Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmdvdsprod Structured version   Visualization version   GIF version

Theorem rprmdvdsprod 33497
Description: If a prime element 𝑄 divides a product, then it divides one term. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmdvdsprod.b 𝐵 = (Base‘𝑅)
rprmdvdsprod.p 𝑃 = (RPrime‘𝑅)
rprmdvdsprod.d = (∥r𝑅)
rprmdvdsprod.1 1 = (1r𝑅)
rprmdvdsprod.m 𝑀 = (mulGrp‘𝑅)
rprmdvdsprod.r (𝜑𝑅 ∈ CRing)
rprmdvdsprod.q (𝜑𝑄𝑃)
rprmdvdsprod.i (𝜑𝐼𝑉)
rprmdvdsprod.2 (𝜑𝐹 finSupp 1 )
rprmdvdsprod.f (𝜑𝐹:𝐼𝐵)
rprmdvdsprod.3 (𝜑𝑄 (𝑀 Σg 𝐹))
Assertion
Ref Expression
rprmdvdsprod (𝜑 → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥))
Distinct variable groups:   𝑥, 1   𝑥,   𝑥,𝐹   𝑥,𝑄   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑃(𝑥)   𝑅(𝑥)   𝐼(𝑥)   𝑀(𝑥)   𝑉(𝑥)

Proof of Theorem rprmdvdsprod
Dummy variables 𝑎 𝑏 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rprmdvdsprod.3 . . 3 (𝜑𝑄 (𝑀 Σg 𝐹))
2 rprmdvdsprod.m . . . . . 6 𝑀 = (mulGrp‘𝑅)
3 rprmdvdsprod.b . . . . . 6 𝐵 = (Base‘𝑅)
42, 3mgpbas 20064 . . . . 5 𝐵 = (Base‘𝑀)
5 rprmdvdsprod.1 . . . . . 6 1 = (1r𝑅)
62, 5ringidval 20102 . . . . 5 1 = (0g𝑀)
7 eqid 2731 . . . . . 6 (.r𝑅) = (.r𝑅)
82, 7mgpplusg 20063 . . . . 5 (.r𝑅) = (+g𝑀)
9 rprmdvdsprod.r . . . . . 6 (𝜑𝑅 ∈ CRing)
102crngmgp 20160 . . . . . 6 (𝑅 ∈ CRing → 𝑀 ∈ CMnd)
119, 10syl 17 . . . . 5 (𝜑𝑀 ∈ CMnd)
12 rprmdvdsprod.i . . . . 5 (𝜑𝐼𝑉)
13 rprmdvdsprod.f . . . . 5 (𝜑𝐹:𝐼𝐵)
14 rprmdvdsprod.2 . . . . 5 (𝜑𝐹 finSupp 1 )
15 disjdifr 4423 . . . . . 6 ((𝐼 ∖ (𝐹 supp 1 )) ∩ (𝐹 supp 1 )) = ∅
1615a1i 11 . . . . 5 (𝜑 → ((𝐼 ∖ (𝐹 supp 1 )) ∩ (𝐹 supp 1 )) = ∅)
17 suppssdm 8107 . . . . . . . 8 (𝐹 supp 1 ) ⊆ dom 𝐹
1817, 13fssdm 6670 . . . . . . 7 (𝜑 → (𝐹 supp 1 ) ⊆ 𝐼)
19 undifr 4433 . . . . . . 7 ((𝐹 supp 1 ) ⊆ 𝐼 ↔ ((𝐼 ∖ (𝐹 supp 1 )) ∪ (𝐹 supp 1 )) = 𝐼)
2018, 19sylib 218 . . . . . 6 (𝜑 → ((𝐼 ∖ (𝐹 supp 1 )) ∪ (𝐹 supp 1 )) = 𝐼)
2120eqcomd 2737 . . . . 5 (𝜑𝐼 = ((𝐼 ∖ (𝐹 supp 1 )) ∪ (𝐹 supp 1 )))
224, 6, 8, 11, 12, 13, 14, 16, 21gsumsplit 19841 . . . 4 (𝜑 → (𝑀 Σg 𝐹) = ((𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 ))))(.r𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))))
23 difssd 4087 . . . . . . . . 9 (𝜑 → (𝐼 ∖ (𝐹 supp 1 )) ⊆ 𝐼)
2413, 23feqresmpt 6891 . . . . . . . 8 (𝜑 → (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 ))) = (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ (𝐹𝑧)))
2513ffnd 6652 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝐼)
2625adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 𝐹 Fn 𝐼)
2712adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 𝐼𝑉)
289crngringd 20165 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
293, 5ringidcl 20184 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 1𝐵)
3028, 29syl 17 . . . . . . . . . . 11 (𝜑1𝐵)
3130adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 1𝐵)
32 simpr 484 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )))
3326, 27, 31, 32fvdifsupp 8101 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → (𝐹𝑧) = 1 )
3433mpteq2dva 5184 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ (𝐹𝑧)) = (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 ))
