Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drngmxidlr Structured version   Visualization version   GIF version

Theorem drngmxidlr 33486
Description: If a ring's only maximal ideal is the zero ideal, it is a division ring. See also drngmxidl 33485. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
drngmxidlr.b 𝐵 = (Base‘𝑅)
drngmxidlr.z 0 = (0g𝑅)
drngmxidlr.u 𝑀 = (MaxIdeal‘𝑅)
drngmxidlr.r (𝜑𝑅 ∈ NzRing)
drngmxidlr.2 (𝜑𝑀 = {{ 0 }})
Assertion
Ref Expression
drngmxidlr (𝜑𝑅 ∈ DivRing)

Proof of Theorem drngmxidlr
Dummy variables 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑖𝑚)
2 simplr 769 . . . . . . . . . . . . 13 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑚 ∈ (MaxIdeal‘𝑅))
3 drngmxidlr.u . . . . . . . . . . . . 13 𝑀 = (MaxIdeal‘𝑅)
42, 3eleqtrrdi 2850 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑚𝑀)
5 drngmxidlr.2 . . . . . . . . . . . . 13 (𝜑𝑀 = {{ 0 }})
65ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑀 = {{ 0 }})
74, 6eleqtrd 2841 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑚 ∈ {{ 0 }})
8 elsni 4648 . . . . . . . . . . 11 (𝑚 ∈ {{ 0 }} → 𝑚 = { 0 })
97, 8syl 17 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑚 = { 0 })
101, 9sseqtrd 4036 . . . . . . . . 9 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑖 ⊆ { 0 })
11 drngmxidlr.r . . . . . . . . . . . . 13 (𝜑𝑅 ∈ NzRing)
12 nzrring 20533 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
1311, 12syl 17 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
14 eqid 2735 . . . . . . . . . . . . 13 (LIdeal‘𝑅) = (LIdeal‘𝑅)
15 drngmxidlr.z . . . . . . . . . . . . 13 0 = (0g𝑅)
1614, 15lidl0cl 21248 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) → 0𝑖)
1713, 16sylan 580 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → 0𝑖)
1817snssd 4814 . . . . . . . . . 10 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → { 0 } ⊆ 𝑖)
1918ad5ant12 756 . . . . . . . . 9 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → { 0 } ⊆ 𝑖)
2010, 19eqssd 4013 . . . . . . . 8 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑖 = { 0 })
2113ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) → 𝑅 ∈ Ring)
22 simplr 769 . . . . . . . . 9 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) → 𝑖 ∈ (LIdeal‘𝑅))
23 simpr 484 . . . . . . . . 9 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) → 𝑖𝐵)
24 drngmxidlr.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
2524ssmxidl 33482 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑖𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑖𝑚)
2621, 22, 23, 25syl3anc 1370 . . . . . . . 8 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑖𝑚)
2720, 26r19.29a 3160 . . . . . . 7 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) → 𝑖 = { 0 })
28 simpr 484 . . . . . . 7 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖 = 𝐵) → 𝑖 = 𝐵)
29 exmidne 2948 . . . . . . . . 9 (𝑖 = 𝐵𝑖𝐵)
3029a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → (𝑖 = 𝐵𝑖𝐵))
3130orcomd 871 . . . . . . 7 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → (𝑖𝐵𝑖 = 𝐵))
3227, 28, 31orim12da 32487 . . . . . 6 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → (𝑖 = { 0 } ∨ 𝑖 = 𝐵))
33 vex 3482 . . . . . . 7 𝑖 ∈ V
3433elpr 4655 . . . . . 6 (𝑖 ∈ {{ 0 }, 𝐵} ↔ (𝑖 = { 0 } ∨ 𝑖 = 𝐵))
3532, 34sylibr 234 . . . . 5 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → 𝑖 ∈ {{ 0 }, 𝐵})
3635ex 412 . . . 4 (𝜑 → (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ∈ {{ 0 }, 𝐵}))
3736ssrdv 4001 . . 3 (𝜑 → (LIdeal‘𝑅) ⊆ {{ 0 }, 𝐵})
3814, 15lidl0 21258 . . . . 5 (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅))
3913, 38syl 17 . . . 4 (𝜑 → { 0 } ∈ (LIdeal‘𝑅))
4014, 24lidl1 21261 . . . . 5 (𝑅 ∈ Ring → 𝐵 ∈ (LIdeal‘𝑅))
4113, 40syl 17 . . . 4 (𝜑𝐵 ∈ (LIdeal‘𝑅))
4239, 41prssd 4827 . . 3 (𝜑 → {{ 0 }, 𝐵} ⊆ (LIdeal‘𝑅))
4337, 42eqssd 4013 . 2 (𝜑 → (LIdeal‘𝑅) = {{ 0 }, 𝐵})
4424, 15, 14drngidl 33441 . . 3 (𝑅 ∈ NzRing → (𝑅 ∈ DivRing ↔ (LIdeal‘𝑅) = {{ 0 }, 𝐵}))
4511, 44syl 17 . 2 (𝜑 → (𝑅 ∈ DivRing ↔ (LIdeal‘𝑅) = {{ 0 }, 𝐵}))
4643, 45mpbird 257 1 (𝜑𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  wrex 3068  wss 3963  {csn 4631  {cpr 4633  cfv 6563  Basecbs 17245  0gc0g 17486  Ringcrg 20251  NzRingcnzr 20529  DivRingcdr 20746  LIdealclidl 21234  MaxIdealcmxidl 33467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-rpss 7742  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-nzr 20530  df-subrg 20587  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-mxidl 33468
This theorem is referenced by:  krullndrng  33489
  Copyright terms: Public domain W3C validator