Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmdvdsprod Structured version   Visualization version   GIF version

Theorem rprmdvdsprod 33562
Description: If a prime element 𝑄 divides a product, then it divides one term. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmdvdsprod.b 𝐵 = (Base‘𝑅)
rprmdvdsprod.p 𝑃 = (RPrime‘𝑅)
rprmdvdsprod.d = (∥r𝑅)
rprmdvdsprod.1 1 = (1r𝑅)
rprmdvdsprod.m 𝑀 = (mulGrp‘𝑅)
rprmdvdsprod.r (𝜑𝑅 ∈ CRing)
rprmdvdsprod.q (𝜑𝑄𝑃)
rprmdvdsprod.i (𝜑𝐼𝑉)
rprmdvdsprod.2 (𝜑𝐹 finSupp 1 )
rprmdvdsprod.f (𝜑𝐹:𝐼𝐵)
rprmdvdsprod.3 (𝜑𝑄 (𝑀 Σg 𝐹))
Assertion
Ref Expression
rprmdvdsprod (𝜑 → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥))
Distinct variable groups:   𝑥, 1   𝑥,   𝑥,𝐹   𝑥,𝑄   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑃(𝑥)   𝑅(𝑥)   𝐼(𝑥)   𝑀(𝑥)   𝑉(𝑥)

Proof of Theorem rprmdvdsprod
Dummy variables 𝑎 𝑏 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rprmdvdsprod.3 . . 3 (𝜑𝑄 (𝑀 Σg 𝐹))
2 rprmdvdsprod.m . . . . . 6 𝑀 = (mulGrp‘𝑅)
3 rprmdvdsprod.b . . . . . 6 𝐵 = (Base‘𝑅)
42, 3mgpbas 20142 . . . . 5 𝐵 = (Base‘𝑀)
5 rprmdvdsprod.1 . . . . . 6 1 = (1r𝑅)
62, 5ringidval 20180 . . . . 5 1 = (0g𝑀)
7 eqid 2737 . . . . . 6 (.r𝑅) = (.r𝑅)
82, 7mgpplusg 20141 . . . . 5 (.r𝑅) = (+g𝑀)
9 rprmdvdsprod.r . . . . . 6 (𝜑𝑅 ∈ CRing)
102crngmgp 20238 . . . . . 6 (𝑅 ∈ CRing → 𝑀 ∈ CMnd)
119, 10syl 17 . . . . 5 (𝜑𝑀 ∈ CMnd)
12 rprmdvdsprod.i . . . . 5 (𝜑𝐼𝑉)
13 rprmdvdsprod.f . . . . 5 (𝜑𝐹:𝐼𝐵)
14 rprmdvdsprod.2 . . . . 5 (𝜑𝐹 finSupp 1 )
15 disjdifr 4473 . . . . . 6 ((𝐼 ∖ (𝐹 supp 1 )) ∩ (𝐹 supp 1 )) = ∅
1615a1i 11 . . . . 5 (𝜑 → ((𝐼 ∖ (𝐹 supp 1 )) ∩ (𝐹 supp 1 )) = ∅)
17 suppssdm 8202 . . . . . . . 8 (𝐹 supp 1 ) ⊆ dom 𝐹
1817, 13fssdm 6755 . . . . . . 7 (𝜑 → (𝐹 supp 1 ) ⊆ 𝐼)
19 undifr 4483 . . . . . . 7 ((𝐹 supp 1 ) ⊆ 𝐼 ↔ ((𝐼 ∖ (𝐹 supp 1 )) ∪ (𝐹 supp 1 )) = 𝐼)
2018, 19sylib 218 . . . . . 6 (𝜑 → ((𝐼 ∖ (𝐹 supp 1 )) ∪ (𝐹 supp 1 )) = 𝐼)
2120eqcomd 2743 . . . . 5 (𝜑𝐼 = ((𝐼 ∖ (𝐹 supp 1 )) ∪ (𝐹 supp 1 )))
224, 6, 8, 11, 12, 13, 14, 16, 21gsumsplit 19946 . . . 4 (𝜑 → (𝑀 Σg 𝐹) = ((𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 ))))(.r𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))))
23 difssd 4137 . . . . . . . . 9 (𝜑 → (𝐼 ∖ (𝐹 supp 1 )) ⊆ 𝐼)
2413, 23feqresmpt 6978 . . . . . . . 8 (𝜑 → (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 ))) = (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ (𝐹𝑧)))
2513ffnd 6737 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝐼)
2625adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 𝐹 Fn 𝐼)
2712adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 𝐼𝑉)
289crngringd 20243 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
293, 5ringidcl 20262 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 1𝐵)
3028, 29syl 17 . . . . . . . . . . 11 (𝜑1𝐵)
3130adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 1𝐵)
32 simpr 484 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )))
3326, 27, 31, 32fvdifsupp 8196 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → (𝐹𝑧) = 1 )
3433mpteq2dva 5242 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ (𝐹𝑧)) = (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 ))
