ⊢ (𝜑 → ((2 ↑ 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 ) |
| Ref | Expression |
|---|---|
| rtelextdg2 | ⊢ (𝜑 → (𝑋 ∈ 𝐹 ∨ (𝐿[:]𝐾) = 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rtelextdg2.5 | . . . . . 6 ⊢ 𝑉 = (Base‘𝐸) | |
| 2 | rtelextdg2.9 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 3 | 2 | flddrngd 20650 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
| 4 | rtelextdg2.10 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 5 | 1 | sdrgss 20702 | . . . . . . . 8 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ⊆ 𝑉) |
| 6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ⊆ 𝑉) |
| 7 | rtelextdg2.11 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 8 | 7 | snssd 4773 | . . . . . . 7 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
| 9 | 6, 8 | unssd 4155 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∪ {𝑋}) ⊆ 𝑉) |
| 10 | 1, 3, 9 | fldgenssid 33263 | . . . . 5 ⊢ (𝜑 → (𝐹 ∪ {𝑋}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
| 11 | ssun2 4142 | . . . . . 6 ⊢ {𝑋} ⊆ (𝐹 ∪ {𝑋}) | |
| 12 | snidg 4624 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) | |
| 13 | 7, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ {𝑋}) |
| 14 | 11, 13 | sselid 3944 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝐹 ∪ {𝑋})) |
| 15 | 10, 14 | sseldd 3947 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝑋 ∈ (𝐸 fldGen (𝐹 ∪ {𝑋}))) |
| 17 | rtelextdg2.1 | . . . . . . 7 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
| 18 | rtelextdg2.2 | . . . . . . 7 ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝑋}))) | |
| 19 | 1, 17, 18, 2, 4, 8 | fldgenfldext 33663 | . . . . . 6 ⊢ (𝜑 → 𝐿/FldExt𝐾) |
| 20 | extdg1id 33661 | . . . . . 6 ⊢ ((𝐿/FldExt𝐾 ∧ (𝐿[:]𝐾) = 1) → 𝐿 = 𝐾) | |
| 21 | 19, 20 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝐿 = 𝐾) |
| 22 | 21 | fveq2d 6862 | . . . 4 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (Base‘𝐿) = (Base‘𝐾)) |
| 23 | 1, 3, 9 | fldgenssv 33265 | . . . . . 6 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝑋})) ⊆ 𝑉) |
| 24 | 18, 1 | ressbas2 17208 | . . . . . 6 ⊢ ((𝐸 fldGen (𝐹 ∪ {𝑋})) ⊆ 𝑉 → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿)) |
| 25 | 23, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿)) |
| 26 | 25 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿)) |
| 27 | 17, 1 | ressbas2 17208 | . . . . . 6 ⊢ (𝐹 ⊆ 𝑉 → 𝐹 = (Base‘𝐾)) |
| 28 | 6, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 = (Base‘𝐾)) |
| 29 | 28 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝐹 = (Base‘𝐾)) |
| 30 | 22, 26, 29 | 3eqtr4d 2774 | . . 3 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (𝐸 fldGen (𝐹 ∪ {𝑋})) = 𝐹) |
| 31 | 16, 30 | eleqtrd 2830 | . 2 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝑋 ∈ 𝐹) |
| 32 | simpr 484 | . 2 ⊢ ((𝜑 ∧ (𝐿[:]𝐾) = 2) → (𝐿[:]𝐾) = 2) | |
| 33 | 1zzd 12564 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 34 | 2z 12565 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 35 | 34 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℤ) |
| 36 | extdgcl 33652 | . . . . . . . 8 ⊢ (𝐿/FldExt𝐾 → (𝐿[:]𝐾) ∈ ℕ0*) | |
| 37 | 19, 36 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ ℕ0*) |
| 38 | 2nn0 12459 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
| 39 | 38 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 ∈ ℕ0) |
| 40 | rtelextdg2.3 | . . . . . . . 8 ⊢ 0 = (0g‘𝐸) | |
| 41 | rtelextdg2.4 | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘𝐾) | |
| 42 | rtelextdg2.6 | . . . . . . . 8 ⊢ · = (.r‘𝐸) | |
| 43 | rtelextdg2.7 | . . . . . . . 8 ⊢ + = (+g‘𝐸) | |
| 44 | rtelextdg2.8 | . . . . . . . 8 ⊢ ↑ = (.g‘(mulGrp‘𝐸)) | |
| 45 | rtelextdg2.12 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝐹) | |
| 46 | rtelextdg2.13 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ 𝐹) | |
| 47 | rtelextdg2.14 | . . . . . . . 8 ⊢ (𝜑 → ((2 ↑ 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 ) | |
| 48 | eqid 2729 | . . . . . . . 8 ⊢ (var1‘𝐾) = (var1‘𝐾) | |
| 49 | eqid 2729 | . . . . . . . 8 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
| 50 | eqid 2729 | . . . . . . . 8 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
