Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmdvdsprod Structured version   Visualization version   GIF version

Theorem rprmdvdsprod 33409
Description: If a prime element 𝑄 divides a product, then it divides one term. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmdvdsprod.b 𝐵 = (Base‘𝑅)
rprmdvdsprod.p 𝑃 = (RPrime‘𝑅)
rprmdvdsprod.d = (∥r𝑅)
rprmdvdsprod.1 1 = (1r𝑅)
rprmdvdsprod.m 𝑀 = (mulGrp‘𝑅)
rprmdvdsprod.r (𝜑𝑅 ∈ CRing)
rprmdvdsprod.q (𝜑𝑄𝑃)
rprmdvdsprod.i (𝜑𝐼𝑉)
rprmdvdsprod.2 (𝜑𝐹 finSupp 1 )
rprmdvdsprod.f (𝜑𝐹:𝐼𝐵)
rprmdvdsprod.3 (𝜑𝑄 (𝑀 Σg 𝐹))
Assertion
Ref Expression
rprmdvdsprod (𝜑 → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥))
Distinct variable groups:   𝑥, 1   𝑥,   𝑥,𝐹   𝑥,𝑄   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑃(𝑥)   𝑅(𝑥)   𝐼(𝑥)   𝑀(𝑥)   𝑉(𝑥)

Proof of Theorem rprmdvdsprod
Dummy variables 𝑎 𝑏 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rprmdvdsprod.3 . . 3 (𝜑𝑄 (𝑀 Σg 𝐹))
2 rprmdvdsprod.m . . . . . 6 𝑀 = (mulGrp‘𝑅)
3 rprmdvdsprod.b . . . . . 6 𝐵 = (Base‘𝑅)
42, 3mgpbas 20123 . . . . 5 𝐵 = (Base‘𝑀)
5 rprmdvdsprod.1 . . . . . 6 1 = (1r𝑅)
62, 5ringidval 20166 . . . . 5 1 = (0g𝑀)
7 eqid 2726 . . . . . 6 (.r𝑅) = (.r𝑅)
82, 7mgpplusg 20121 . . . . 5 (.r𝑅) = (+g𝑀)
9 rprmdvdsprod.r . . . . . 6 (𝜑𝑅 ∈ CRing)
102crngmgp 20224 . . . . . 6 (𝑅 ∈ CRing → 𝑀 ∈ CMnd)
119, 10syl 17 . . . . 5 (𝜑𝑀 ∈ CMnd)
12 rprmdvdsprod.i . . . . 5 (𝜑𝐼𝑉)
13 rprmdvdsprod.f . . . . 5 (𝜑𝐹:𝐼𝐵)
14 rprmdvdsprod.2 . . . . 5 (𝜑𝐹 finSupp 1 )
15 disjdifr 4477 . . . . . 6 ((𝐼 ∖ (𝐹 supp 1 )) ∩ (𝐹 supp 1 )) = ∅
1615a1i 11 . . . . 5 (𝜑 → ((𝐼 ∖ (𝐹 supp 1 )) ∩ (𝐹 supp 1 )) = ∅)
17 suppssdm 8191 . . . . . . . 8 (𝐹 supp 1 ) ⊆ dom 𝐹
1817, 13fssdm 6747 . . . . . . 7 (𝜑 → (𝐹 supp 1 ) ⊆ 𝐼)
19 undifr 4487 . . . . . . 7 ((𝐹 supp 1 ) ⊆ 𝐼 ↔ ((𝐼 ∖ (𝐹 supp 1 )) ∪ (𝐹 supp 1 )) = 𝐼)
2018, 19sylib 217 . . . . . 6 (𝜑 → ((𝐼 ∖ (𝐹 supp 1 )) ∪ (𝐹 supp 1 )) = 𝐼)
2120eqcomd 2732 . . . . 5 (𝜑𝐼 = ((𝐼 ∖ (𝐹 supp 1 )) ∪ (𝐹 supp 1 )))
224, 6, 8, 11, 12, 13, 14, 16, 21gsumsplit 19926 . . . 4 (𝜑 → (𝑀 Σg 𝐹) = ((𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 ))))(.r𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))))
23 difssd 4132 . . . . . . . . 9 (𝜑 → (𝐼 ∖ (𝐹 supp 1 )) ⊆ 𝐼)
2413, 23feqresmpt 6972 . . . . . . . 8 (𝜑 → (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 ))) = (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ (𝐹𝑧)))
2513ffnd 6729 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝐼)
2625adantr 479 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 𝐹 Fn 𝐼)
2712adantr 479 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 𝐼𝑉)
289crngringd 20229 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
293, 5ringidcl 20245 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 1𝐵)
3028, 29syl 17 . . . . . . . . . . 11 (𝜑1𝐵)
3130adantr 479 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 1𝐵)
32 simpr 483 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )))
3326, 27, 31, 32fvdifsupp 8185 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → (𝐹𝑧) = 1 )
3433mpteq2dva 5253 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ (𝐹𝑧)) = (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 ))