3524, 34eqtrd 2777 . . . . . . 7 (𝜑 → (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 ))) = (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 ))
3635oveq2d 7447 . . . . . 6 (𝜑 → (𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 )))) = (𝑀 Σg (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 )))
3711cmnmndd 19822 . . . . . . 7 (𝜑𝑀 ∈ Mnd)
3812difexd 5331 . . . . . . 7 (𝜑 → (𝐼 ∖ (𝐹 supp 1 )) ∈ V)
396gsumz 18849 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝐼 ∖ (𝐹 supp 1 )) ∈ V) → (𝑀 Σg (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 )) = 1 )
4037, 38, 39syl2anc 584 . . . . . 6 (𝜑 → (𝑀 Σg (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 )) = 1 )
4136, 40eqtrd 2777 . . . . 5 (𝜑 → (𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 )))) = 1 )
4241oveq1d 7446 . . . 4 (𝜑 → ((𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 ))))(.r𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))) = ( 1 (.r𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))))
43 ovexd 7466 . . . . . 6 (𝜑 → (𝐹 supp 1 ) ∈ V)
4413, 18fssresd 6775 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐹 supp 1 )):(𝐹 supp 1 )⟶𝐵)
4514, 30fsuppres 9433 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐹 supp 1 )) finSupp 1 )
464, 6, 11, 43, 44, 45gsumcl 19933 . . . . 5 (𝜑 → (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))) ∈ 𝐵)
473, 7, 5, 28, 46ringlidmd 20269 . . . 4 (𝜑 → ( 1 (.r𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))) = (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))
4822, 42, 473eqtrd 2781 . . 3 (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))
491, 48breqtrd 5169 . 2 (𝜑𝑄 (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))
50 reseq2 5992 . . . . . 6 (𝑏 = ∅ → (𝐹𝑏) = (𝐹 ↾ ∅))
5150oveq2d 7447 . . . . 5 (𝑏 = ∅ → (𝑀 Σg (𝐹𝑏)) = (𝑀 Σg (𝐹 ↾ ∅)))
5251breq2d 5155 . . . 4 (𝑏 = ∅ → (𝑄 (𝑀 Σg (𝐹𝑏)) ↔ 𝑄 (𝑀 Σg (𝐹 ↾ ∅))))
53 rexeq 3322 . . . 4 (𝑏 = ∅ → (∃𝑥𝑏 𝑄 (𝐹𝑥) ↔ ∃𝑥 ∈ ∅ 𝑄 (𝐹𝑥)))
5452, 53imbi12d 344 . . 3 (𝑏 = ∅ → ((𝑄 (𝑀 Σg (𝐹𝑏)) → ∃𝑥𝑏 𝑄 (𝐹𝑥)) ↔ (𝑄 (𝑀 Σg (𝐹 ↾ ∅)) → ∃𝑥 ∈ ∅ 𝑄 (𝐹𝑥))))
55 reseq2 5992 . . . . . 6 (𝑏 = 𝑎 → (𝐹𝑏) = (𝐹𝑎))
5655oveq2d 7447 . . . . 5 (𝑏 = 𝑎 → (𝑀 Σg (𝐹𝑏)) = (𝑀 Σg (𝐹𝑎)))
5756breq2d 5155 . . . 4 (𝑏 = 𝑎 → (𝑄 (𝑀 Σg (𝐹𝑏)) ↔ 𝑄 (𝑀 Σg (𝐹𝑎))))
58 rexeq 3322 . . . 4 (𝑏 = 𝑎 → (∃𝑥𝑏 𝑄 (𝐹𝑥) ↔ ∃𝑥𝑎 𝑄 (𝐹𝑥)))
5957, 58imbi12d 344 . . 3 (𝑏 = 𝑎 → ((𝑄 (𝑀 Σg (𝐹𝑏)) → ∃𝑥𝑏 𝑄 (𝐹𝑥)) ↔ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))))
60 reseq2 5992 . . . . . 6 (𝑏 = (𝑎 ∪ {𝑦}) → (𝐹𝑏) = (𝐹 ↾ (𝑎 ∪ {𝑦})))
6160oveq2d 7447 . . . . 5 (𝑏 = (𝑎 ∪ {𝑦}) → (𝑀 Σg (𝐹𝑏)) = (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))))
6261breq2d 5155 . . . 4 (𝑏 = (𝑎 ∪ {𝑦}) → (𝑄 (𝑀 Σg (𝐹𝑏)) ↔ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))))
63 rexeq 3322 . . . 4 (𝑏 = (𝑎 ∪ {𝑦}) → (∃𝑥𝑏 𝑄 (𝐹𝑥) ↔ ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥)))
6462, 63imbi12d 344 . . 3 (𝑏 = (𝑎 ∪ {𝑦}) → ((𝑄 (𝑀 Σg (𝐹𝑏)) → ∃𝑥𝑏 𝑄 (𝐹𝑥)) ↔ (𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥))))
65 reseq2 5992 . . . . . 6 (𝑏 = (𝐹 supp 1 ) → (𝐹𝑏) = (𝐹 ↾ (𝐹 supp 1 )))
6665oveq2d 7447 . . . . 5 (𝑏 = (𝐹 supp 1 ) → (𝑀 Σg (𝐹𝑏)) = (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))
