Step | Hyp | Ref
| Expression |
1 | | rprmdvdsprod.3 |
. . 3
⊢ (𝜑 → 𝑄 ∥ (𝑀 Σg 𝐹)) |
2 | | rprmdvdsprod.m |
. . . . . 6
⊢ 𝑀 = (mulGrp‘𝑅) |
3 | | rprmdvdsprod.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
4 | 2, 3 | mgpbas 20123 |
. . . . 5
⊢ 𝐵 = (Base‘𝑀) |
5 | | rprmdvdsprod.1 |
. . . . . 6
⊢ 1 =
(1r‘𝑅) |
6 | 2, 5 | ringidval 20166 |
. . . . 5
⊢ 1 =
(0g‘𝑀) |
7 | | eqid 2726 |
. . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) |
8 | 2, 7 | mgpplusg 20121 |
. . . . 5
⊢
(.r‘𝑅) = (+g‘𝑀) |
9 | | rprmdvdsprod.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ CRing) |
10 | 2 | crngmgp 20224 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝑀 ∈ CMnd) |
11 | 9, 10 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ CMnd) |
12 | | rprmdvdsprod.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
13 | | rprmdvdsprod.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
14 | | rprmdvdsprod.2 |
. . . . 5
⊢ (𝜑 → 𝐹 finSupp 1 ) |
15 | | disjdifr 4477 |
. . . . . 6
⊢ ((𝐼 ∖ (𝐹 supp 1 )) ∩ (𝐹 supp 1 )) =
∅ |
16 | 15 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((𝐼 ∖ (𝐹 supp 1 )) ∩ (𝐹 supp 1 )) =
∅) |
17 | | suppssdm 8191 |
. . . . . . . 8
⊢ (𝐹 supp 1 ) ⊆ dom 𝐹 |
18 | 17, 13 | fssdm 6747 |
. . . . . . 7
⊢ (𝜑 → (𝐹 supp 1 ) ⊆ 𝐼) |
19 | | undifr 4487 |
. . . . . . 7
⊢ ((𝐹 supp 1 ) ⊆ 𝐼 ↔ ((𝐼 ∖ (𝐹 supp 1 )) ∪ (𝐹 supp 1 )) = 𝐼) |
20 | 18, 19 | sylib 217 |
. . . . . 6
⊢ (𝜑 → ((𝐼 ∖ (𝐹 supp 1 )) ∪ (𝐹 supp 1 )) = 𝐼) |
21 | 20 | eqcomd 2732 |
. . . . 5
⊢ (𝜑 → 𝐼 = ((𝐼 ∖ (𝐹 supp 1 )) ∪ (𝐹 supp 1 ))) |
22 | 4, 6, 8, 11, 12, 13, 14, 16, 21 | gsumsplit 19926 |
. . . 4
⊢ (𝜑 → (𝑀 Σg 𝐹) = ((𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1
))))(.r‘𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))) |
23 | | difssd 4132 |
. . . . . . . . 9
⊢ (𝜑 → (𝐼 ∖ (𝐹 supp 1 )) ⊆ 𝐼) |
24 | 13, 23 | feqresmpt 6972 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 ))) = (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ (𝐹‘𝑧))) |
25 | 13 | ffnd 6729 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 Fn 𝐼) |
26 | 25 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 𝐹 Fn 𝐼) |
27 | 12 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 𝐼 ∈ 𝑉) |
28 | 9 | crngringd 20229 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ Ring) |
29 | 3, 5 | ringidcl 20245 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
30 | 28, 29 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈ 𝐵) |
31 | 30 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 1 ∈ 𝐵) |
32 | | simpr 483 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) |
33 | 26, 27, 31, 32 | fvdifsupp 8185 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → (𝐹‘𝑧) = 1 ) |
34 | 33 | mpteq2dva 5253 |
. . . . . . . 8
⊢ (𝜑 → (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ (𝐹‘𝑧)) = (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1
)) |
35 | 24, 34 | eqtrd 2766 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 ))) = (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1
)) |
36 | 35 | oveq2d 7440 |
. . . . . 6
⊢ (𝜑 → (𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 )))) = (𝑀 Σg (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1
))) |
37 | 11 | cmnmndd 19802 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ Mnd) |
38 | 12 | difexd 5336 |
. . . . . . 7