3524, 34eqtrd 2766 . . . . . . 7 (𝜑 → (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 ))) = (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 ))
3635oveq2d 7362 . . . . . 6 (𝜑 → (𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 )))) = (𝑀 Σg (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 )))
3711cmnmndd 19717 . . . . . . 7 (𝜑𝑀 ∈ Mnd)
3812difexd 5269 . . . . . . 7 (𝜑 → (𝐼 ∖ (𝐹 supp 1 )) ∈ V)
396gsumz 18744 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝐼 ∖ (𝐹 supp 1 )) ∈ V) → (𝑀 Σg (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 )) = 1 )
4037, 38, 39syl2anc 584 . . . . . 6 (𝜑 → (𝑀 Σg (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 )) = 1 )
4136, 40eqtrd 2766 . . . . 5 (𝜑 → (𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 )))) = 1 )
4241oveq1d 7361 . . . 4 (𝜑 → ((𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 ))))(.r𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))) = ( 1 (.r𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))))
43 ovexd 7381 . . . . . 6 (𝜑 → (𝐹 supp 1 ) ∈ V)
4413, 18fssresd 6690 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐹 supp 1 )):(𝐹 supp 1 )⟶𝐵)
4514, 30fsuppres 9277 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐹 supp 1 )) finSupp 1 )
464, 6, 11, 43, 44, 45gsumcl 19828 . . . . 5 (𝜑 → (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))) ∈ 𝐵)
473, 7, 5, 28, 46ringlidmd 20191 . . . 4 (𝜑 → ( 1 (.r𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))) = (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))
4822, 42, 473eqtrd 2770 . . 3 (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))
491, 48breqtrd 5117 . 2 (𝜑𝑄 (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))
50 reseq2 5923 . . . . . 6 (𝑏 = ∅ → (𝐹𝑏) = (𝐹 ↾ ∅))
5150oveq2d 7362 . . . . 5 (𝑏 = ∅ → (𝑀 Σg (𝐹𝑏)) = (𝑀 Σg (𝐹 ↾ ∅)))
5251breq2d 5103 . . . 4 (𝑏 = ∅ → (𝑄 (𝑀 Σg (𝐹𝑏)) ↔ 𝑄 (𝑀 Σg (𝐹 ↾ ∅))))
53 rexeq 3288 . . . 4 (𝑏 = ∅ → (∃𝑥𝑏 𝑄 (𝐹𝑥) ↔ ∃𝑥 ∈ ∅ 𝑄 (𝐹𝑥)))
5452, 53imbi12d 344 . . 3 (𝑏 = ∅ → ((𝑄 (𝑀 Σg (𝐹𝑏)) → ∃𝑥𝑏 𝑄 (𝐹𝑥)) ↔ (𝑄 (𝑀 Σg (𝐹 ↾ ∅)) → ∃𝑥 ∈ ∅ 𝑄 (𝐹𝑥))))
55 reseq2 5923 . . . . . 6 (𝑏 = 𝑎 → (𝐹𝑏) = (𝐹𝑎))
5655oveq2d 7362 . . . . 5 (𝑏 = 𝑎 → (𝑀 Σg (𝐹𝑏)) = (𝑀 Σg (𝐹𝑎)))
5756breq2d 5103 . . . 4 (𝑏 = 𝑎 → (𝑄 (𝑀 Σg (𝐹𝑏)) ↔ 𝑄 (𝑀 Σg (𝐹𝑎))))
58 rexeq 3288 . . . 4 (𝑏 = 𝑎 → (∃𝑥𝑏 𝑄 (𝐹𝑥) ↔ ∃𝑥𝑎 𝑄 (𝐹𝑥)))
5957, 58imbi12d 344 . . 3 (𝑏 = 𝑎 → ((𝑄 (𝑀 Σg (𝐹𝑏)) → ∃𝑥𝑏 𝑄 (𝐹𝑥)) ↔ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))))
60 reseq2 5923 . . . . . 6 (𝑏 = (𝑎 ∪ {𝑦}) → (𝐹𝑏) = (𝐹 ↾ (𝑎 ∪ {𝑦})))
6160oveq2d 7362 . . . . 5 (𝑏 = (𝑎 ∪ {𝑦}) → (𝑀 Σg (𝐹𝑏)) = (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))))
6261breq2d 5103 . . . 4 (𝑏 = (𝑎 ∪ {𝑦}) → (𝑄 (𝑀 Σg (𝐹𝑏)) ↔ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))))
63 rexeq 3288 . . . 4 (𝑏 = (𝑎 ∪ {𝑦}) → (∃𝑥𝑏 𝑄 (𝐹𝑥) ↔ ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥)))
6462, 63imbi12d 344 . . 3 (𝑏 = (𝑎 ∪ {𝑦}) → ((𝑄 (𝑀 Σg (𝐹𝑏)) → ∃𝑥𝑏 𝑄 (𝐹𝑥)) ↔ (𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥))))
65 reseq2 5923 . . . . . 6 (𝑏 = (𝐹 supp 1 ) → (𝐹𝑏) = (𝐹 ↾ (𝐹 supp 1 )))
6665oveq2d 7362 . . . . 5 (𝑏 = (𝐹 supp 1 ) → (𝑀 Σg (𝐹𝑏)) = (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))