6766breq2d 5155 . . . 4 (𝑏 = (𝐹 supp 1 ) → (𝑄 (𝑀 Σg (𝐹𝑏)) ↔ 𝑄 (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))))
68 rexeq 3322 . . . 4 (𝑏 = (𝐹 supp 1 ) → (∃𝑥𝑏 𝑄 (𝐹𝑥) ↔ ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥)))
6967, 68imbi12d 344 . . 3 (𝑏 = (𝐹 supp 1 ) → ((𝑄 (𝑀 Σg (𝐹𝑏)) → ∃𝑥𝑏 𝑄 (𝐹𝑥)) ↔ (𝑄 (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))) → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥))))
70 rprmdvdsprod.d . . . . . 6 = (∥r𝑅)
71 rprmdvdsprod.p . . . . . 6 𝑃 = (RPrime‘𝑅)
72 rprmdvdsprod.q . . . . . 6 (𝜑𝑄𝑃)
735, 70, 71, 9, 72rprmndvdsr1 33552 . . . . 5 (𝜑 → ¬ 𝑄 1 )
74 res0 6001 . . . . . . . . 9 (𝐹 ↾ ∅) = ∅
7574oveq2i 7442 . . . . . . . 8 (𝑀 Σg (𝐹 ↾ ∅)) = (𝑀 Σg ∅)
766gsum0 18697 . . . . . . . 8 (𝑀 Σg ∅) = 1
7775, 76eqtri 2765 . . . . . . 7 (𝑀 Σg (𝐹 ↾ ∅)) = 1
7877a1i 11 . . . . . 6 (𝜑 → (𝑀 Σg (𝐹 ↾ ∅)) = 1 )
7978breq2d 5155 . . . . 5 (𝜑 → (𝑄 (𝑀 Σg (𝐹 ↾ ∅)) ↔ 𝑄 1 ))
8073, 79mtbird 325 . . . 4 (𝜑 → ¬ 𝑄 (𝑀 Σg (𝐹 ↾ ∅)))
8180pm2.21d 121 . . 3 (𝜑 → (𝑄 (𝑀 Σg (𝐹 ↾ ∅)) → ∃𝑥 ∈ ∅ 𝑄 (𝐹𝑥)))
82 simpllr 776 . . . . . . . 8 ((((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 (𝑀 Σg (𝐹𝑎))) → (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥)))
8382syldbl2 842 . . . . . . 7 ((((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 (𝑀 Σg (𝐹𝑎))) → ∃𝑥𝑎 𝑄 (𝐹𝑥))
84 simpr 484 . . . . . . . 8 ((((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 (𝐹𝑦)) → 𝑄 (𝐹𝑦))
85 vex 3484 . . . . . . . . 9 𝑦 ∈ V
86 fveq2 6906 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
8786breq2d 5155 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑄 (𝐹𝑥) ↔ 𝑄 (𝐹𝑦)))
8885, 87rexsn 4682 . . . . . . . 8 (∃𝑥 ∈ {𝑦}𝑄 (𝐹𝑥) ↔ 𝑄 (𝐹𝑦))
8984, 88sylibr 234 . . . . . . 7 ((((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 (𝐹𝑦)) → ∃𝑥 ∈ {𝑦}𝑄 (𝐹𝑥))
909ad4antr 732 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑅 ∈ CRing)
9172ad4antr 732 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑄𝑃)
9290, 10syl 17 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑀 ∈ CMnd)
93 vex 3484 . . . . . . . . . 10 𝑎 ∈ V
9493a1i 11 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎 ∈ V)
9513ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝐹:𝐼𝐵)
96 simp-4r 784 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎 ⊆ (𝐹 supp 1 ))
9718ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 supp 1 ) ⊆ 𝐼)
9896, 97sstrd 3994 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎𝐼)
9995, 98fssresd 6775 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹𝑎):𝑎𝐵)
10014fsuppimpd 9409 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 1 ) ∈ Fin)
101100ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 supp 1 ) ∈ Fin)
102101, 96ssfid 9301 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎 ∈ Fin)
10330ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 1𝐵)
10499, 102, 103fdmfifsupp 9415 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹𝑎) finSupp 1 )
1054, 6, 92, 94, 99, 104gsumcl 19933 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝑀 Σg (𝐹𝑎)) ∈ 𝐵)
10697ssdifssd 4147 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ((𝐹 supp 1 ) ∖ 𝑎) ⊆ 𝐼)
