Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drngmxidlr Structured version   Visualization version   GIF version

Theorem drngmxidlr 33471
Description: If a ring's only maximal ideal is the zero ideal, it is a division ring. See also drngmxidl 33470. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
drngmxidlr.b 𝐵 = (Base‘𝑅)
drngmxidlr.z 0 = (0g𝑅)
drngmxidlr.u 𝑀 = (MaxIdeal‘𝑅)
drngmxidlr.r (𝜑𝑅 ∈ NzRing)
drngmxidlr.2 (𝜑𝑀 = {{ 0 }})
Assertion
Ref Expression
drngmxidlr (𝜑𝑅 ∈ DivRing)

Proof of Theorem drngmxidlr
Dummy variables 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑖𝑚)
2 simplr 768 . . . . . . . . . . . . 13 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑚 ∈ (MaxIdeal‘𝑅))
3 drngmxidlr.u . . . . . . . . . . . . 13 𝑀 = (MaxIdeal‘𝑅)
42, 3eleqtrrdi 2855 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑚𝑀)
5 drngmxidlr.2 . . . . . . . . . . . . 13 (𝜑𝑀 = {{ 0 }})
65ad4antr 731 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑀 = {{ 0 }})
74, 6eleqtrd 2846 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑚 ∈ {{ 0 }})
8 elsni 4665 . . . . . . . . . . 11 (𝑚 ∈ {{ 0 }} → 𝑚 = { 0 })
97, 8syl 17 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑚 = { 0 })
101, 9sseqtrd 4049 . . . . . . . . 9 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑖 ⊆ { 0 })
11 drngmxidlr.r . . . . . . . . . . . . 13 (𝜑𝑅 ∈ NzRing)
12 nzrring 20542 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
1311, 12syl 17 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
14 eqid 2740 . . . . . . . . . . . . 13 (LIdeal‘𝑅) = (LIdeal‘𝑅)
15 drngmxidlr.z . . . . . . . . . . . . 13 0 = (0g𝑅)
1614, 15lidl0cl 21253 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) → 0𝑖)
1713, 16sylan 579 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → 0𝑖)
1817snssd 4834 . . . . . . . . . 10 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → { 0 } ⊆ 𝑖)
1918ad5ant12 755 . . . . . . . . 9 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → { 0 } ⊆ 𝑖)
2010, 19eqssd 4026 . . . . . . . 8 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑖 = { 0 })
2113ad2antrr 725 . . . . . . . . 9 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) → 𝑅 ∈ Ring)
22 simplr 768 . . . . . . . . 9 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) → 𝑖 ∈ (LIdeal‘𝑅))
23 simpr 484 . . . . . . . . 9 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) → 𝑖𝐵)
24 drngmxidlr.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
2524ssmxidl 33467 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑖𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑖𝑚)
2621, 22, 23, 25syl3anc 1371 . . . . . . . 8 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑖𝑚)
2720, 26r19.29a 3168 . . . . . . 7 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) → 𝑖 = { 0 })
28 simpr 484 . . . . . . 7 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖 = 𝐵) → 𝑖 = 𝐵)
29 exmidne 2956 . . . . . . . . 9 (𝑖 = 𝐵𝑖𝐵)
3029a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → (𝑖 = 𝐵𝑖𝐵))
3130orcomd 870 . . . . . . 7 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → (𝑖𝐵𝑖 = 𝐵))
3227, 28, 31orim12da 32487 . . . . . 6 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → (𝑖 = { 0 } ∨ 𝑖 = 𝐵))
33 vex 3492 . . . . . . 7 𝑖 ∈ V
3433elpr 4672 . . . . . 6 (𝑖 ∈ {{ 0 }, 𝐵} ↔ (𝑖 = { 0 } ∨ 𝑖 = 𝐵))
3532, 34sylibr 234 . . . . 5 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → 𝑖 ∈ {{ 0 }, 𝐵})
3635ex 412 . . . 4 (𝜑 → (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ∈ {{ 0 }, 𝐵}))
3736ssrdv 4014 . . 3 (𝜑 → (LIdeal‘𝑅) ⊆ {{ 0 }, 𝐵})
3814, 15lidl0 21263 . . . . 5 (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅))
3913, 38syl 17 . . . 4 (𝜑 → { 0 } ∈ (LIdeal‘𝑅))
4014, 24lidl1 21266 . . . . 5 (𝑅 ∈ Ring → 𝐵 ∈ (LIdeal‘𝑅))
4113, 40syl 17 . . . 4 (𝜑𝐵 ∈ (LIdeal‘𝑅))
4239, 41prssd 4847 . . 3 (𝜑 → {{ 0 }, 𝐵} ⊆ (LIdeal‘𝑅))
4337, 42eqssd 4026 . 2 (𝜑 → (LIdeal‘𝑅) = {{ 0 }, 𝐵})
4424, 15, 14drngidl 33426 . . 3 (𝑅 ∈ NzRing → (𝑅 ∈ DivRing ↔ (LIdeal‘𝑅) = {{ 0 }, 𝐵}))
4511, 44syl 17 . 2 (𝜑 → (𝑅 ∈ DivRing ↔ (LIdeal‘𝑅) = {{ 0 }, 𝐵}))
4643, 45mpbird 257 1 (𝜑𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wrex 3076  wss 3976  {csn 4648  {cpr 4650  cfv 6573  Basecbs 17258  0gc0g 17499  Ringcrg 20260  NzRingcnzr 20538  DivRingcdr 20751  LIdealclidl 21239  MaxIdealcmxidl 33452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-rpss 7758  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-nzr 20539  df-subrg 20597  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-mxidl 33453
This theorem is referenced by:  krullndrng  33474
  Copyright terms: Public domain W3C validator