Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drngmxidlr Structured version   Visualization version   GIF version

Theorem drngmxidlr 33450
Description: If a ring's only maximal ideal is the zero ideal, it is a division ring. See also drngmxidl 33449. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
drngmxidlr.b 𝐵 = (Base‘𝑅)
drngmxidlr.z 0 = (0g𝑅)
drngmxidlr.u 𝑀 = (MaxIdeal‘𝑅)
drngmxidlr.r (𝜑𝑅 ∈ NzRing)
drngmxidlr.2 (𝜑𝑀 = {{ 0 }})
Assertion
Ref Expression
drngmxidlr (𝜑𝑅 ∈ DivRing)

Proof of Theorem drngmxidlr
Dummy variables 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑖𝑚)
2 simplr 768 . . . . . . . . . . . . 13 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑚 ∈ (MaxIdeal‘𝑅))
3 drngmxidlr.u . . . . . . . . . . . . 13 𝑀 = (MaxIdeal‘𝑅)
42, 3eleqtrrdi 2844 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑚𝑀)
5 drngmxidlr.2 . . . . . . . . . . . . 13 (𝜑𝑀 = {{ 0 }})
65ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑀 = {{ 0 }})
74, 6eleqtrd 2835 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑚 ∈ {{ 0 }})
8 elsni 4592 . . . . . . . . . . 11 (𝑚 ∈ {{ 0 }} → 𝑚 = { 0 })
97, 8syl 17 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑚 = { 0 })
101, 9sseqtrd 3967 . . . . . . . . 9 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑖 ⊆ { 0 })
11 drngmxidlr.r . . . . . . . . . . . . 13 (𝜑𝑅 ∈ NzRing)
12 nzrring 20433 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
1311, 12syl 17 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
14 eqid 2733 . . . . . . . . . . . . 13 (LIdeal‘𝑅) = (LIdeal‘𝑅)
15 drngmxidlr.z . . . . . . . . . . . . 13 0 = (0g𝑅)
1614, 15lidl0cl 21159 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) → 0𝑖)
1713, 16sylan 580 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → 0𝑖)
1817snssd 4760 . . . . . . . . . 10 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → { 0 } ⊆ 𝑖)
1918ad3antrrr 730 . . . . . . . . 9 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → { 0 } ⊆ 𝑖)
2010, 19eqssd 3948 . . . . . . . 8 (((((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑖𝑚) → 𝑖 = { 0 })
2113ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) → 𝑅 ∈ Ring)
22 simplr 768 . . . . . . . . 9 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) → 𝑖 ∈ (LIdeal‘𝑅))
23 simpr 484 . . . . . . . . 9 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) → 𝑖𝐵)
24 drngmxidlr.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
2524ssmxidl 33446 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑖𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑖𝑚)
2621, 22, 23, 25syl3anc 1373 . . . . . . . 8 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑖𝑚)
2720, 26r19.29a 3141 . . . . . . 7 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖𝐵) → 𝑖 = { 0 })
28 simpr 484 . . . . . . 7 (((𝜑𝑖 ∈ (LIdeal‘𝑅)) ∧ 𝑖 = 𝐵) → 𝑖 = 𝐵)
29 exmidne 2939 . . . . . . . . 9 (𝑖 = 𝐵𝑖𝐵)
3029a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → (𝑖 = 𝐵𝑖𝐵))
3130orcomd 871 . . . . . . 7 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → (𝑖𝐵𝑖 = 𝐵))
3227, 28, 31orim12da 32439 . . . . . 6 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → (𝑖 = { 0 } ∨ 𝑖 = 𝐵))
33 vex 3441 . . . . . . 7 𝑖 ∈ V
3433elpr 4600 . . . . . 6 (𝑖 ∈ {{ 0 }, 𝐵} ↔ (𝑖 = { 0 } ∨ 𝑖 = 𝐵))
3532, 34sylibr 234 . . . . 5 ((𝜑𝑖 ∈ (LIdeal‘𝑅)) → 𝑖 ∈ {{ 0 }, 𝐵})
3635ex 412 . . . 4 (𝜑 → (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ∈ {{ 0 }, 𝐵}))
3736ssrdv 3936 . . 3 (𝜑 → (LIdeal‘𝑅) ⊆ {{ 0 }, 𝐵})
3814, 15lidl0 21169 . . . . 5 (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅))
3913, 38syl 17 . . . 4 (𝜑 → { 0 } ∈ (LIdeal‘𝑅))
4014, 24lidl1 21172 . . . . 5 (𝑅 ∈ Ring → 𝐵 ∈ (LIdeal‘𝑅))
4113, 40syl 17 . . . 4 (𝜑𝐵 ∈ (LIdeal‘𝑅))
4239, 41prssd 4773 . . 3 (𝜑 → {{ 0 }, 𝐵} ⊆ (LIdeal‘𝑅))
4337, 42eqssd 3948 . 2 (𝜑 → (LIdeal‘𝑅) = {{ 0 }, 𝐵})
4424, 15, 14drngidl 33405 . . 3 (𝑅 ∈ NzRing → (𝑅 ∈ DivRing ↔ (LIdeal‘𝑅) = {{ 0 }, 𝐵}))
4511, 44syl 17 . 2 (𝜑 → (𝑅 ∈ DivRing ↔ (LIdeal‘𝑅) = {{ 0 }, 𝐵}))
4643, 45mpbird 257 1 (𝜑𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2929  wrex 3057  wss 3898  {csn 4575  {cpr 4577  cfv 6486  Basecbs 17122  0gc0g 17345  Ringcrg 20153  NzRingcnzr 20429  DivRingcdr 20646  LIdealclidl 21145  MaxIdealcmxidl 33431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-ac2 10361  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-rpss 7662  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9801  df-card 9839  df-ac 10014  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-nzr 20430  df-subrg 20487  df-drng 20648  df-lmod 20797  df-lss 20867  df-lsp 20907  df-sra 21109  df-rgmod 21110  df-lidl 21147  df-rsp 21148  df-mxidl 33432
This theorem is referenced by:  krullndrng  33453
  Copyright terms: Public domain W3C validator