Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmdvdsprod Structured version   Visualization version   GIF version

Theorem rprmdvdsprod 33508
Description: If a prime element 𝑄 divides a product, then it divides one term. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmdvdsprod.b 𝐵 = (Base‘𝑅)
rprmdvdsprod.p 𝑃 = (RPrime‘𝑅)
rprmdvdsprod.d = (∥r𝑅)
rprmdvdsprod.1 1 = (1r𝑅)
rprmdvdsprod.m 𝑀 = (mulGrp‘𝑅)
rprmdvdsprod.r (𝜑𝑅 ∈ CRing)
rprmdvdsprod.q (𝜑𝑄𝑃)
rprmdvdsprod.i (𝜑𝐼𝑉)
rprmdvdsprod.2 (𝜑𝐹 finSupp 1 )
rprmdvdsprod.f (𝜑𝐹:𝐼𝐵)
rprmdvdsprod.3 (𝜑𝑄 (𝑀 Σg 𝐹))
Assertion
Ref Expression
rprmdvdsprod (𝜑 → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥))
Distinct variable groups:   𝑥, 1   𝑥,   𝑥,𝐹   𝑥,𝑄   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑃(𝑥)   𝑅(𝑥)   𝐼(𝑥)   𝑀(𝑥)   𝑉(𝑥)

Proof of Theorem rprmdvdsprod
Dummy variables 𝑎 𝑏 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rprmdvdsprod.3 . . 3 (𝜑𝑄 (𝑀 Σg 𝐹))
2 rprmdvdsprod.m . . . . . 6 𝑀 = (mulGrp‘𝑅)
3 rprmdvdsprod.b . . . . . 6 𝐵 = (Base‘𝑅)
42, 3mgpbas 20067 . . . . 5 𝐵 = (Base‘𝑀)
5 rprmdvdsprod.1 . . . . . 6 1 = (1r𝑅)
62, 5ringidval 20105 . . . . 5 1 = (0g𝑀)
7 eqid 2733 . . . . . 6 (.r𝑅) = (.r𝑅)
82, 7mgpplusg 20066 . . . . 5 (.r𝑅) = (+g𝑀)
9 rprmdvdsprod.r . . . . . 6 (𝜑𝑅 ∈ CRing)
102crngmgp 20163 . . . . . 6 (𝑅 ∈ CRing → 𝑀 ∈ CMnd)
119, 10syl 17 . . . . 5 (𝜑𝑀 ∈ CMnd)
12 rprmdvdsprod.i . . . . 5 (𝜑𝐼𝑉)
13 rprmdvdsprod.f . . . . 5 (𝜑𝐹:𝐼𝐵)
14 rprmdvdsprod.2 . . . . 5 (𝜑𝐹 finSupp 1 )
15 disjdifr 4422 . . . . . 6 ((𝐼 ∖ (𝐹 supp 1 )) ∩ (𝐹 supp 1 )) = ∅
1615a1i 11 . . . . 5 (𝜑 → ((𝐼 ∖ (𝐹 supp 1 )) ∩ (𝐹 supp 1 )) = ∅)
17 suppssdm 8115 . . . . . . . 8 (𝐹 supp 1 ) ⊆ dom 𝐹
1817, 13fssdm 6677 . . . . . . 7 (𝜑 → (𝐹 supp 1 ) ⊆ 𝐼)
19 undifr 4432 . . . . . . 7 ((𝐹 supp 1 ) ⊆ 𝐼 ↔ ((𝐼 ∖ (𝐹 supp 1 )) ∪ (𝐹 supp 1 )) = 𝐼)
2018, 19sylib 218 . . . . . 6 (𝜑 → ((𝐼 ∖ (𝐹 supp 1 )) ∪ (𝐹 supp 1 )) = 𝐼)
2120eqcomd 2739 . . . . 5 (𝜑𝐼 = ((𝐼 ∖ (𝐹 supp 1 )) ∪ (𝐹 supp 1 )))
224, 6, 8, 11, 12, 13, 14, 16, 21gsumsplit 19844 . . . 4 (𝜑 → (𝑀 Σg 𝐹) = ((𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 ))))(.r𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))))
23 difssd 4086 . . . . . . . . 9 (𝜑 → (𝐼 ∖ (𝐹 supp 1 )) ⊆ 𝐼)
2413, 23feqresmpt 6899 . . . . . . . 8 (𝜑 → (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 ))) = (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ (𝐹𝑧)))
2513ffnd 6659 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝐼)
2625adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 𝐹 Fn 𝐼)
2712adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 𝐼𝑉)
289crngringd 20168 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
