Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rtelextdg2 Structured version   Visualization version   GIF version

Theorem rtelextdg2 33740
Description: If an element 𝑋 is a solution of a quadratic equation, then it is either in the base field, or the degree of its field extension is exactly 2. (Contributed by Thierry Arnoux, 22-Jun-2025.)
Hypotheses
Ref Expression
rtelextdg2.1 𝐾 = (𝐸s 𝐹)
rtelextdg2.2 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝑋})))
rtelextdg2.3 0 = (0g𝐸)
rtelextdg2.4 𝑃 = (Poly1𝐾)
rtelextdg2.5 𝑉 = (Base‘𝐸)
rtelextdg2.6 · = (.r𝐸)
rtelextdg2.7 + = (+g𝐸)
rtelextdg2.8 = (.g‘(mulGrp‘𝐸))
rtelextdg2.9 (𝜑𝐸 ∈ Field)
rtelextdg2.10 (𝜑𝐹 ∈ (SubDRing‘𝐸))
rtelextdg2.11 (𝜑𝑋𝑉)
rtelextdg2.12 (𝜑𝐴𝐹)
rtelextdg2.13 (𝜑𝐵𝐹)
rtelextdg2.14 (𝜑 → ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 )
Assertion
Ref Expression
rtelextdg2 (𝜑 → (𝑋𝐹 ∨ (𝐿[:]𝐾) = 2))

Proof of Theorem rtelextdg2
StepHypRef Expression
1 rtelextdg2.5 . . . . . 6 𝑉 = (Base‘𝐸)
2 rtelextdg2.9 . . . . . . 7 (𝜑𝐸 ∈ Field)
32flddrngd 20656 . . . . . 6 (𝜑𝐸 ∈ DivRing)
4 rtelextdg2.10 . . . . . . . 8 (𝜑𝐹 ∈ (SubDRing‘𝐸))
51sdrgss 20708 . . . . . . . 8 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹𝑉)
64, 5syl 17 . . . . . . 7 (𝜑𝐹𝑉)
7 rtelextdg2.11 . . . . . . . 8 (𝜑𝑋𝑉)
87snssd 4758 . . . . . . 7 (𝜑 → {𝑋} ⊆ 𝑉)
96, 8unssd 4139 . . . . . 6 (𝜑 → (𝐹 ∪ {𝑋}) ⊆ 𝑉)
101, 3, 9fldgenssid 33279 . . . . 5 (𝜑 → (𝐹 ∪ {𝑋}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝑋})))
11 ssun2 4126 . . . . . 6 {𝑋} ⊆ (𝐹 ∪ {𝑋})
12 snidg 4610 . . . . . . 7 (𝑋𝑉𝑋 ∈ {𝑋})
137, 12syl 17 . . . . . 6 (𝜑𝑋 ∈ {𝑋})
1411, 13sselid 3927 . . . . 5 (𝜑𝑋 ∈ (𝐹 ∪ {𝑋}))
1510, 14sseldd 3930 . . . 4 (𝜑𝑋 ∈ (𝐸 fldGen (𝐹 ∪ {𝑋})))
1615adantr 480 . . 3 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝑋 ∈ (𝐸 fldGen (𝐹 ∪ {𝑋})))
17 rtelextdg2.1 . . . . . . 7 𝐾 = (𝐸s 𝐹)
18 rtelextdg2.2 . . . . . . 7 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝑋})))
191, 17, 18, 2, 4, 8fldgenfldext 33681 . . . . . 6 (𝜑𝐿/FldExt𝐾)
20 extdg1id 33679 . . . . . 6 ((𝐿/FldExt𝐾 ∧ (𝐿[:]𝐾) = 1) → 𝐿 = 𝐾)
2119, 20sylan 580 . . . . 5 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝐿 = 𝐾)
2221fveq2d 6826 . . . 4 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (Base‘𝐿) = (Base‘𝐾))
231, 3, 9fldgenssv 33281 . . . . . 6 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝑋})) ⊆ 𝑉)
2418, 1ressbas2 17149 . . . . . 6 ((𝐸 fldGen (𝐹 ∪ {𝑋})) ⊆ 𝑉 → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿))
2523, 24syl 17 . . . . 5 (𝜑 → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿))
