Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmdvdsprod Structured version   Visualization version   GIF version

Theorem rprmdvdsprod 33484
Description: If a prime element 𝑄 divides a product, then it divides one term. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmdvdsprod.b 𝐵 = (Base‘𝑅)
rprmdvdsprod.p 𝑃 = (RPrime‘𝑅)
rprmdvdsprod.d = (∥r𝑅)
rprmdvdsprod.1 1 = (1r𝑅)
rprmdvdsprod.m 𝑀 = (mulGrp‘𝑅)
rprmdvdsprod.r (𝜑𝑅 ∈ CRing)
rprmdvdsprod.q (𝜑𝑄𝑃)
rprmdvdsprod.i (𝜑𝐼𝑉)
rprmdvdsprod.2 (𝜑𝐹 finSupp 1 )
rprmdvdsprod.f (𝜑𝐹:𝐼𝐵)
rprmdvdsprod.3 (𝜑𝑄 (𝑀 Σg 𝐹))
Assertion
Ref Expression
rprmdvdsprod (𝜑 → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥))
Distinct variable groups:   𝑥, 1   𝑥,   𝑥,𝐹   𝑥,𝑄   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑃(𝑥)   𝑅(𝑥)   𝐼(𝑥)   𝑀(𝑥)   𝑉(𝑥)

Proof of Theorem rprmdvdsprod
Dummy variables 𝑎 𝑏 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rprmdvdsprod.3 . . 3 (𝜑𝑄 (𝑀 Σg 𝐹))
2 rprmdvdsprod.m . . . . . 6 𝑀 = (mulGrp‘𝑅)
3 rprmdvdsprod.b . . . . . 6 𝐵 = (Base‘𝑅)
42, 3mgpbas 20048 . . . . 5 𝐵 = (Base‘𝑀)
5 rprmdvdsprod.1 . . . . . 6 1 = (1r𝑅)
62, 5ringidval 20086 . . . . 5 1 = (0g𝑀)
7 eqid 2729 . . . . . 6 (.r𝑅) = (.r𝑅)
82, 7mgpplusg 20047 . . . . 5 (.r𝑅) = (+g𝑀)
9 rprmdvdsprod.r . . . . . 6 (𝜑𝑅 ∈ CRing)
102crngmgp 20144 . . . . . 6 (𝑅 ∈ CRing → 𝑀 ∈ CMnd)
119, 10syl 17 . . . . 5 (𝜑𝑀 ∈ CMnd)
12 rprmdvdsprod.i . . . . 5 (𝜑𝐼𝑉)
13 rprmdvdsprod.f . . . . 5 (𝜑𝐹:𝐼𝐵)
14 rprmdvdsprod.2 . . . . 5 (𝜑𝐹 finSupp 1 )
15 disjdifr 4426 . . . . . 6 ((𝐼 ∖ (𝐹 supp 1 )) ∩ (𝐹 supp 1 )) = ∅
1615a1i 11 . . . . 5 (𝜑 → ((𝐼 ∖ (𝐹 supp 1 )) ∩ (𝐹 supp 1 )) = ∅)
17 suppssdm 8117 . . . . . . . 8 (𝐹 supp 1 ) ⊆ dom 𝐹
1817, 13fssdm 6675 . . . . . . 7 (𝜑 → (𝐹 supp 1 ) ⊆ 𝐼)
19 undifr 4436 . . . . . . 7 ((𝐹 supp 1 ) ⊆ 𝐼 ↔ ((𝐼 ∖ (𝐹 supp 1 )) ∪ (𝐹 supp 1 )) = 𝐼)
2018, 19sylib 218 . . . . . 6 (𝜑 → ((𝐼 ∖ (𝐹 supp 1 )) ∪ (𝐹 supp 1 )) = 𝐼)
2120eqcomd 2735 . . . . 5 (𝜑𝐼 = ((𝐼 ∖ (𝐹 supp 1 )) ∪ (𝐹 supp 1 )))
224, 6, 8, 11, 12, 13, 14, 16, 21gsumsplit 19825 . . . 4 (𝜑 → (𝑀 Σg 𝐹) = ((𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 ))))(.r𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))))
23 difssd 4090 . . . . . . . . 9 (𝜑 → (𝐼 ∖ (𝐹 supp 1 )) ⊆ 𝐼)
2413, 23feqresmpt 6896 . . . . . . . 8 (𝜑 → (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 ))) = (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ (𝐹𝑧)))
2513ffnd 6657 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝐼)
2625adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 𝐹 Fn 𝐼)
2712adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 𝐼𝑉)
289crngringd 20149 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
293, 5ringidcl 20168 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 1𝐵)
3028, 29syl 17 . . . . . . . . . . 11 (𝜑1𝐵)
3130adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 1𝐵)
32 simpr 484 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )))
3326, 27, 31, 32fvdifsupp 8111 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → (𝐹𝑧) = 1 )
3433mpteq2dva 5188 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ (𝐹𝑧)) = (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 ))