3524, 34eqtrd 2766 . . . . . . 7 (𝜑 → (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 ))) = (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 ))
3635oveq2d 7440 . . . . . 6 (𝜑 → (𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 )))) = (𝑀 Σg (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 )))
3711cmnmndd 19802 . . . . . . 7 (𝜑𝑀 ∈ Mnd)
3812difexd 5336 . . . . . . 7 (𝜑 → (𝐼 ∖ (𝐹 supp 1 )) ∈ V)
396gsumz 18826 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝐼 ∖ (𝐹 supp 1 )) ∈ V) → (𝑀 Σg (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 )) = 1 )
4037, 38, 39syl2anc 582 . . . . . 6 (𝜑 → (𝑀 Σg (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 )) = 1 )
4136, 40eqtrd 2766 . . . . 5 (𝜑 → (𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 )))) = 1 )
4241oveq1d 7439 . . . 4 (𝜑 → ((𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 ))))(.r𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))) = ( 1 (.r𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))))
43 ovexd 7459 . . . . . 6 (𝜑 → (𝐹 supp 1 ) ∈ V)
4413, 18fssresd 6769 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐹 supp 1 )):(𝐹 supp 1 )⟶𝐵)
4514, 30fsuppres 9436 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐹 supp 1 )) finSupp 1 )
464, 6, 11, 43, 44, 45gsumcl 19913 . . . . 5 (𝜑 → (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))) ∈ 𝐵)
473, 7, 5, 28, 46ringlidmd 20251 . . . 4 (𝜑 → ( 1 (.r𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))) = (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))
4822, 42, 473eqtrd 2770 . . 3 (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))
491, 48breqtrd 5179 . 2 (𝜑𝑄 (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))
50 reseq2 5984 . . . . . 6 (𝑏 = ∅ → (𝐹𝑏) = (𝐹 ↾ ∅))
5150oveq2d 7440 . . . . 5 (𝑏 = ∅ → (𝑀 Σg (𝐹𝑏)) = (𝑀 Σg (𝐹 ↾ ∅)))
5251breq2d 5165 . . . 4 (𝑏 = ∅ → (𝑄 (𝑀 Σg (𝐹𝑏)) ↔ 𝑄 (𝑀 Σg (𝐹 ↾ ∅))))
53 rexeq 3311 . . . 4 (𝑏 = ∅ → (∃𝑥𝑏 𝑄 (𝐹𝑥) ↔ ∃𝑥 ∈ ∅ 𝑄 (𝐹𝑥)))
5452, 53imbi12d 343 . . 3 (𝑏 = ∅ → ((𝑄 (𝑀 Σg (𝐹𝑏)) → ∃𝑥𝑏 𝑄 (𝐹𝑥)) ↔ (𝑄 (𝑀 Σg (𝐹 ↾ ∅)) → ∃𝑥 ∈ ∅ 𝑄 (𝐹𝑥))))
55 reseq2 5984 . . . . . 6 (𝑏 = 𝑎 → (𝐹𝑏) = (𝐹𝑎))
5655oveq2d 7440 . . . . 5 (𝑏 = 𝑎 → (𝑀 Σg (𝐹𝑏)) = (𝑀 Σg (𝐹𝑎)))
5756breq2d 5165 . . . 4 (𝑏 = 𝑎 → (𝑄 (𝑀 Σg (𝐹𝑏)) ↔ 𝑄 (𝑀 Σg (𝐹𝑎))))
58 rexeq 3311 . . . 4 (𝑏 = 𝑎 → (∃𝑥𝑏 𝑄 (𝐹𝑥) ↔ ∃𝑥𝑎 𝑄 (𝐹𝑥)))
5957, 58imbi12d 343 . . 3 (𝑏 = 𝑎 → ((𝑄 (𝑀 Σg (𝐹𝑏)) → ∃𝑥𝑏 𝑄 (𝐹𝑥)) ↔ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))))
60 reseq2 5984 . . . . . 6 (𝑏 = (𝑎 ∪ {𝑦}) → (𝐹𝑏) = (𝐹 ↾ (𝑎 ∪ {𝑦})))
6160oveq2d 7440 . . . . 5 (𝑏 = (𝑎 ∪ {𝑦}) → (𝑀 Σg (𝐹𝑏)) = (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))))
6261breq2d 5165 . . . 4 (𝑏 = (𝑎 ∪ {𝑦}) → (𝑄 (𝑀 Σg (𝐹𝑏)) ↔ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))))
63 rexeq 3311 . . . 4 (𝑏 = (𝑎 ∪ {𝑦}) → (∃𝑥𝑏 𝑄 (𝐹𝑥) ↔ ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥)))
6462, 63imbi12d 343 . . 3 (𝑏 = (𝑎 ∪ {𝑦}) → ((𝑄 (𝑀 Σg (𝐹𝑏)) → ∃𝑥𝑏 𝑄 (𝐹𝑥)) ↔ (𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥))))
65 reseq2 5984 . . . . . 6 (𝑏 = (𝐹 supp 1 ) → (𝐹𝑏) = (𝐹 ↾ (𝐹 supp 1 )))
6665oveq2d 7440 . . . . 5 (𝑏 = (𝐹 supp 1 ) → (𝑀 Σg (𝐹𝑏)) = (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))
6766breq2d 5165 . . . 4 (𝑏 = (𝐹 supp 1 ) → (𝑄 (𝑀 Σg (𝐹𝑏)) ↔ 𝑄 (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))))