2625adantr 480 . . . 4 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (𝐸 fldGen (𝐹 ∪ {𝑋})) = (Base‘𝐿))
2717, 1ressbas2 17149 . . . . . 6 (𝐹𝑉𝐹 = (Base‘𝐾))
286, 27syl 17 . . . . 5 (𝜑𝐹 = (Base‘𝐾))
2928adantr 480 . . . 4 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝐹 = (Base‘𝐾))
3022, 26, 293eqtr4d 2776 . . 3 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → (𝐸 fldGen (𝐹 ∪ {𝑋})) = 𝐹)
3116, 30eleqtrd 2833 . 2 ((𝜑 ∧ (𝐿[:]𝐾) = 1) → 𝑋𝐹)
32 simpr 484 . 2 ((𝜑 ∧ (𝐿[:]𝐾) = 2) → (𝐿[:]𝐾) = 2)
33 1zzd 12503 . . . . 5 (𝜑 → 1 ∈ ℤ)
34 2z 12504 . . . . . 6 2 ∈ ℤ
3534a1i 11 . . . . 5 (𝜑 → 2 ∈ ℤ)
36 extdgcl 33669 . . . . . . . 8 (𝐿/FldExt𝐾 → (𝐿[:]𝐾) ∈ ℕ0*)
3719, 36syl 17 . . . . . . 7 (𝜑 → (𝐿[:]𝐾) ∈ ℕ0*)
38 2nn0 12398 . . . . . . . 8 2 ∈ ℕ0
3938a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℕ0)
40 rtelextdg2.3 . . . . . . . 8 0 = (0g𝐸)
41 rtelextdg2.4 . . . . . . . 8 𝑃 = (Poly1𝐾)
42 rtelextdg2.6 . . . . . . . 8 · = (.r𝐸)
43 rtelextdg2.7 . . . . . . . 8 + = (+g𝐸)
44 rtelextdg2.8 . . . . . . . 8 = (.g‘(mulGrp‘𝐸))
45 rtelextdg2.12 . . . . . . . 8 (𝜑𝐴𝐹)
46 rtelextdg2.13 . . . . . . . 8 (𝜑𝐵𝐹)
47 rtelextdg2.14 . . . . . . . 8 (𝜑 → ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 )
48 eqid 2731 . . . . . . . 8 (var1𝐾) = (var1𝐾)
49 eqid 2731 . . . . . . . 8 (+g𝑃) = (+g𝑃)
50 eqid 2731 . . . . . . . 8 (.r𝑃) = (.r𝑃)
51 eqid 2731 . . . . . . . 8 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
52 eqid 2731 . . . . . . . 8 (algSc‘𝑃) = (algSc‘𝑃)
53 eqid 2731 . . . . . . . 8 ((2(.g‘(mulGrp‘𝑃))(var1𝐾))(+g𝑃)((((algSc‘𝑃)‘𝐴)(.r𝑃)(var1𝐾))(+g𝑃)((algSc‘𝑃)‘𝐵))) = ((2(.g‘(mulGrp‘𝑃))(var1𝐾))(+g𝑃)((((algSc‘𝑃)‘𝐴)(.r𝑃)(var1𝐾))(+g𝑃)((algSc‘𝑃)‘𝐵)))
5417, 18, 40, 41, 1, 42, 43, 44, 2, 4, 7, 45, 46, 47, 48, 49, 50, 51, 52, 53rtelextdg2lem 33739 . . . . . . 7 (𝜑 → (𝐿[:]𝐾) ≤ 2)
55 xnn0lenn0nn0 13144 . . . . . . 7 (((𝐿[:]𝐾) ∈ ℕ0* ∧ 2 ∈ ℕ0 ∧ (𝐿[:]𝐾) ≤ 2) → (𝐿[:]𝐾) ∈ ℕ0)
5637, 39, 54, 55syl3anc 1373 . . . . . 6 (𝜑 → (𝐿[:]𝐾) ∈ ℕ0)
5756nn0zd 12494 . . . . 5 (𝜑 → (𝐿[:]𝐾) ∈ ℤ)
58 extdggt0 33670 . . . . . . 7 (𝐿/FldExt𝐾 → 0 < (𝐿[:]𝐾))
5919, 58syl 17 . . . . . 6 (𝜑 → 0 < (𝐿[:]𝐾))
60 zgt0ge1 12527 . . . . . . 7 ((𝐿[:]𝐾) ∈ ℤ → (0 < (𝐿[:]𝐾) ↔ 1 ≤ (𝐿[:]𝐾)))
6160biimpa 476 . . . . . 6 (((𝐿[:]𝐾) ∈ ℤ ∧ 0 < (𝐿[:]𝐾)) → 1 ≤ (𝐿[:]𝐾))
6257, 59, 61syl2anc 584 . . . . 5 (𝜑 → 1 ≤ (𝐿[:]𝐾))
6333, 35, 57, 62, 54elfzd 13415 . . . 4 (𝜑 → (𝐿[:]𝐾) ∈ (1...2))
64 fz12pr 13481 . . . 4 (1...2) = {1, 2}
6563, 64eleqtrdi 2841 . . 3 (𝜑 → (𝐿[:]𝐾) ∈ {1, 2})
66 elpri 4597 . . 3 ((𝐿[:]𝐾) ∈ {1, 2} → ((𝐿[:]𝐾) = 1 ∨ (𝐿[:]𝐾) = 2))