3524, 34eqtrd 2764 . . . . . . 7 (𝜑 → (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 ))) = (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 ))
3635oveq2d 7369 . . . . . 6 (𝜑 → (𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 )))) = (𝑀 Σg (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 )))
3711cmnmndd 19701 . . . . . . 7 (𝜑𝑀 ∈ Mnd)
3812difexd 5273 . . . . . . 7 (𝜑 → (𝐼 ∖ (𝐹 supp 1 )) ∈ V)
396gsumz 18728 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝐼 ∖ (𝐹 supp 1 )) ∈ V) → (𝑀 Σg (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 )) = 1 )
4037, 38, 39syl2anc 584 . . . . . 6 (𝜑 → (𝑀 Σg (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 )) = 1 )
4136, 40eqtrd 2764 . . . . 5 (𝜑 → (𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 )))) = 1 )
4241oveq1d 7368 . . . 4 (𝜑 → ((𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 ))))(.r𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))) = ( 1 (.r𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))))
43 ovexd 7388 . . . . . 6 (𝜑 → (𝐹 supp 1 ) ∈ V)
4413, 18fssresd 6695 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐹 supp 1 )):(𝐹 supp 1 )⟶𝐵)
4514, 30fsuppres 9302 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐹 supp 1 )) finSupp 1 )
464, 6, 11, 43, 44, 45gsumcl 19812 . . . . 5 (𝜑 → (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))) ∈ 𝐵)
473, 7, 5, 28, 46ringlidmd 20175 . . . 4 (𝜑 → ( 1 (.r𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))) = (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))
4822, 42, 473eqtrd 2768 . . 3 (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))
491, 48breqtrd 5121 . 2 (𝜑𝑄 (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))
50 reseq2 5929 . . . . . 6 (𝑏 = ∅ → (𝐹𝑏) = (𝐹 ↾ ∅))
5150oveq2d 7369 . . . . 5 (𝑏 = ∅ → (𝑀 Σg (𝐹𝑏)) = (𝑀 Σg (𝐹 ↾ ∅)))
5251breq2d 5107 . . . 4 (𝑏 = ∅ → (𝑄 (𝑀 Σg (𝐹𝑏)) ↔ 𝑄 (𝑀 Σg (𝐹 ↾ ∅))))
53 rexeq 3286 . . . 4 (𝑏 = ∅ → (∃𝑥𝑏 𝑄 (𝐹𝑥) ↔ ∃𝑥 ∈ ∅ 𝑄 (𝐹𝑥)))
5452, 53imbi12d 344 . . 3 (𝑏 = ∅ → ((𝑄 (𝑀 Σg (𝐹𝑏)) → ∃𝑥𝑏 𝑄 (𝐹𝑥)) ↔ (𝑄 (𝑀 Σg (𝐹 ↾ ∅)) → ∃𝑥 ∈ ∅ 𝑄 (𝐹𝑥))))
55 reseq2 5929 . . . . . 6 (𝑏 = 𝑎 → (𝐹𝑏) = (𝐹𝑎))
5655oveq2d 7369 . . . . 5 (𝑏 = 𝑎 → (𝑀 Σg (𝐹𝑏)) = (𝑀 Σg (𝐹𝑎)))
5756breq2d 5107 . . . 4 (𝑏 = 𝑎 → (𝑄 (𝑀 Σg (𝐹𝑏)) ↔ 𝑄 (𝑀 Σg (𝐹𝑎))))
58 rexeq 3286 . . . 4 (𝑏 = 𝑎 → (∃𝑥𝑏 𝑄 (𝐹𝑥) ↔ ∃𝑥𝑎 𝑄 (𝐹𝑥)))
5957, 58imbi12d 344 . . 3 (𝑏 = 𝑎 → ((𝑄 (𝑀 Σg (𝐹𝑏)) → ∃𝑥𝑏 𝑄 (𝐹𝑥)) ↔ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))))
60 reseq2 5929 . . . . . 6 (𝑏 = (𝑎 ∪ {𝑦}) → (𝐹𝑏) = (𝐹 ↾ (𝑎 ∪ {𝑦})))
6160oveq2d 7369 . . . . 5 (𝑏 = (𝑎 ∪ {𝑦}) → (𝑀 Σg (𝐹𝑏)) = (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))))
6261breq2d 5107 . . . 4 (𝑏 = (𝑎 ∪ {𝑦}) → (𝑄 (𝑀 Σg (𝐹𝑏)) ↔ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))))
63 rexeq 3286 . . . 4 (𝑏 = (𝑎 ∪ {𝑦}) → (∃𝑥𝑏 𝑄 (𝐹𝑥) ↔ ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥)))
6462, 63imbi12d 344 . . 3 (𝑏 = (𝑎 ∪ {𝑦}) → ((𝑄 (𝑀 Σg (𝐹𝑏)) → ∃𝑥𝑏 𝑄 (𝐹𝑥)) ↔ (𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥))))
65 reseq2 5929 . . . . . 6 (𝑏 = (𝐹 supp 1 ) → (𝐹𝑏) = (𝐹 ↾ (𝐹 supp 1 )))
6665oveq2d 7369 . . . . 5 (𝑏 = (𝐹 supp 1 ) → (𝑀 Σg (𝐹𝑏)) = (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))
