MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elznn0 Structured version   Visualization version   GIF version

Theorem elznn0 12343
Description: Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
elznn0 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))

Proof of Theorem elznn0
StepHypRef Expression
1 elz 12330 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
2 elnn0 12244 . . . . . 6 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
32a1i 11 . . . . 5 (𝑁 ∈ ℝ → (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)))
4 elnn0 12244 . . . . . 6 (-𝑁 ∈ ℕ0 ↔ (-𝑁 ∈ ℕ ∨ -𝑁 = 0))
5 recn 10970 . . . . . . . . 9 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
6 0cn 10976 . . . . . . . . 9 0 ∈ ℂ
7 negcon1 11282 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 0 ∈ ℂ) → (-𝑁 = 0 ↔ -0 = 𝑁))
85, 6, 7sylancl 586 . . . . . . . 8 (𝑁 ∈ ℝ → (-𝑁 = 0 ↔ -0 = 𝑁))
9 neg0 11276 . . . . . . . . . 10 -0 = 0
109eqeq1i 2744 . . . . . . . . 9 (-0 = 𝑁 ↔ 0 = 𝑁)
11 eqcom 2746 . . . . . . . . 9 (0 = 𝑁𝑁 = 0)
1210, 11bitri 274 . . . . . . . 8 (-0 = 𝑁𝑁 = 0)
138, 12bitrdi 287 . . . . . . 7 (𝑁 ∈ ℝ → (-𝑁 = 0 ↔ 𝑁 = 0))
1413orbi2d 913 . . . . . 6 (𝑁 ∈ ℝ → ((-𝑁 ∈ ℕ ∨ -𝑁 = 0) ↔ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
154, 14bitrid 282 . . . . 5 (𝑁 ∈ ℝ → (-𝑁 ∈ ℕ0 ↔ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
163, 15orbi12d 916 . . . 4 (𝑁 ∈ ℝ → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0) ↔ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))))
17 3orass 1089 . . . . 5 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 = 0 ∨ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
18 orcom 867 . . . . 5 ((𝑁 = 0 ∨ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ ((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ∨ 𝑁 = 0))
19 orordir 927 . . . . 5 (((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ∨ 𝑁 = 0) ↔ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
2017, 18, 193bitrri 298 . . . 4 (((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
2116, 20bitr2di 288 . . 3 (𝑁 ∈ ℝ → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
2221pm5.32i 575 . 2 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
231, 22bitri 274 1 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wo 844  w3o 1085   = wceq 1539  wcel 2107  cc 10878  cr 10879  0cc0 10880  -cneg 11215  cn 11982  0cn0 12242  cz 12328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-pnf 11020  df-mnf 11021  df-ltxr 11023  df-sub 11216  df-neg 11217  df-n0 12243  df-z 12329
This theorem is referenced by:  elz2  12346  zmulcl  12378  expnegz  13826  expaddzlem  13835  odd2np1  16059  mulgz  18740  mulgdirlem  18743  mulgdir  18744  mulgass  18749  mulgdi  19437  cxpmul2z  25855  2sqnn0  26595  rexzrexnn0  40633  pell1234qrdich  40690  pell14qrexpcl  40696  pell14qrdich  40698  rmxnn  40780  jm2.19lem4  40821
  Copyright terms: Public domain W3C validator