| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elznn0 | Structured version Visualization version GIF version | ||
| Description: Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| elznn0 | ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 12473 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 2 | elnn0 12386 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 3 | 2 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))) |
| 4 | elnn0 12386 | . . . . . 6 ⊢ (-𝑁 ∈ ℕ0 ↔ (-𝑁 ∈ ℕ ∨ -𝑁 = 0)) | |
| 5 | recn 11099 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℝ → 𝑁 ∈ ℂ) | |
| 6 | 0cn 11107 | . . . . . . . . 9 ⊢ 0 ∈ ℂ | |
| 7 | negcon1 11416 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℂ ∧ 0 ∈ ℂ) → (-𝑁 = 0 ↔ -0 = 𝑁)) | |
| 8 | 5, 6, 7 | sylancl 586 | . . . . . . . 8 ⊢ (𝑁 ∈ ℝ → (-𝑁 = 0 ↔ -0 = 𝑁)) |
| 9 | neg0 11410 | . . . . . . . . . 10 ⊢ -0 = 0 | |
| 10 | 9 | eqeq1i 2734 | . . . . . . . . 9 ⊢ (-0 = 𝑁 ↔ 0 = 𝑁) |
| 11 | eqcom 2736 | . . . . . . . . 9 ⊢ (0 = 𝑁 ↔ 𝑁 = 0) | |
| 12 | 10, 11 | bitri 275 | . . . . . . . 8 ⊢ (-0 = 𝑁 ↔ 𝑁 = 0) |
| 13 | 8, 12 | bitrdi 287 | . . . . . . 7 ⊢ (𝑁 ∈ ℝ → (-𝑁 = 0 ↔ 𝑁 = 0)) |
| 14 | 13 | orbi2d 915 | . . . . . 6 ⊢ (𝑁 ∈ ℝ → ((-𝑁 ∈ ℕ ∨ -𝑁 = 0) ↔ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) |
| 15 | 4, 14 | bitrid 283 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (-𝑁 ∈ ℕ0 ↔ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) |
| 16 | 3, 15 | orbi12d 918 | . . . 4 ⊢ (𝑁 ∈ ℝ → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0) ↔ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))) |
| 17 | 3orass 1089 | . . . . 5 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 = 0 ∨ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 18 | orcom 870 | . . . . 5 ⊢ ((𝑁 = 0 ∨ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ ((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ∨ 𝑁 = 0)) | |
| 19 | orordir 929 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ∨ 𝑁 = 0) ↔ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) | |
| 20 | 17, 18, 19 | 3bitrri 298 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
| 21 | 16, 20 | bitr2di 288 | . . 3 ⊢ (𝑁 ∈ ℝ → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) |
| 22 | 21 | pm5.32i 574 | . 2 ⊢ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) |
| 23 | 1, 22 | bitri 275 | 1 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ℂcc 11007 ℝcr 11008 0cc0 11009 -cneg 11348 ℕcn 12128 ℕ0cn0 12384 ℤcz 12471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 df-neg 11350 df-n0 12385 df-z 12472 |
| This theorem is referenced by: elz2 12489 zmulcl 12524 expnegz 14003 expaddzlem 14012 odd2np1 16252 mulgz 18981 mulgdirlem 18984 mulgdir 18985 mulgass 18990 mulgdi 19705 cxpmul2z 26598 2sqnn0 27347 zconstr 33737 zrhcntr 33952 rexzrexnn0 42787 pell1234qrdich 42844 pell14qrexpcl 42850 pell14qrdich 42852 rmxnn 42934 jm2.19lem4 42975 |
| Copyright terms: Public domain | W3C validator |