6766breq2d 5107 . . . 4 (𝑏 = (𝐹 supp 1 ) → (𝑄 (𝑀 Σg (𝐹𝑏)) ↔ 𝑄 (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))))
68 rexeq 3286 . . . 4 (𝑏 = (𝐹 supp 1 ) → (∃𝑥𝑏 𝑄 (𝐹𝑥) ↔ ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥)))
6967, 68imbi12d 344 . . 3 (𝑏 = (𝐹 supp 1 ) → ((𝑄 (𝑀 Σg (𝐹𝑏)) → ∃𝑥𝑏 𝑄 (𝐹𝑥)) ↔ (𝑄 (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))) → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥))))
70 rprmdvdsprod.d . . . . . 6 = (∥r𝑅)
71 rprmdvdsprod.p . . . . . 6 𝑃 = (RPrime‘𝑅)
72 rprmdvdsprod.q . . . . . 6 (𝜑𝑄𝑃)
735, 70, 71, 9, 72rprmndvdsr1 33474 . . . . 5 (𝜑 → ¬ 𝑄 1 )
74 res0 5938 . . . . . . . . 9 (𝐹 ↾ ∅) = ∅
7574oveq2i 7364 . . . . . . . 8 (𝑀 Σg (𝐹 ↾ ∅)) = (𝑀 Σg ∅)
766gsum0 18576 . . . . . . . 8 (𝑀 Σg ∅) = 1
7775, 76eqtri 2752 . . . . . . 7 (𝑀 Σg (𝐹 ↾ ∅)) = 1
7877a1i 11 . . . . . 6 (𝜑 → (𝑀 Σg (𝐹 ↾ ∅)) = 1 )
7978breq2d 5107 . . . . 5 (𝜑 → (𝑄 (𝑀 Σg (𝐹 ↾ ∅)) ↔ 𝑄 1 ))
8073, 79mtbird 325 . . . 4 (𝜑 → ¬ 𝑄 (𝑀 Σg (𝐹 ↾ ∅)))
8180pm2.21d 121 . . 3 (𝜑 → (𝑄 (𝑀 Σg (𝐹 ↾ ∅)) → ∃𝑥 ∈ ∅ 𝑄 (𝐹𝑥)))
82 simpllr 775 . . . . . . . 8 ((((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 (𝑀 Σg (𝐹𝑎))) → (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥)))
8382syldbl2 841 . . . . . . 7 ((((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 (𝑀 Σg (𝐹𝑎))) → ∃𝑥𝑎 𝑄 (𝐹𝑥))
84 simpr 484 . . . . . . . 8 ((((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 (𝐹𝑦)) → 𝑄 (𝐹𝑦))
85 vex 3442 . . . . . . . . 9 𝑦 ∈ V
86 fveq2 6826 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
8786breq2d 5107 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑄 (𝐹𝑥) ↔ 𝑄 (𝐹𝑦)))
8885, 87rexsn 4636 . . . . . . . 8 (∃𝑥 ∈ {𝑦}𝑄 (𝐹𝑥) ↔ 𝑄 (𝐹𝑦))
8984, 88sylibr 234 . . . . . . 7 ((((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 (𝐹𝑦)) → ∃𝑥 ∈ {𝑦}𝑄 (𝐹𝑥))
909ad4antr 732 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑅 ∈ CRing)
9172ad4antr 732 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑄𝑃)
9290, 10syl 17 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑀 ∈ CMnd)
93 vex 3442 . . . . . . . . . 10 𝑎 ∈ V
9493a1i 11 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎 ∈ V)
9513ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝐹:𝐼𝐵)
96 simp-4r 783 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎 ⊆ (𝐹 supp 1 ))
9718ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 supp 1 ) ⊆ 𝐼)
9896, 97sstrd 3948 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎𝐼)
9995, 98fssresd 6695 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹𝑎):𝑎𝐵)
10014fsuppimpd 9278 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 1 ) ∈ Fin)
101100ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 supp 1 ) ∈ Fin)
102101, 96ssfid 9170 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎 ∈ Fin)
10330ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 1𝐵)
10499, 102, 103fdmfifsupp 9284 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹𝑎) finSupp 1 )
1054, 6, 92, 94, 99, 104gsumcl 19812 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝑀 Σg (𝐹𝑎)) ∈ 𝐵)
10697ssdifssd 4100 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ((𝐹 supp 1 ) ∖ 𝑎) ⊆ 𝐼)