6765, 66syl 17 . 2 (𝜑 → ((𝐿[:]𝐾) = 1 ∨ (𝐿[:]𝐾) = 2))
6831, 32, 67orim12da 32437 1 (𝜑 → (𝑋𝐹 ∨ (𝐿[:]𝐾) = 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  cun 3895  wss 3897  {csn 4573  {cpr 4575   class class class wbr 5089  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007   < clt 11146  cle 11147  2c2 12180  0cn0 12381  0*cxnn0 12454  cz 12468  ...cfz 13407  Basecbs 17120  s cress 17141  +gcplusg 17161  .rcmulr 17162  0gc0g 17343  .gcmg 18980  mulGrpcmgp 20058  Fieldcfield 20645  SubDRingcsdrg 20701  algSccascl 21789  var1cv1 22088  Poly1cpl1 22089   fldGen cfldgen 33276  /FldExtcfldext 33651  [:]cextdg 33653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-reg 9478  ax-inf2 9531  ax-ac2 10354  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-rpss 7656  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-inf 9327  df-oi 9396  df-r1 9657  df-rank 9658  df-dju 9794  df-card 9832  df-acn 9835  df-ac 10007  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-ico 13251  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ocomp 17182  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-imas 17412  df-qus 17413  df-mre 17488  df-mrc 17489  df-mri 17490  df-acs 17491  df-proset 18200  df-drs 18201  df-poset 18219  df-ipo 18434  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-nsg 19037  df-eqg 19038  df-ghm 19125  df-gim 19171  df-cntz 19229  df-oppg 19258  df-lsm 19548  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-irred 20277  df-invr 20306  df-dvr 20319  df-rhm 20390  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-rlreg 20609  df-domn 20610  df-idom 20611  df-drng 20646  df-field 20647  df-sdrg 20702  df-lmod 20795  df-lss 20865  df-lsp 20905  df-lmhm 20956  df-lmim 20957  df-lmic 20958  df-lbs 21009  df-lvec 21037  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-rsp 21146  df-2idl 21187  df-lpidl 21259  df-lpir 21260  df-pid 21274  df-cnfld 21292  df-dsmm 21669  df-frlm 21684  df-uvc 21720  df-lindf 21743  df-linds 21744  df-assa 21790  df-asp 21791  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-evls 22009  df-evl 22010  df-psr1 22092  df-vr1 22093  df-ply1 22094  df-coe1 22095  df-evls1 22230  df-evl1 22231  df-mdeg 25987  df-deg1 25988  df-mon1 26063  df-uc1p 26064  df-q1p 26065  df-r1p 26066  df-ig1p 26067  df-fldgen 33277  df-mxidl 33425  df-dim 33612  df-fldext 33654  df-extdg 33655  df-irng 33697  df-minply 33713
This theorem is referenced by:  constrelextdg2  33760
  Copyright terms: Public domain W3C validator