⊢ (𝜑 → (𝐼 ∖ (𝐹 supp 1 )) ∈
V) |
39 | 6 | gsumz 18826 |
. . . . . . 7
⊢ ((𝑀 ∈ Mnd ∧ (𝐼 ∖ (𝐹 supp 1 )) ∈ V) → (𝑀 Σg
(𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 )) = 1
) |
40 | 37, 38, 39 | syl2anc 582 |
. . . . . 6
⊢ (𝜑 → (𝑀 Σg (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 )) = 1
) |
41 | 36, 40 | eqtrd 2766 |
. . . . 5
⊢ (𝜑 → (𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 )))) = 1 ) |
42 | 41 | oveq1d 7439 |
. . . 4
⊢ (𝜑 → ((𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1
))))(.r‘𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))) = ( 1
(.r‘𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))) |
43 | | ovexd 7459 |
. . . . . 6
⊢ (𝜑 → (𝐹 supp 1 ) ∈
V) |
44 | 13, 18 | fssresd 6769 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ (𝐹 supp 1 )):(𝐹 supp 1 )⟶𝐵) |
45 | 14, 30 | fsuppres 9436 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ (𝐹 supp 1 )) finSupp 1
) |
46 | 4, 6, 11, 43, 44, 45 | gsumcl 19913 |
. . . . 5
⊢ (𝜑 → (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))) ∈ 𝐵) |
47 | 3, 7, 5, 28, 46 | ringlidmd 20251 |
. . . 4
⊢ (𝜑 → ( 1 (.r‘𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))) = (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))) |
48 | 22, 42, 47 | 3eqtrd 2770 |
. . 3
⊢ (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))) |
49 | 1, 48 | breqtrd 5179 |
. 2
⊢ (𝜑 → 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))) |
50 | | reseq2 5984 |
. . . . . 6
⊢ (𝑏 = ∅ → (𝐹 ↾ 𝑏) = (𝐹 ↾ ∅)) |
51 | 50 | oveq2d 7440 |
. . . . 5
⊢ (𝑏 = ∅ → (𝑀 Σg
(𝐹 ↾ 𝑏)) = (𝑀 Σg (𝐹 ↾
∅))) |
52 | 51 | breq2d 5165 |
. . . 4
⊢ (𝑏 = ∅ → (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑏)) ↔ 𝑄 ∥ (𝑀 Σg (𝐹 ↾
∅)))) |
53 | | rexeq 3311 |
. . . 4
⊢ (𝑏 = ∅ → (∃𝑥 ∈ 𝑏 𝑄 ∥ (𝐹‘𝑥) ↔ ∃𝑥 ∈ ∅ 𝑄 ∥ (𝐹‘𝑥))) |
54 | 52, 53 | imbi12d 343 |
. . 3
⊢ (𝑏 = ∅ → ((𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑏)) → ∃𝑥 ∈ 𝑏 𝑄 ∥ (𝐹‘𝑥)) ↔ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ ∅)) →
∃𝑥 ∈ ∅
𝑄 ∥ (𝐹‘𝑥)))) |
55 | | reseq2 5984 |
. . . . . 6
⊢ (𝑏 = 𝑎 → (𝐹 ↾ 𝑏) = (𝐹 ↾ 𝑎)) |
56 | 55 | oveq2d 7440 |
. . . . 5
⊢ (𝑏 = 𝑎 → (𝑀 Σg (𝐹 ↾ 𝑏)) = (𝑀 Σg (𝐹 ↾ 𝑎))) |
57 | 56 | breq2d 5165 |
. . . 4
⊢ (𝑏 = 𝑎 → (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑏)) ↔ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)))) |
58 | | rexeq 3311 |
. . . 4
⊢ (𝑏 = 𝑎 → (∃𝑥 ∈ 𝑏 𝑄 ∥ (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) |
59 | 57, 58 | imbi12d 343 |
. . 3
⊢ (𝑏 = 𝑎 → ((𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑏)) → ∃𝑥 ∈ 𝑏 𝑄 ∥ (𝐹‘𝑥)) ↔ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥)))) |
60 | | reseq2 5984 |
. . . . . 6
⊢ (𝑏 = (𝑎 ∪ {𝑦}) → (𝐹 ↾ 𝑏) = (𝐹 ↾ (𝑎 ∪ {𝑦}))) |
61 | 60 | oveq2d 7440 |
. . . . 5
⊢ (𝑏 = (𝑎 ∪ {𝑦}) → (𝑀 Σg (𝐹 ↾ 𝑏)) = (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) |
62 | 61 | breq2d 5165 |
. . . 4
⊢ (𝑏 = (𝑎 ∪ {𝑦}) → (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑏)) ↔ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))))) |
63 | | rexeq 3311 |
. . . 4
⊢ (𝑏 = (𝑎 ∪ {𝑦}) → (∃𝑥 ∈ 𝑏 𝑄 ∥ (𝐹‘𝑥) ↔ ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 ∥ (𝐹‘𝑥))) |
64 | 62, 63 | imbi12d 343 |
. . 3
⊢ (𝑏 = (𝑎 ∪ {𝑦}) → ((𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑏)) → ∃𝑥 ∈ 𝑏 𝑄 ∥ (𝐹‘𝑥)) ↔ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 ∥ (𝐹‘𝑥)))) |