107 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎))
108106, 107sseldd 3938 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑦𝐼)
10995, 108ffvelcdmd 7023 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹𝑦) ∈ 𝐵)
110 simpr 484 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))))
111 eqid 2729 . . . . . . . . . 10 (Cntz‘𝑀) = (Cntz‘𝑀)
112 eqid 2729 . . . . . . . . . 10 (𝐹𝑦) = (𝐹𝑦)
11337ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑀 ∈ Mnd)
114107eldifbd 3918 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ¬ 𝑦𝑎)
11595fimassd 6677 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 “ (𝑎 ∪ {𝑦})) ⊆ 𝐵)
1164, 111cntzcmn 19737 . . . . . . . . . . . 12 ((𝑀 ∈ CMnd ∧ (𝐹 “ (𝑎 ∪ {𝑦})) ⊆ 𝐵) → ((Cntz‘𝑀)‘(𝐹 “ (𝑎 ∪ {𝑦}))) = 𝐵)
11792, 115, 116syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ((Cntz‘𝑀)‘(𝐹 “ (𝑎 ∪ {𝑦}))) = 𝐵)
118115, 117sseqtrrd 3975 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 “ (𝑎 ∪ {𝑦})) ⊆ ((Cntz‘𝑀)‘(𝐹 “ (𝑎 ∪ {𝑦}))))
1194, 8, 111, 112, 95, 98, 113, 102, 114, 108, 109, 118gsumzresunsn 33022 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) = ((𝑀 Σg (𝐹𝑎))(.r𝑅)(𝐹𝑦)))
120110, 119breqtrd 5121 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑄 ((𝑀 Σg (𝐹𝑎))(.r𝑅)(𝐹𝑦)))
1213, 71, 70, 7, 90, 91, 105, 109, 120rprmdvds 33469 . . . . . . 7 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝑄 (𝑀 Σg (𝐹𝑎)) ∨ 𝑄 (𝐹𝑦)))
12283, 89, 121orim12da 32420 . . . . . 6 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (∃𝑥𝑎 𝑄 (𝐹𝑥) ∨ ∃𝑥 ∈ {𝑦}𝑄 (𝐹𝑥)))
123 rexun 4149 . . . . . 6 (∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥) ↔ (∃𝑥𝑎 𝑄 (𝐹𝑥) ∨ ∃𝑥 ∈ {𝑦}𝑄 (𝐹𝑥)))
124122, 123sylibr 234 . . . . 5 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥))
125124exp31 419 . . . 4 (((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) → ((𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥)) → (𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥))))
126125anasss 466 . . 3 ((𝜑 ∧ (𝑎 ⊆ (𝐹 supp 1 ) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎))) → ((𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥)) → (𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥))))
12754, 59, 64, 69, 81, 126, 100findcard2d 9090 . 2 (𝜑 → (𝑄 (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))) → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥)))
12849, 127mpd 15 1 (𝜑 → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286  {csn 4579   class class class wbr 5095  cmpt 5176  cres 5625  cima 5626   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353   supp csupp 8100  Fincfn 8879   finSupp cfsupp 9270  Basecbs 17138  .rcmulr 17180   Σg cgsu 17362  Mndcmnd 18626  Cntzccntz 19212  CMndccmn 19677  mulGrpcmgp 20043  1rcur 20084  Ringcrg 20136  CRingccrg 20137  rcdsr 20257  RPrimecrpm 20335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-0g 17363  df-gsum 17364  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-mgp 20044  df-ur 20085  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-rprm 20336
This theorem is referenced by:  1arithidom  33487
  Copyright terms: Public domain W3C validator