68 rexeq 3311 . . . 4 (𝑏 = (𝐹 supp 1 ) → (∃𝑥𝑏 𝑄 (𝐹𝑥) ↔ ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥)))
6967, 68imbi12d 343 . . 3 (𝑏 = (𝐹 supp 1 ) → ((𝑄 (𝑀 Σg (𝐹𝑏)) → ∃𝑥𝑏 𝑄 (𝐹𝑥)) ↔ (𝑄 (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))) → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥))))
70 rprmdvdsprod.d . . . . . 6 = (∥r𝑅)
71 rprmdvdsprod.p . . . . . 6 𝑃 = (RPrime‘𝑅)
72 rprmdvdsprod.q . . . . . 6 (𝜑𝑄𝑃)
735, 70, 71, 9, 72rprmndvdsr1 33399 . . . . 5 (𝜑 → ¬ 𝑄 1 )
74 res0 5993 . . . . . . . . 9 (𝐹 ↾ ∅) = ∅
7574oveq2i 7435 . . . . . . . 8 (𝑀 Σg (𝐹 ↾ ∅)) = (𝑀 Σg ∅)
766gsum0 18677 . . . . . . . 8 (𝑀 Σg ∅) = 1
7775, 76eqtri 2754 . . . . . . 7 (𝑀 Σg (𝐹 ↾ ∅)) = 1
7877a1i 11 . . . . . 6 (𝜑 → (𝑀 Σg (𝐹 ↾ ∅)) = 1 )
7978breq2d 5165 . . . . 5 (𝜑 → (𝑄 (𝑀 Σg (𝐹 ↾ ∅)) ↔ 𝑄 1 ))
8073, 79mtbird 324 . . . 4 (𝜑 → ¬ 𝑄 (𝑀 Σg (𝐹 ↾ ∅)))
8180pm2.21d 121 . . 3 (𝜑 → (𝑄 (𝑀 Σg (𝐹 ↾ ∅)) → ∃𝑥 ∈ ∅ 𝑄 (𝐹𝑥)))
82 simpllr 774 . . . . . . . 8 ((((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 (𝑀 Σg (𝐹𝑎))) → (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥)))
8382syldbl2 839 . . . . . . 7 ((((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 (𝑀 Σg (𝐹𝑎))) → ∃𝑥𝑎 𝑄 (𝐹𝑥))
84 simpr 483 . . . . . . . 8 ((((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 (𝐹𝑦)) → 𝑄 (𝐹𝑦))
85 vex 3466 . . . . . . . . 9 𝑦 ∈ V
86 fveq2 6901 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
8786breq2d 5165 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑄 (𝐹𝑥) ↔ 𝑄 (𝐹𝑦)))
8885, 87rexsn 4691 . . . . . . . 8 (∃𝑥 ∈ {𝑦}𝑄 (𝐹𝑥) ↔ 𝑄 (𝐹𝑦))
8984, 88sylibr 233 . . . . . . 7 ((((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 (𝐹𝑦)) → ∃𝑥 ∈ {𝑦}𝑄 (𝐹𝑥))
909ad4antr 730 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑅 ∈ CRing)
9172ad4antr 730 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑄𝑃)
9290, 10syl 17 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑀 ∈ CMnd)
93 vex 3466 . . . . . . . . . 10 𝑎 ∈ V
9493a1i 11 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎 ∈ V)
9513ad4antr 730 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝐹:𝐼𝐵)
96 simp-4r 782 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎 ⊆ (𝐹 supp 1 ))
9718ad4antr 730 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 supp 1 ) ⊆ 𝐼)
9896, 97sstrd 3990 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎𝐼)
9995, 98fssresd 6769 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹𝑎):𝑎𝐵)
10014fsuppimpd 9413 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 1 ) ∈ Fin)
101100ad4antr 730 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 supp 1 ) ∈ Fin)
102101, 96ssfid 9301 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎 ∈ Fin)
10330ad4antr 730 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 1𝐵)
10499, 102, 103fdmfifsupp 9418 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹𝑎) finSupp 1 )
1054, 6, 92, 94, 99, 104gsumcl 19913 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝑀 Σg (𝐹𝑎)) ∈ 𝐵)
10697ssdifssd 4142 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ((𝐹 supp 1 ) ∖ 𝑎) ⊆ 𝐼)
107 simpllr 774 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎))
108106, 107sseldd 3980 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑦𝐼)
10995, 108ffvelcdmd 7099 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹𝑦) ∈ 𝐵)