293, 5ringidcl 20187 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 1𝐵)
3028, 29syl 17 . . . . . . . . . . 11 (𝜑1𝐵)
3130adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 1𝐵)
32 simpr 484 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → 𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )))
3326, 27, 31, 32fvdifsupp 8109 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 ))) → (𝐹𝑧) = 1 )
3433mpteq2dva 5188 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ (𝐹𝑧)) = (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 ))
3524, 34eqtrd 2768 . . . . . . 7 (𝜑 → (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 ))) = (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 ))
3635oveq2d 7370 . . . . . 6 (𝜑 → (𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 )))) = (𝑀 Σg (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 )))
3711cmnmndd 19720 . . . . . . 7 (𝜑𝑀 ∈ Mnd)
3812difexd 5273 . . . . . . 7 (𝜑 → (𝐼 ∖ (𝐹 supp 1 )) ∈ V)
396gsumz 18748 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝐼 ∖ (𝐹 supp 1 )) ∈ V) → (𝑀 Σg (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 )) = 1 )
4037, 38, 39syl2anc 584 . . . . . 6 (𝜑 → (𝑀 Σg (𝑧 ∈ (𝐼 ∖ (𝐹 supp 1 )) ↦ 1 )) = 1 )
4136, 40eqtrd 2768 . . . . 5 (𝜑 → (𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 )))) = 1 )
4241oveq1d 7369 . . . 4 (𝜑 → ((𝑀 Σg (𝐹 ↾ (𝐼 ∖ (𝐹 supp 1 ))))(.r𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))) = ( 1 (.r𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))))
43 ovexd 7389 . . . . . 6 (𝜑 → (𝐹 supp 1 ) ∈ V)
4413, 18fssresd 6697 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐹 supp 1 )):(𝐹 supp 1 )⟶𝐵)
4514, 30fsuppres 9286 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐹 supp 1 )) finSupp 1 )
464, 6, 11, 43, 44, 45gsumcl 19831 . . . . 5 (𝜑 → (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))) ∈ 𝐵)
473, 7, 5, 28, 46ringlidmd 20194 . . . 4 (𝜑 → ( 1 (.r𝑅)(𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))) = (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))
4822, 42, 473eqtrd 2772 . . 3 (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))
491, 48breqtrd 5121 . 2 (𝜑𝑄 (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))
50 reseq2 5929 . . . . . 6 (𝑏 = ∅ → (𝐹𝑏) = (𝐹 ↾ ∅))
5150oveq2d 7370 . . . . 5 (𝑏 = ∅ → (𝑀 Σg (𝐹𝑏)) = (𝑀 Σg (𝐹 ↾ ∅)))
5251breq2d 5107 . . . 4 (𝑏 = ∅ → (𝑄 (𝑀 Σg (𝐹𝑏)) ↔ 𝑄 (𝑀 Σg (𝐹 ↾ ∅))))
53 rexeq 3289 . . . 4 (𝑏 = ∅ → (∃𝑥𝑏 𝑄 (𝐹𝑥) ↔ ∃𝑥 ∈ ∅ 𝑄 (𝐹𝑥)))
5452, 53imbi12d 344 . . 3 (𝑏 = ∅ → ((𝑄 (𝑀 Σg (𝐹𝑏)) → ∃𝑥𝑏 𝑄 (𝐹𝑥)) ↔ (𝑄 (𝑀 Σg (𝐹 ↾ ∅)) → ∃𝑥 ∈ ∅ 𝑄 (𝐹𝑥))))
