Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drngmxidlr Structured version   Visualization version   GIF version

Theorem drngmxidlr 33425
Description: If a ring's only maximal ideal is the zero ideal, it is a division ring. See also drngmxidl 33424. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
drngmxidlr.b 𝐵 = (Base‘𝑅)
drngmxidlr.z 0 = (0g𝑅)
drngmxidlr.u 𝑀 = (MaxIdeal‘𝑅)
drngmxidlr.r (𝜑𝑅 ∈ NzRing)
drngmxidlr.2 (𝜑𝑀 = {{ 0 }})
Assertion
Ref Expression
drngmxidlr (𝜑𝑅 ∈ DivRing)

Proof of Theorem drngmxidlr
Dummy variables 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑖𝑚)
2 simplr 768 . . . . . . . . . . . . 13 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑚 ∈ (MaxIdeal‘𝑅))
3 drngmxidlr.u . . . . . . . . . . . . 13 𝑀 = (MaxIdeal‘𝑅)
42, 3eleqtrrdi 2839 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑚𝑀)
5 drngmxidlr.2 . . . . . . . . . . . . 13 (𝜑𝑀 = {{ 0 }})
65ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑀 = {{ 0 }})
74, 6eleqtrd 2830 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑚 ∈ {{ 0 }})
8 elsni 4596 . . . . . . . . . . 11 (𝑚 ∈ {{ 0 }} → 𝑚 = { 0 })
97, 8syl 17 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑚 = { 0 })
101, 9sseqtrd 3974 . . . . . . . . 9 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑖 ⊆ { 0 })
11 drngmxidlr.r . . . . . . . . . . . . 13 (𝜑𝑅 ∈ NzRing)
12 nzrring 20419 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
1311, 12syl 17 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
14 eqid 2729 . . . . . . . . . . . . 13 (LIdeal‘𝑅) = (LIdeal‘𝑅)
15 drngmxidlr.z . . . . . . . . . . . . 13 0 = (0g𝑅)
1614, 15lidl0cl 21145 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) → 0𝑖)
1713, 16sylan 580 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → 0𝑖)
1817snssd 4763 . . . . . . . . . 10 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → { 0 } ⊆ 𝑖)
1918ad3antrrr 730 . . . . . . . . 9 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → { 0 } ⊆ 𝑖)
2010, 19eqssd 3955 . . . . . . . 8 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑖 = { 0 })
2113ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) → 𝑅 ∈ Ring)
22 simplr 768 . . . . . . . . 9 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) → 𝑖 ∈ (LIdeal‘𝑅))
23 simpr 484 . . . . . . . . 9 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) → 𝑖𝐵)
24 drngmxidlr.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
2524ssmxidl 33421 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑖𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑖𝑚)
2621, 22, 23, 25syl3anc 1373 . . . . . . . 8 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑖𝑚)
2720, 26r19.29a 3137 . . . . . . 7 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) → 𝑖 = { 0 })
28 simpr 484 . . . . . . 7 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖 = 𝐵) → 𝑖 = 𝐵)
29 exmidne 2935 . . . . . . . . 9 (𝑖 = 𝐵𝑖𝐵)
3029a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → (𝑖 = 𝐵𝑖𝐵))
3130orcomd 871 . . . . . . 7 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → (𝑖𝐵𝑖 = 𝐵))
3227, 28, 31orim12da 32420 . . . . . 6 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → (𝑖 = { 0 } ∨ 𝑖 = 𝐵))
33 vex 3442 . . . . . . 7 𝑖 ∈ V
3433elpr 4604 . . . . . 6 (𝑖 ∈ {{ 0 }, 𝐵} ↔ (𝑖 = { 0 } ∨ 𝑖 = 𝐵))
3532, 34sylibr 234 . . . . 5 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → 𝑖 ∈ {{ 0 }, 𝐵})
3635ex 412 . . . 4 (𝜑 → (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ∈ {{ 0 }, 𝐵}))
3736ssrdv 3943 . . 3 (𝜑 → (LIdeal‘𝑅) ⊆ {{ 0 }, 𝐵})
3814, 15lidl0 21155 . . . . 5 (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅))
3913, 38syl 17 . . . 4 (𝜑 → { 0 } ∈ (LIdeal‘𝑅))
4014, 24lidl1 21158 . . . . 5 (𝑅 ∈ Ring → 𝐵 ∈ (LIdeal‘𝑅))
4113, 40syl 17 . . . 4 (𝜑𝐵 ∈ (LIdeal‘𝑅))
4239, 41prssd 4776 . . 3 (𝜑 → {{ 0 }, 𝐵} ⊆ (LIdeal‘𝑅))
4337, 42eqssd 3955 . 2 (𝜑 → (LIdeal‘𝑅) = {{ 0 }, 𝐵})
4424, 15, 14drngidl 33380 . . 3 (𝑅 ∈ NzRing → (𝑅 ∈ DivRing ↔ (LIdeal‘𝑅) = {{ 0 }, 𝐵}))
4511, 44syl 17 . 2 (𝜑 → (𝑅 ∈ DivRing ↔ (LIdeal‘𝑅) = {{ 0 }, 𝐵}))
4643, 45mpbird 257 1 (𝜑𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wrex 3053  wss 3905  {csn 4579  {cpr 4581  cfv 6486  Basecbs 17138  0gc0g 17361  Ringcrg 20136  NzRingcnzr 20415  DivRingcdr 20632  LIdealclidl 21131  MaxIdealcmxidl 33406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-rpss 7663  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-nzr 20416  df-subrg 20473  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-rsp 21134  df-mxidl 33407
This theorem is referenced by:  krullndrng  33428
  Copyright terms: Public domain W3C validator