65 | | reseq2 5984 |
. . . . . 6
⊢ (𝑏 = (𝐹 supp 1 ) → (𝐹 ↾ 𝑏) = (𝐹 ↾ (𝐹 supp 1 ))) |
66 | 65 | oveq2d 7440 |
. . . . 5
⊢ (𝑏 = (𝐹 supp 1 ) → (𝑀 Σg
(𝐹 ↾ 𝑏)) = (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))) |
67 | 66 | breq2d 5165 |
. . . 4
⊢ (𝑏 = (𝐹 supp 1 ) → (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑏)) ↔ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))) |
68 | | rexeq 3311 |
. . . 4
⊢ (𝑏 = (𝐹 supp 1 ) → (∃𝑥 ∈ 𝑏 𝑄 ∥ (𝐹‘𝑥) ↔ ∃𝑥 ∈ (𝐹 supp 1 )𝑄 ∥ (𝐹‘𝑥))) |
69 | 67, 68 | imbi12d 343 |
. . 3
⊢ (𝑏 = (𝐹 supp 1 ) → ((𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑏)) → ∃𝑥 ∈ 𝑏 𝑄 ∥ (𝐹‘𝑥)) ↔ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))) → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 ∥ (𝐹‘𝑥)))) |
70 | | rprmdvdsprod.d |
. . . . . 6
⊢ ∥ =
(∥r‘𝑅) |
71 | | rprmdvdsprod.p |
. . . . . 6
⊢ 𝑃 = (RPrime‘𝑅) |
72 | | rprmdvdsprod.q |
. . . . . 6
⊢ (𝜑 → 𝑄 ∈ 𝑃) |
73 | 5, 70, 71, 9, 72 | rprmndvdsr1 33399 |
. . . . 5
⊢ (𝜑 → ¬ 𝑄 ∥ 1 ) |
74 | | res0 5993 |
. . . . . . . . 9
⊢ (𝐹 ↾ ∅) =
∅ |
75 | 74 | oveq2i 7435 |
. . . . . . . 8
⊢ (𝑀 Σg
(𝐹 ↾ ∅)) =
(𝑀
Σg ∅) |
76 | 6 | gsum0 18677 |
. . . . . . . 8
⊢ (𝑀 Σg
∅) = 1 |
77 | 75, 76 | eqtri 2754 |
. . . . . . 7
⊢ (𝑀 Σg
(𝐹 ↾ ∅)) =
1 |
78 | 77 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝑀 Σg (𝐹 ↾ ∅)) = 1
) |
79 | 78 | breq2d 5165 |
. . . . 5
⊢ (𝜑 → (𝑄 ∥ (𝑀 Σg (𝐹 ↾ ∅)) ↔ 𝑄 ∥ 1 )) |
80 | 73, 79 | mtbird 324 |
. . . 4
⊢ (𝜑 → ¬ 𝑄 ∥ (𝑀 Σg (𝐹 ↾
∅))) |
81 | 80 | pm2.21d 121 |
. . 3
⊢ (𝜑 → (𝑄 ∥ (𝑀 Σg (𝐹 ↾ ∅)) →
∃𝑥 ∈ ∅
𝑄 ∥ (𝐹‘𝑥))) |
82 | | simpllr 774 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎))) → (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) |
83 | 82 | syldbl2 839 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎))) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥)) |
84 | | simpr 483 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 ∥ (𝐹‘𝑦)) → 𝑄 ∥ (𝐹‘𝑦)) |
85 | | vex 3466 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
86 | | fveq2 6901 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
87 | 86 | breq2d 5165 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑄 ∥ (𝐹‘𝑥) ↔ 𝑄 ∥ (𝐹‘𝑦))) |
88 | 85, 87 | rexsn 4691 |
. . . . . . . 8
⊢
(∃𝑥 ∈
{𝑦}𝑄 ∥ (𝐹‘𝑥) ↔ 𝑄 ∥ (𝐹‘𝑦)) |
89 | 84, 88 | sylibr 233 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 ∥ (𝐹‘𝑦)) → ∃𝑥 ∈ {𝑦}𝑄 ∥ (𝐹‘𝑥)) |
90 | 9 | ad4antr 730 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑅 ∈ CRing) |
91 | 72 | ad4antr 730 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑄 ∈ 𝑃) |
92 | 90, 10 | syl 17 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑀 ∈ CMnd) |
93 | | vex 3466 |
. . . . . . . . . 10
⊢ 𝑎 ∈ V |
94 | 93 | a1i 11 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎 ∈ V) |
95 | 13 | ad4antr 730 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝐹:𝐼⟶𝐵) |
96 | | simp-4r 782 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎 ⊆ (𝐹 supp 1 )) |
97 | 18 | ad4antr 730 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 supp 1 ) ⊆ 𝐼) |
98 | 96, 97 | sstrd 3990 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎 ⊆ 𝐼) |
99 | 95, 98 | fssresd 6769 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 ↾ 𝑎):𝑎⟶𝐵) |
100 | 14 | fsuppimpd 9413 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 supp 1 ) ∈
Fin) |