55 reseq2 5929 . . . . . 6 (𝑏 = 𝑎 → (𝐹𝑏) = (𝐹𝑎))
5655oveq2d 7370 . . . . 5 (𝑏 = 𝑎 → (𝑀 Σg (𝐹𝑏)) = (𝑀 Σg (𝐹𝑎)))
5756breq2d 5107 . . . 4 (𝑏 = 𝑎 → (𝑄 (𝑀 Σg (𝐹𝑏)) ↔ 𝑄 (𝑀 Σg (𝐹𝑎))))
58 rexeq 3289 . . . 4 (𝑏 = 𝑎 → (∃𝑥𝑏 𝑄 (𝐹𝑥) ↔ ∃𝑥𝑎 𝑄 (𝐹𝑥)))
5957, 58imbi12d 344 . . 3 (𝑏 = 𝑎 → ((𝑄 (𝑀 Σg (𝐹𝑏)) → ∃𝑥𝑏 𝑄 (𝐹𝑥)) ↔ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))))
60 reseq2 5929 . . . . . 6 (𝑏 = (𝑎 ∪ {𝑦}) → (𝐹𝑏) = (𝐹 ↾ (𝑎 ∪ {𝑦})))
6160oveq2d 7370 . . . . 5 (𝑏 = (𝑎 ∪ {𝑦}) → (𝑀 Σg (𝐹𝑏)) = (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))))
6261breq2d 5107 . . . 4 (𝑏 = (𝑎 ∪ {𝑦}) → (𝑄 (𝑀 Σg (𝐹𝑏)) ↔ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))))
63 rexeq 3289 . . . 4 (𝑏 = (𝑎 ∪ {𝑦}) → (∃𝑥𝑏 𝑄 (𝐹𝑥) ↔ ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥)))
6462, 63imbi12d 344 . . 3 (𝑏 = (𝑎 ∪ {𝑦}) → ((𝑄 (𝑀 Σg (𝐹𝑏)) → ∃𝑥𝑏 𝑄 (𝐹𝑥)) ↔ (𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥))))
65 reseq2 5929 . . . . . 6 (𝑏 = (𝐹 supp 1 ) → (𝐹𝑏) = (𝐹 ↾ (𝐹 supp 1 )))
6665oveq2d 7370 . . . . 5 (𝑏 = (𝐹 supp 1 ) → (𝑀 Σg (𝐹𝑏)) = (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))))
6766breq2d 5107 . . . 4 (𝑏 = (𝐹 supp 1 ) → (𝑄 (𝑀 Σg (𝐹𝑏)) ↔ 𝑄 (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 )))))
68 rexeq 3289 . . . 4 (𝑏 = (𝐹 supp 1 ) → (∃𝑥𝑏 𝑄 (𝐹𝑥) ↔ ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥)))
6967, 68imbi12d 344 . . 3 (𝑏 = (𝐹 supp 1 ) → ((𝑄 (𝑀 Σg (𝐹𝑏)) → ∃𝑥𝑏 𝑄 (𝐹𝑥)) ↔ (𝑄 (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))) → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥))))
70 rprmdvdsprod.d . . . . . 6 = (∥r𝑅)
71 rprmdvdsprod.p . . . . . 6 𝑃 = (RPrime‘𝑅)
72 rprmdvdsprod.q . . . . . 6 (𝜑𝑄𝑃)
735, 70, 71, 9, 72rprmndvdsr1 33498 . . . . 5 (𝜑 → ¬ 𝑄 1 )
74 res0 5938 . . . . . . . . 9 (𝐹 ↾ ∅) = ∅
7574oveq2i 7365 . . . . . . . 8 (𝑀 Σg (𝐹 ↾ ∅)) = (𝑀 Σg ∅)
766gsum0 18596 . . . . . . . 8 (𝑀 Σg ∅) = 1
7775, 76eqtri 2756 . . . . . . 7 (𝑀 Σg (𝐹 ↾ ∅)) = 1
7877a1i 11 . . . . . 6 (𝜑 → (𝑀 Σg (𝐹 ↾ ∅)) = 1 )
7978breq2d 5107 . . . . 5 (𝜑 → (𝑄 (𝑀 Σg (𝐹 ↾ ∅)) ↔ 𝑄 1 ))
8073, 79mtbird 325 . . . 4 (𝜑 → ¬ 𝑄 (𝑀 Σg (𝐹 ↾ ∅)))
8180pm2.21d 121 . . 3 (𝜑 → (𝑄 (𝑀 Σg (𝐹 ↾ ∅)) → ∃𝑥 ∈ ∅ 𝑄 (𝐹𝑥)))
82 simpllr 775 . . . . . . . 8 ((((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 (𝑀 Σg (𝐹𝑎))) → (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥)))
8382syldbl2 841 . . . . . . 7 ((((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 (𝑀 Σg (𝐹𝑎))) → ∃𝑥𝑎 𝑄 (𝐹𝑥))
84 simpr 484 . . . . . . . 8 ((((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 (𝐹𝑦)) → 𝑄 (𝐹𝑦))
85 vex 3441 . . . . . . . . 9 𝑦 ∈ V
86 fveq2 6830 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