6766breq2d 5103 . . . 4 (𝑏 = (𝐹 supp 1 ) → (𝑄 (𝑀 Σg (𝐹𝑏)) ↔ 𝑄 (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))))
68 rexeq 3288 . . . 4 (𝑏 = (𝐹 supp 1 ) → (∃𝑥𝑏 𝑄 (𝐹𝑥) ↔ ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥)))
6967, 68imbi12d 344 . . 3 (𝑏 = (𝐹 supp 1 ) → ((𝑄 (𝑀 Σg (𝐹𝑏)) → ∃𝑥𝑏 𝑄 (𝐹𝑥)) ↔ (𝑄 (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))) → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥))))
70 rprmdvdsprod.d . . . . . 6 = (∥r𝑅)
71 rprmdvdsprod.p . . . . . 6 𝑃 = (RPrime‘𝑅)
72 rprmdvdsprod.q . . . . . 6 (𝜑𝑄𝑃)
735, 70, 71, 9, 72rprmndvdsr1 33487 . . . . 5 (𝜑 → ¬ 𝑄 1 )
74 res0 5932 . . . . . . . . 9 (𝐹 ↾ ∅) = ∅
7574oveq2i 7357 . . . . . . . 8 (𝑀 Σg (𝐹 ↾ ∅)) = (𝑀 Σg ∅)
766gsum0 18592 . . . . . . . 8 (𝑀 Σg ∅) = 1
7775, 76eqtri 2754 . . . . . . 7 (𝑀 Σg (𝐹 ↾ ∅)) = 1
7877a1i 11 . . . . . 6 (𝜑 → (𝑀 Σg (𝐹 ↾ ∅)) = 1 )
7978breq2d 5103 . . . . 5 (𝜑 → (𝑄 (𝑀 Σg (𝐹 ↾ ∅)) ↔ 𝑄 1 ))
8073, 79mtbird 325 . . . 4 (𝜑 → ¬ 𝑄 (𝑀 Σg (𝐹 ↾ ∅)))
8180pm2.21d 121 . . 3 (𝜑 → (𝑄 (𝑀 Σg (𝐹 ↾ ∅)) → ∃𝑥 ∈ ∅ 𝑄 (𝐹𝑥)))
82 simpllr 775 . . . . . . . 8 ((((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 (𝑀 Σg (𝐹𝑎))) → (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥)))
8382syldbl2 841 . . . . . . 7 ((((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 (𝑀 Σg (𝐹𝑎))) → ∃𝑥𝑎 𝑄 (𝐹𝑥))
84 simpr 484 . . . . . . . 8 ((((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 (𝐹𝑦)) → 𝑄 (𝐹𝑦))
85 vex 3440 . . . . . . . . 9 𝑦 ∈ V
86 fveq2 6822 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
8786breq2d 5103 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑄 (𝐹𝑥) ↔ 𝑄 (𝐹𝑦)))
8885, 87rexsn 4635 . . . . . . . 8 (∃𝑥 ∈ {𝑦}𝑄 (𝐹𝑥) ↔ 𝑄 (𝐹𝑦))
8984, 88sylibr 234 . . . . . . 7 ((((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 (𝐹𝑦)) → ∃𝑥 ∈ {𝑦}𝑄 (𝐹𝑥))
909ad4antr 732 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑅 ∈ CRing)
9172ad4antr 732 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑄𝑃)
9290, 10syl 17 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑀 ∈ CMnd)
93 vex 3440 . . . . . . . . . 10 𝑎 ∈ V
9493a1i 11 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎 ∈ V)
9513ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝐹:𝐼𝐵)
96 simp-4r 783 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎 ⊆ (𝐹 supp 1 ))
9718ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 supp 1 ) ⊆ 𝐼)
9896, 97sstrd 3945 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎𝐼)
9995, 98fssresd 6690 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹𝑎):𝑎𝐵)
10014fsuppimpd 9253 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 1 ) ∈ Fin)
101100ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 supp 1 ) ∈ Fin)
102101, 96ssfid 9153 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎 ∈ Fin)
10330ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 1𝐵)
10499, 102, 103fdmfifsupp 9259 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹𝑎) finSupp 1 )
1054, 6, 92, 94, 99, 104gsumcl 19828 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝑀 Σg (𝐹𝑎)) ∈ 𝐵)
10697ssdifssd 4097 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ((𝐹 supp 1 ) ∖ 𝑎) ⊆ 𝐼)
