| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖 ≠ 𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖 ⊆ 𝑚) → 𝑖 ⊆ 𝑚) |
| 2 | | simplr 768 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖 ≠ 𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖 ⊆ 𝑚) → 𝑚 ∈ (MaxIdeal‘𝑅)) |
| 3 | | drngmxidlr.u |
. . . . . . . . . . . . 13
⊢ 𝑀 = (MaxIdeal‘𝑅) |
| 4 | 2, 3 | eleqtrrdi 2846 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖 ≠ 𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖 ⊆ 𝑚) → 𝑚 ∈ 𝑀) |
| 5 | | drngmxidlr.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 = {{ 0 }}) |
| 6 | 5 | ad4antr 732 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖 ≠ 𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖 ⊆ 𝑚) → 𝑀 = {{ 0 }}) |
| 7 | 4, 6 | eleqtrd 2837 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖 ≠ 𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖 ⊆ 𝑚) → 𝑚 ∈ {{ 0 }}) |
| 8 | | elsni 4623 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ {{ 0 }} → 𝑚 = { 0 }) |
| 9 | 7, 8 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖 ≠ 𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖 ⊆ 𝑚) → 𝑚 = { 0 }) |
| 10 | 1, 9 | sseqtrd 4000 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖 ≠ 𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖 ⊆ 𝑚) → 𝑖 ⊆ { 0 }) |
| 11 | | drngmxidlr.r |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈ NzRing) |
| 12 | | nzrring 20481 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| 13 | 11, 12 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 14 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
| 15 | | drngmxidlr.z |
. . . . . . . . . . . . 13
⊢ 0 =
(0g‘𝑅) |
| 16 | 14, 15 | lidl0cl 21186 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) → 0 ∈ 𝑖) |
| 17 | 13, 16 | sylan 580 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (LIdeal‘𝑅)) → 0 ∈ 𝑖) |
| 18 | 17 | snssd 4790 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (LIdeal‘𝑅)) → { 0 } ⊆ 𝑖) |
| 19 | 18 | ad3antrrr 730 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖 ≠ 𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖 ⊆ 𝑚) → { 0 } ⊆ 𝑖) |
| 20 | 10, 19 | eqssd 3981 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖 ≠ 𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖 ⊆ 𝑚) → 𝑖 = { 0 }) |
| 21 | 13 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖 ≠ 𝐵) → 𝑅 ∈ Ring) |
| 22 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖 ≠ 𝐵) → 𝑖 ∈ (LIdeal‘𝑅)) |
| 23 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖 ≠ 𝐵) → 𝑖 ≠ 𝐵) |
| 24 | | drngmxidlr.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑅) |
| 25 | 24 | ssmxidl 33494 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑖 ≠ 𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑖 ⊆ 𝑚) |
| 26 | 21, 22, 23, 25 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖 ≠ 𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑖 ⊆ 𝑚) |
| 27 | 20, 26 | r19.29a 3149 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖 ≠ 𝐵) → 𝑖 = { 0 }) |
| 28 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖 = 𝐵) → 𝑖 = 𝐵) |
| 29 | | exmidne 2943 |
. . . . . . . . 9
⊢ (𝑖 = 𝐵 ∨ 𝑖 ≠ 𝐵) |
| 30 | 29 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (LIdeal‘𝑅)) → (𝑖 = 𝐵 ∨ 𝑖 ≠ 𝐵)) |
| 31 | 30 | orcomd 871 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (LIdeal‘𝑅)) → (𝑖 ≠ 𝐵 ∨ 𝑖 = 𝐵)) |
| 32 | 27, 28, 31 | orim12da 32444 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (LIdeal‘𝑅)) → (𝑖 = { 0 } ∨ 𝑖 = 𝐵)) |
| 33 | | vex 3468 |
. . . . . . 7
⊢ 𝑖 ∈ V |
| 34 | 33 | elpr 4631 |
. . . . . 6
⊢ (𝑖 ∈ {{ 0 }, 𝐵} ↔ (𝑖 = { 0 } ∨ 𝑖 = 𝐵)) |
| 35 | 32, 34 | sylibr 234 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (LIdeal‘𝑅)) → 𝑖 ∈ {{ 0 }, 𝐵}) |
| 36 | 35 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ∈ {{ 0 }, 𝐵})) |
| 37 | 36 | ssrdv 3969 |
. . 3
⊢ (𝜑 → (LIdeal‘𝑅) ⊆ {{ 0 }, 𝐵}) |
| 38 | 14, 15 | lidl0 21196 |
. . . . 5
⊢ (𝑅 ∈ Ring → { 0 } ∈
(LIdeal‘𝑅)) |
| 39 | 13, 38 | syl 17 |
. . . 4
⊢ (𝜑 → { 0 } ∈
(LIdeal‘𝑅)) |
| 40 | 14, 24 | lidl1 21199 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝐵 ∈ (LIdeal‘𝑅)) |
| 41 | 13, 40 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ (LIdeal‘𝑅)) |
| 42 | 39, 41 | prssd 4803 |
. . 3
⊢ (𝜑 → {{ 0 }, 𝐵} ⊆ (LIdeal‘𝑅)) |
| 43 | 37, 42 | eqssd 3981 |
. 2
⊢ (𝜑 → (LIdeal‘𝑅) = {{ 0 }, 𝐵}) |
| 44 | 24, 15, 14 | drngidl 33453 |
. . 3
⊢ (𝑅 ∈ NzRing → (𝑅 ∈ DivRing ↔
(LIdeal‘𝑅) = {{ 0 }, 𝐵})) |
| 45 | 11, 44 | syl 17 |
. 2
⊢ (𝜑 → (𝑅 ∈ DivRing ↔ (LIdeal‘𝑅) = {{ 0 }, 𝐵})) |
| 46 | 43, 45 | mpbird 257 |
1
⊢ (𝜑 → 𝑅 ∈ DivRing) |