8786breq2d 5107 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑄 (𝐹𝑥) ↔ 𝑄 (𝐹𝑦)))
8885, 87rexsn 4636 . . . . . . . 8 (∃𝑥 ∈ {𝑦}𝑄 (𝐹𝑥) ↔ 𝑄 (𝐹𝑦))
8984, 88sylibr 234 . . . . . . 7 ((((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) ∧ 𝑄 (𝐹𝑦)) → ∃𝑥 ∈ {𝑦}𝑄 (𝐹𝑥))
909ad4antr 732 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑅 ∈ CRing)
9172ad4antr 732 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑄𝑃)
9290, 10syl 17 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑀 ∈ CMnd)
93 vex 3441 . . . . . . . . . 10 𝑎 ∈ V
9493a1i 11 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎 ∈ V)
9513ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝐹:𝐼𝐵)
96 simp-4r 783 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎 ⊆ (𝐹 supp 1 ))
9718ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 supp 1 ) ⊆ 𝐼)
9896, 97sstrd 3941 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎𝐼)
9995, 98fssresd 6697 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹𝑎):𝑎𝐵)
10014fsuppimpd 9262 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 1 ) ∈ Fin)
101100ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 supp 1 ) ∈ Fin)
102101, 96ssfid 9162 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑎 ∈ Fin)
10330ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 1𝐵)
10499, 102, 103fdmfifsupp 9268 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹𝑎) finSupp 1 )
1054, 6, 92, 94, 99, 104gsumcl 19831 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝑀 Σg (𝐹𝑎)) ∈ 𝐵)
10697ssdifssd 4096 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ((𝐹 supp 1 ) ∖ 𝑎) ⊆ 𝐼)
107 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎))
108106, 107sseldd 3931 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑦𝐼)
10995, 108ffvelcdmd 7026 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹𝑦) ∈ 𝐵)
110 simpr 484 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))))
111 eqid 2733 . . . . . . . . . 10 (Cntz‘𝑀) = (Cntz‘𝑀)
112 eqid 2733 . . . . . . . . . 10 (𝐹𝑦) = (𝐹𝑦)
11337ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑀 ∈ Mnd)
114107eldifbd 3911 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ¬ 𝑦𝑎)
11595fimassd 6679 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 “ (𝑎 ∪ {𝑦})) ⊆ 𝐵)
1164, 111cntzcmn 19756 . . . . . . . . . . . 12 ((𝑀 ∈ CMnd ∧ (𝐹 “ (𝑎 ∪ {𝑦})) ⊆ 𝐵) → ((Cntz‘𝑀)‘(𝐹 “ (𝑎 ∪ {𝑦}))) = 𝐵)
11792, 115, 116syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ((Cntz‘𝑀)‘(𝐹 “ (𝑎 ∪ {𝑦}))) = 𝐵)
118115, 117sseqtrrd 3968 . . . . . . . . . 10 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝐹 “ (𝑎 ∪ {𝑦})) ⊆ ((Cntz‘𝑀)‘(𝐹 “ (𝑎 ∪ {𝑦}))))