110 simpr 483 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))))
111 eqid 2726 . . . . . . . . . 10 (Cntz‘𝑀) = (Cntz‘𝑀)
112 eqid 2726 . . . . . . . . . 10 (𝐹𝑦) = (𝐹𝑦)
11337ad4antr 730 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑀 ∈ Mnd)
114107eldifbd 3960 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ¬ 𝑦𝑎)
11595fimassd 6749 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 “ (𝑎 ∪ {𝑦})) ⊆ 𝐵)
1164, 111cntzcmn 19838 . . . . . . . . . . . 12 ((𝑀 ∈ CMnd ∧ (𝐹 “ (𝑎 ∪ {𝑦})) ⊆ 𝐵) → ((Cntz‘𝑀)‘(𝐹 “ (𝑎 ∪ {𝑦}))) = 𝐵)
11792, 115, 116syl2anc 582 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ((Cntz‘𝑀)‘(𝐹 “ (𝑎 ∪ {𝑦}))) = 𝐵)
118115, 117sseqtrrd 4021 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 “ (𝑎 ∪ {𝑦})) ⊆ ((Cntz‘𝑀)‘(𝐹 “ (𝑎 ∪ {𝑦}))))
1194, 8, 111, 112, 95, 98, 113, 102, 114, 108, 109, 118gsumzresunsn 32922 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) = ((𝑀 Σg (𝐹𝑎))(.r𝑅)(𝐹𝑦)))
120110, 119breqtrd 5179 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑄 ((𝑀 Σg (𝐹𝑎))(.r𝑅)(𝐹𝑦)))
1213, 71, 70, 7, 90, 91, 105, 109, 120rprmdvds 33394 . . . . . . 7 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝑄 (𝑀 Σg (𝐹𝑎)) ∨ 𝑄 (𝐹𝑦)))
12283, 89, 121orim12da 32388 . . . . . 6 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (∃𝑥𝑎 𝑄 (𝐹𝑥) ∨ ∃𝑥 ∈ {𝑦}𝑄 (𝐹𝑥)))
123 rexun 4191 . . . . . 6 (∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥) ↔ (∃𝑥𝑎 𝑄 (𝐹𝑥) ∨ ∃𝑥 ∈ {𝑦}𝑄 (𝐹𝑥)))
124122, 123sylibr 233 . . . . 5 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥))
125124exp31 418 . . . 4 (((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) → ((𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥)) → (𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥))))
126125anasss 465 . . 3 ((𝜑 ∧ (𝑎 ⊆ (𝐹 supp 1 ) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎))) → ((𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥)) → (𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥))))
12754, 59, 64, 69, 81, 126, 100findcard2d 9204 . 2 (𝜑 → (𝑄 (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))) → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥)))
12849, 127mpd 15 1 (𝜑 → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845   = wceq 1534  wcel 2099  wrex 3060  Vcvv 3462  cdif 3944  cun 3945  cin 3946  wss 3947  c0 4325  {csn 4633   class class class wbr 5153  cmpt 5236  cres 5684  cima 5685   Fn wfn 6549  wf 6550  cfv 6554  (class class class)co 7424   supp csupp 8174  Fincfn 8974   finSupp cfsupp 9405  Basecbs 17213  .rcmulr 17267   Σg cgsu 17455  Mndcmnd 18727  Cntzccntz 19309  CMndccmn 19778  mulGrpcmgp 20117  1rcur 20164  Ringcrg 20216  CRingccrg 20217  rcdsr 20336  RPrimecrpm 20414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-tpos 8241  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539  df-fzo 13682  df-seq 14022  df-hash 14348  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-0g 17456  df-gsum 17457  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-mulg 19062  df-cntz 19311  df-cmn 19780  df-mgp 20118  df-ur 20165  df-ring 20218  df-cring 20219  df-oppr 20316  df-dvdsr 20339  df-unit 20340  df-rprm 20415
This theorem is referenced by:  1arithidom  33412
  Copyright terms: Public domain W3C validator