101 | 100 | ad4antr 730 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 supp 1 ) ∈
Fin) |
102 | 101, 96 | ssfid 9301 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎 ∈ Fin) |
103 | 30 | ad4antr 730 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 1 ∈ 𝐵) |
104 | 99, 102, 103 | fdmfifsupp 9418 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 ↾ 𝑎) finSupp 1 ) |
105 | 4, 6, 92, 94, 99, 104 | gsumcl 19913 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝑀 Σg (𝐹 ↾ 𝑎)) ∈ 𝐵) |
106 | 97 | ssdifssd 4142 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ((𝐹 supp 1 ) ∖ 𝑎) ⊆ 𝐼) |
107 | | simpllr 774 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) |
108 | 106, 107 | sseldd 3980 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑦 ∈ 𝐼) |
109 | 95, 108 | ffvelcdmd 7099 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹‘𝑦) ∈ 𝐵) |
110 | | simpr 483 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) |
111 | | eqid 2726 |
. . . . . . . . . 10
⊢
(Cntz‘𝑀) =
(Cntz‘𝑀) |
112 | | eqid 2726 |
. . . . . . . . . 10
⊢ (𝐹‘𝑦) = (𝐹‘𝑦) |
113 | 37 | ad4antr 730 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑀 ∈ Mnd) |
114 | 107 | eldifbd 3960 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ¬ 𝑦 ∈ 𝑎) |
115 | 95 | fimassd 6749 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 “ (𝑎 ∪ {𝑦})) ⊆ 𝐵) |
116 | 4, 111 | cntzcmn 19838 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ CMnd ∧ (𝐹 “ (𝑎 ∪ {𝑦})) ⊆ 𝐵) → ((Cntz‘𝑀)‘(𝐹 “ (𝑎 ∪ {𝑦}))) = 𝐵) |
117 | 92, 115, 116 | syl2anc 582 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ((Cntz‘𝑀)‘(𝐹 “ (𝑎 ∪ {𝑦}))) = 𝐵) |
118 | 115, 117 | sseqtrrd 4021 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 “ (𝑎 ∪ {𝑦})) ⊆ ((Cntz‘𝑀)‘(𝐹 “ (𝑎 ∪ {𝑦})))) |
119 | 4, 8, 111, 112, 95, 98, 113, 102, 114, 108, 109, 118 | gsumzresunsn 32922 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) = ((𝑀 Σg (𝐹 ↾ 𝑎))(.r‘𝑅)(𝐹‘𝑦))) |
120 | 110, 119 | breqtrd 5179 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑄 ∥ ((𝑀 Σg (𝐹 ↾ 𝑎))(.r‘𝑅)(𝐹‘𝑦))) |
121 | 3, 71, 70, 7, 90, 91, 105, 109, 120 | rprmdvds 33394 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) ∨ 𝑄 ∥ (𝐹‘𝑦))) |
122 | 83, 89, 121 | orim12da 32388 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥) ∨ ∃𝑥 ∈ {𝑦}𝑄 ∥ (𝐹‘𝑥))) |
123 | | rexun 4191 |
. . . . . 6
⊢
(∃𝑥 ∈
(𝑎 ∪ {𝑦})𝑄 ∥ (𝐹‘𝑥) ↔ (∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥) ∨ ∃𝑥 ∈ {𝑦}𝑄 ∥ (𝐹‘𝑥))) |
124 | 122, 123 | sylibr 233 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥))) ∧ 𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 ∥ (𝐹‘𝑥)) |
125 | 124 | exp31 418 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) → ((𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥)) → (𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 ∥ (𝐹‘𝑥)))) |
126 | 125 | anasss 465 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ⊆ (𝐹 supp 1 ) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎))) → ((𝑄 ∥ (𝑀 Σg (𝐹 ↾ 𝑎)) → ∃𝑥 ∈ 𝑎 𝑄 ∥ (𝐹‘𝑥)) → (𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 ∥ (𝐹‘𝑥)))) |
127 | 54, 59, 64, 69, 81, 126, 100 | findcard2d 9204 |
. 2
⊢ (𝜑 → (𝑄 ∥ (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))) → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 ∥ (𝐹‘𝑥))) |
128 | 49, 127 | mpd 15 |
1
⊢ (𝜑 → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 ∥ (𝐹‘𝑥)) |