Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elznn0 | Structured version Visualization version GIF version |
Description: Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
elznn0 | ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 12027 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
2 | elnn0 11941 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
3 | 2 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))) |
4 | elnn0 11941 | . . . . . 6 ⊢ (-𝑁 ∈ ℕ0 ↔ (-𝑁 ∈ ℕ ∨ -𝑁 = 0)) | |
5 | recn 10670 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℝ → 𝑁 ∈ ℂ) | |
6 | 0cn 10676 | . . . . . . . . 9 ⊢ 0 ∈ ℂ | |
7 | negcon1 10981 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℂ ∧ 0 ∈ ℂ) → (-𝑁 = 0 ↔ -0 = 𝑁)) | |
8 | 5, 6, 7 | sylancl 589 | . . . . . . . 8 ⊢ (𝑁 ∈ ℝ → (-𝑁 = 0 ↔ -0 = 𝑁)) |
9 | neg0 10975 | . . . . . . . . . 10 ⊢ -0 = 0 | |
10 | 9 | eqeq1i 2763 | . . . . . . . . 9 ⊢ (-0 = 𝑁 ↔ 0 = 𝑁) |
11 | eqcom 2765 | . . . . . . . . 9 ⊢ (0 = 𝑁 ↔ 𝑁 = 0) | |
12 | 10, 11 | bitri 278 | . . . . . . . 8 ⊢ (-0 = 𝑁 ↔ 𝑁 = 0) |
13 | 8, 12 | bitrdi 290 | . . . . . . 7 ⊢ (𝑁 ∈ ℝ → (-𝑁 = 0 ↔ 𝑁 = 0)) |
14 | 13 | orbi2d 913 | . . . . . 6 ⊢ (𝑁 ∈ ℝ → ((-𝑁 ∈ ℕ ∨ -𝑁 = 0) ↔ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) |
15 | 4, 14 | syl5bb 286 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (-𝑁 ∈ ℕ0 ↔ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) |
16 | 3, 15 | orbi12d 916 | . . . 4 ⊢ (𝑁 ∈ ℝ → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0) ↔ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))) |
17 | 3orass 1087 | . . . . 5 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 = 0 ∨ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
18 | orcom 867 | . . . . 5 ⊢ ((𝑁 = 0 ∨ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ ((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ∨ 𝑁 = 0)) | |
19 | orordir 927 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ∨ 𝑁 = 0) ↔ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) | |
20 | 17, 18, 19 | 3bitrri 301 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
21 | 16, 20 | bitr2di 291 | . . 3 ⊢ (𝑁 ∈ ℝ → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) |
22 | 21 | pm5.32i 578 | . 2 ⊢ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) |
23 | 1, 22 | bitri 278 | 1 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∨ wo 844 ∨ w3o 1083 = wceq 1538 ∈ wcel 2111 ℂcc 10578 ℝcr 10579 0cc0 10580 -cneg 10914 ℕcn 11679 ℕ0cn0 11939 ℤcz 12025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-po 5446 df-so 5447 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-ltxr 10723 df-sub 10915 df-neg 10916 df-n0 11940 df-z 12026 |
This theorem is referenced by: elz2 12043 zmulcl 12075 expnegz 13518 expaddzlem 13527 odd2np1 15747 mulgz 18327 mulgdirlem 18330 mulgdir 18331 mulgass 18336 mulgdi 19020 cxpmul2z 25386 2sqnn0 26126 rexzrexnn0 40146 pell1234qrdich 40203 pell14qrexpcl 40209 pell14qrdich 40211 rmxnn 40293 jm2.19lem4 40334 |
Copyright terms: Public domain | W3C validator |