| 51 | eqid 2729 | . . . . . . . 8 ⊢ (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃)) | |
| 52 | eqid 2729 | . . . . . . . 8 ⊢ (algSc‘𝑃) = (algSc‘𝑃) | |
| 53 | eqid 2729 | . . . . . . . 8 ⊢ ((2(.g‘(mulGrp‘𝑃))(var1‘𝐾))(+g‘𝑃)((((algSc‘𝑃)‘𝐴)(.r‘𝑃)(var1‘𝐾))(+g‘𝑃)((algSc‘𝑃)‘𝐵))) = ((2(.g‘(mulGrp‘𝑃))(var1‘𝐾))(+g‘𝑃)((((algSc‘𝑃)‘𝐴)(.r‘𝑃)(var1‘𝐾))(+g‘𝑃)((algSc‘𝑃)‘𝐵))) | |
| 54 | 17, 18, 40, 41, 1, 42, 43, 44, 2, 4, 7, 45, 46, 47, 48, 49, 50, 51, 52, 53 | rtelextdg2lem 33716 | . . . . . . 7 ⊢ (𝜑 → (𝐿[:]𝐾) ≤ 2) |
| 55 | xnn0lenn0nn0 13205 | . . . . . . 7 ⊢ (((𝐿[:]𝐾) ∈ ℕ0* ∧ 2 ∈ ℕ0 ∧ (𝐿[:]𝐾) ≤ 2) → (𝐿[:]𝐾) ∈ ℕ0) | |
| 56 | 37, 39, 54, 55 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ ℕ0) |
| 57 | 56 | nn0zd 12555 | . . . . 5 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ ℤ) |
| 58 | extdggt0 33653 | . . . . . . 7 ⊢ (𝐿/FldExt𝐾 → 0 < (𝐿[:]𝐾)) | |
| 59 | 19, 58 | syl 17 | . . . . . 6 ⊢ (𝜑 → 0 < (𝐿[:]𝐾)) |
| 60 | zgt0ge1 12588 | . . . . . . 7 ⊢ ((𝐿[:]𝐾) ∈ ℤ → (0 < (𝐿[:]𝐾) ↔ 1 ≤ (𝐿[:]𝐾))) | |
| 61 | 60 | biimpa 476 | . . . . . 6 ⊢ (((𝐿[:]𝐾) ∈ ℤ ∧ 0 < (𝐿[:]𝐾)) → 1 ≤ (𝐿[:]𝐾)) |
| 62 | 57, 59, 61 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 1 ≤ (𝐿[:]𝐾)) |
| 63 | 33, 35, 57, 62, 54 | elfzd 13476 | . . . 4 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ (1...2)) |
| 64 | fz12pr 13542 | . . . 4 ⊢ (1...2) = {1, 2} | |
| 65 | 63, 64 | eleqtrdi 2838 | . . 3 ⊢ (𝜑 → (𝐿[:]𝐾) ∈ {1, 2}) |
| 66 | elpri 4613 | . . 3 ⊢ ((𝐿[:]𝐾) ∈ {1, 2} → ((𝐿[:]𝐾) = 1 ∨ (𝐿[:]𝐾) = 2)) | |
| 67 | 65, 66 | syl 17 | . 2 ⊢ (𝜑 → ((𝐿[:]𝐾) = 1 ∨ (𝐿[:]𝐾) = 2)) |
| 68 | 31, 32, 67 | orim12da 32387 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝐹 ∨ (𝐿[:]𝐾) = 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cun 3912 ⊆ wss 3914 {csn 4589 {cpr 4591 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 < clt 11208 ≤ cle 11209 2c2 12241 ℕ0cn0 12442 ℕ0*cxnn0 12515 ℤcz 12529 ...cfz 13468 Basecbs 17179 ↾s cress 17200 +gcplusg 17220 .rcmulr 17221 0gc0g 17402 .gcmg 18999 mulGrpcmgp 20049 Fieldcfield 20639 SubDRingcsdrg 20695 algSccascl 21761 var1cv1 22060 Poly1cpl1 22061 fldGen cfldgen 33260 /FldExtcfldext 33634 [:]cextdg 33636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 ax-ac2 10416 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-rpss 7699 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-ec 8673 df-qs 8677 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-inf 9394 df-oi 9463 df-r1 9717 df-rank 9718 df-dju 9854 df-card 9892 df-acn 9895 df-ac 10069 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-ico 13312 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ocomp 17241 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-imas 17471 df-qus 17472 df-mre 17547 df-mrc 17548 df-mri 17549 df-acs 17550 df-proset 18255 df-drs 18256 df-poset 18274 df-ipo 18487 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-nsg 19056 df-eqg 19057 df-ghm 19145 df-gim 19191 df-cntz 19249 df-oppg 19278 df-lsm 19566 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-srg 20096 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-irred 20268 df-invr 20297 df-dvr 20310 df-rhm 20381 df-nzr 20422 df-subrng 20455 df-subrg 20479 df-rlreg 20603 df-domn 20604 df-idom 20605 df-drng 20640 df-field 20641 df-sdrg 20696 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lmhm 20929 df-lmim 20930 df-lmic 20931 df-lbs 20982 df-lvec 21010 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-rsp 21119 df-2idl 21160 df-lpidl 21232 df-lpir 21233 df-pid 21247 df-cnfld 21265 df-dsmm 21641 df-frlm 21656 df-uvc 21692 df-lindf 21715 df-linds 21716 df-assa 21762 df-asp 21763 df-ascl 21764 df-psr 21818 df-mvr 21819 df-mpl 21820 df-opsr 21822 df-evls 21981 df-evl 21982 df-psr1 22064 df-vr1 22065 df-ply1 22066 df-coe1 22067 df-evls1 22202 df-evl1 22203 df-mdeg 25960 df-deg1 25961 df-mon1 26036 df-uc1p 26037 df-q1p 26038 df-r1p 26039 df-ig1p 26040 df-fldgen 33261 df-mxidl 33431 df-dim 33595 df-fldext 33637 df-extdg 33638 df-irng 33679 df-minply 33690 |
| This theorem is referenced by: constrelextdg2 33737 |
| Copyright terms: Public domain | W3C validator |