107 simpllr 776 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎))
108106, 107sseldd 3984 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑦𝐼)
10995, 108ffvelcdmd 7105 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹𝑦) ∈ 𝐵)
110 simpr 484 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))))
111 eqid 2737 . . . . . . . . . 10 (Cntz‘𝑀) = (Cntz‘𝑀)
112 eqid 2737 . . . . . . . . . 10 (𝐹𝑦) = (𝐹𝑦)
11337ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑀 ∈ Mnd)
114107eldifbd 3964 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ¬ 𝑦𝑎)
11595fimassd 6757 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 “ (𝑎 ∪ {𝑦})) ⊆ 𝐵)
1164, 111cntzcmn 19858 . . . . . . . . . . . 12 ((𝑀 ∈ CMnd ∧ (𝐹 “ (𝑎 ∪ {𝑦})) ⊆ 𝐵) → ((Cntz‘𝑀)‘(𝐹 “ (𝑎 ∪ {𝑦}))) = 𝐵)
11792, 115, 116syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ((Cntz‘𝑀)‘(𝐹 “ (𝑎 ∪ {𝑦}))) = 𝐵)
118115, 117sseqtrrd 4021 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 “ (𝑎 ∪ {𝑦})) ⊆ ((Cntz‘𝑀)‘(𝐹 “ (𝑎 ∪ {𝑦}))))
1194, 8, 111, 112, 95, 98, 113, 102, 114, 108, 109, 118gsumzresunsn 33059 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) = ((𝑀 Σg (𝐹𝑎))(.r𝑅)(𝐹𝑦)))
120110, 119breqtrd 5169 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑄 ((𝑀 Σg (𝐹𝑎))(.r𝑅)(𝐹𝑦)))
1213, 71, 70, 7, 90, 91, 105, 109, 120rprmdvds 33547 . . . . . . 7 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝑄 (𝑀 Σg (𝐹𝑎)) ∨ 𝑄 (𝐹𝑦)))
12283, 89, 121orim12da 32477 . . . . . 6 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (∃𝑥𝑎 𝑄 (𝐹𝑥) ∨ ∃𝑥 ∈ {𝑦}𝑄 (𝐹𝑥)))
123 rexun 4196 . . . . . 6 (∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥) ↔ (∃𝑥𝑎 𝑄 (𝐹𝑥) ∨ ∃𝑥 ∈ {𝑦}𝑄 (𝐹𝑥)))
124122, 123sylibr 234 . . . . 5 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥))
125124exp31 419 . . . 4 (((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) → ((𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥)) → (𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥))))
126125anasss 466 . . 3 ((𝜑 ∧ (𝑎 ⊆ (𝐹 supp 1 ) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎))) → ((𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥)) → (𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥))))
12754, 59, 64, 69, 81, 126, 100findcard2d 9206 . 2 (𝜑 → (𝑄 (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))) → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥)))
12849, 127mpd 15 1 (𝜑 → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  wrex 3070  Vcvv 3480  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333  {csn 4626   class class class wbr 5143  cmpt 5225  cres 5687  cima 5688   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431   supp csupp 8185  Fincfn 8985   finSupp cfsupp 9401  Basecbs 17247  .rcmulr 17298   Σg cgsu 17485  Mndcmnd 18747  Cntzccntz 19333  CMndccmn 19798  mulGrpcmgp 20137  1rcur 20178  Ringcrg 20230  CRingccrg 20231  rcdsr 20354  RPrimecrpm 20432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-0g 17486  df-gsum 17487  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-mgp 20138  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-rprm 20433
This theorem is referenced by:  1arithidom  33565
  Copyright terms: Public domain W3C validator