1194, 8, 111, 112, 95, 98, 113, 102, 114, 108, 109, 118gsumzresunsn 33045 . . . . . . . . 9 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) = ((𝑀 Σg (𝐹𝑎))(.r𝑅)(𝐹𝑦)))
120110, 119breqtrd 5121 . . . . . . . 8 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → 𝑄 ((𝑀 Σg (𝐹𝑎))(.r𝑅)(𝐹𝑦)))
1213, 71, 70, 7, 90, 91, 105, 109, 120rprmdvds 33493 . . . . . . 7 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (𝑄 (𝑀 Σg (𝐹𝑎)) ∨ 𝑄 (𝐹𝑦)))
12283, 89, 121orim12da 32441 . . . . . 6 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → (∃𝑥𝑎 𝑄 (𝐹𝑥) ∨ ∃𝑥 ∈ {𝑦}𝑄 (𝐹𝑥)))
123 rexun 4145 . . . . . 6 (∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥) ↔ (∃𝑥𝑎 𝑄 (𝐹𝑥) ∨ ∃𝑥 ∈ {𝑦}𝑄 (𝐹𝑥)))
124122, 123sylibr 234 . . . . 5 (((((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) ∧ (𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥))) ∧ 𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦})))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥))
125124exp31 419 . . . 4 (((𝜑𝑎 ⊆ (𝐹 supp 1 )) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎)) → ((𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥)) → (𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥))))
126125anasss 466 . . 3 ((𝜑 ∧ (𝑎 ⊆ (𝐹 supp 1 ) ∧ 𝑦 ∈ ((𝐹 supp 1 ) ∖ 𝑎))) → ((𝑄 (𝑀 Σg (𝐹𝑎)) → ∃𝑥𝑎 𝑄 (𝐹𝑥)) → (𝑄 (𝑀 Σg (𝐹 ↾ (𝑎 ∪ {𝑦}))) → ∃𝑥 ∈ (𝑎 ∪ {𝑦})𝑄 (𝐹𝑥))))
12754, 59, 64, 69, 81, 126, 100findcard2d 9085 . 2 (𝜑 → (𝑄 (𝑀 Σg (𝐹 ↾ (𝐹 supp 1 ))) → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥)))
12849, 127mpd 15 1 (𝜑 → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2113  wrex 3057  Vcvv 3437  cdif 3895  cun 3896  cin 3897  wss 3898  c0 4282  {csn 4577   class class class wbr 5095  cmpt 5176  cres 5623  cima 5624   Fn wfn 6483  wf 6484  cfv 6488  (class class class)co 7354   supp csupp 8098  Fincfn 8877   finSupp cfsupp 9254  Basecbs 17124  .rcmulr 17166   Σg cgsu 17348  Mndcmnd 18646  Cntzccntz 19231  CMndccmn 19696  mulGrpcmgp 20062  1rcur 20103  Ringcrg 20155  CRingccrg 20156  rcdsr 20276  RPrimecrpm 20354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-tpos 8164  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-n0 12391  df-z 12478  df-uz 12741  df-fz 13412  df-fzo 13559  df-seq 13913  df-hash 14242  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-0g 17349  df-gsum 17350  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-mulg 18985  df-cntz 19233  df-cmn 19698  df-mgp 20063  df-ur 20104  df-ring 20157  df-cring 20158  df-oppr 20259  df-dvdsr 20279  df-unit 20280  df-rprm 20355
This theorem is referenced by:  1arithidom  33511
  Copyright terms: Public domain W3C validator