107 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎))
108106, 107sseldd 3935 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑦𝐼)
10995, 108ffvelcdmd 7018 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹𝑦) ∈ 𝐵)
110 simpr 484 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))))
111 eqid 2731 . . . . . . . . . 10 (Cntz‘𝑀) = (Cntz‘𝑀)
112 eqid 2731 . . . . . . . . . 10 (𝐹𝑦) = (𝐹𝑦)
11337ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑀 ∈ Mnd)
114107eldifbd 3915 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ¬ 𝑦𝑎)
11595fimassd 6672 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 “ (𝑎 ∪ {𝑦})) ⊆ 𝐵)
1164, 111cntzcmn 19753 . . . . . . . . . . . 12 ((𝑀 ∈ CMnd ∧ (𝐹 “ (𝑎 ∪ {𝑦})) ⊆ 𝐵) → ((Cntz‘𝑀)‘(𝐹 “ (𝑎 ∪ {𝑦}))) = 𝐵)
11792, 115, 116syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ((Cntz‘𝑀)‘(𝐹 “ (𝑎 ∪ {𝑦}))) = 𝐵)
118115, 117sseqtrrd 3972 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 “ (𝑎 ∪ {𝑦})) ⊆ ((Cntz‘𝑀)‘(𝐹 “ (𝑎 ∪ {𝑦}))))
1194, 8, 111, 112, 95, 98, 113, 102, 114, 108, 109, 118gsumzresunsn 33034 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) = ((𝑀 Σg (𝐹𝑎))(.r𝑅)(𝐹𝑦)))
120110, 119breqtrd 5117 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑄 ((𝑀 Σg (𝐹𝑎))(.r𝑅)(𝐹𝑦)))
1213, 71, 70, 7, 90, 91, 105, 109, 120rprmdvds 33482 . . . . . . 7 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝑄 (𝑀 Σg (𝐹𝑎)) ∨ 𝑄 (𝐹𝑦)))
12283, 89, 121orim12da 32435 . . . . . 6 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (∃𝑥𝑎 𝑄 (𝐹𝑥) ∨ ∃𝑥 ∈ {𝑦}𝑄 (𝐹𝑥)))
123 rexun 4146 . . . . . 6 (∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥) ↔ (∃𝑥𝑎 𝑄 (𝐹𝑥) ∨ ∃𝑥 ∈ {𝑦}𝑄 (𝐹𝑥)))
124122, 123sylibr 234 . . . . 5 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥))
125124exp31 419 . . . 4 (((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) → ((𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥)) → (𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥))))
126125anasss 466 . . 3 ((𝜑 ∧ (𝑎 ⊆ (𝐹 supp 1 ) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎))) → ((𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥)) → (𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥))))
12754, 59, 64, 69, 81, 126, 100findcard2d 9076 . 2 (𝜑 → (𝑄 (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))) → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥)))
12849, 127mpd 15 1 (𝜑 → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  cdif 3899  cun 3900  cin 3901  wss 3902  c0 4283  {csn 4576   class class class wbr 5091  cmpt 5172  cres 5618  cima 5619   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346   supp csupp 8090  Fincfn 8869   finSupp cfsupp 9245  Basecbs 17120  .rcmulr 17162   Σg cgsu 17344  Mndcmnd 18642  Cntzccntz 19228  CMndccmn 19693  mulGrpcmgp 20059  1rcur 20100  Ringcrg 20152  CRingccrg 20153  rcdsr 20273  RPrimecrpm 20351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19230  df-cmn 19695  df-mgp 20060  df-ur 20101  df-ring 20154  df-cring 20155  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-rprm 20352
This theorem is referenced by:  1arithidom  33500
  Copyright terms: Public domain W3C validator