MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tosso Structured version   Visualization version   GIF version

Theorem tosso 18378
Description: Write the totally ordered set structure predicate in terms of the proper class strict order predicate. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
tosso.b 𝐡 = (Baseβ€˜πΎ)
tosso.l ≀ = (leβ€˜πΎ)
tosso.s < = (ltβ€˜πΎ)
Assertion
Ref Expression
tosso (𝐾 ∈ 𝑉 β†’ (𝐾 ∈ Toset ↔ ( < Or 𝐡 ∧ ( I β†Ύ 𝐡) βŠ† ≀ )))

Proof of Theorem tosso
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tosso.b . . . . . . . . 9 𝐡 = (Baseβ€˜πΎ)
2 tosso.l . . . . . . . . 9 ≀ = (leβ€˜πΎ)
3 tosso.s . . . . . . . . 9 < = (ltβ€˜πΎ)
41, 2, 3pleval2 18296 . . . . . . . 8 ((𝐾 ∈ Poset ∧ π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ (π‘₯ ≀ 𝑦 ↔ (π‘₯ < 𝑦 ∨ π‘₯ = 𝑦)))
543expb 1118 . . . . . . 7 ((𝐾 ∈ Poset ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯ ≀ 𝑦 ↔ (π‘₯ < 𝑦 ∨ π‘₯ = 𝑦)))
61, 2, 3pleval2 18296 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ 𝑦 ∈ 𝐡 ∧ π‘₯ ∈ 𝐡) β†’ (𝑦 ≀ π‘₯ ↔ (𝑦 < π‘₯ ∨ 𝑦 = π‘₯)))
7 equcom 2019 . . . . . . . . . . 11 (𝑦 = π‘₯ ↔ π‘₯ = 𝑦)
87orbi2i 909 . . . . . . . . . 10 ((𝑦 < π‘₯ ∨ 𝑦 = π‘₯) ↔ (𝑦 < π‘₯ ∨ π‘₯ = 𝑦))
96, 8bitrdi 286 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ 𝑦 ∈ 𝐡 ∧ π‘₯ ∈ 𝐡) β†’ (𝑦 ≀ π‘₯ ↔ (𝑦 < π‘₯ ∨ π‘₯ = 𝑦)))
1093com23 1124 . . . . . . . 8 ((𝐾 ∈ Poset ∧ π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ (𝑦 ≀ π‘₯ ↔ (𝑦 < π‘₯ ∨ π‘₯ = 𝑦)))
11103expb 1118 . . . . . . 7 ((𝐾 ∈ Poset ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (𝑦 ≀ π‘₯ ↔ (𝑦 < π‘₯ ∨ π‘₯ = 𝑦)))
125, 11orbi12d 915 . . . . . 6 ((𝐾 ∈ Poset ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ ((π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯) ↔ ((π‘₯ < 𝑦 ∨ π‘₯ = 𝑦) ∨ (𝑦 < π‘₯ ∨ π‘₯ = 𝑦))))
13 df-3or 1086 . . . . . . 7 ((π‘₯ < 𝑦 ∨ π‘₯ = 𝑦 ∨ 𝑦 < π‘₯) ↔ ((π‘₯ < 𝑦 ∨ π‘₯ = 𝑦) ∨ 𝑦 < π‘₯))
14 or32 922 . . . . . . . 8 (((π‘₯ < 𝑦 ∨ π‘₯ = 𝑦) ∨ 𝑦 < π‘₯) ↔ ((π‘₯ < 𝑦 ∨ 𝑦 < π‘₯) ∨ π‘₯ = 𝑦))
15 orordir 926 . . . . . . . 8 (((π‘₯ < 𝑦 ∨ 𝑦 < π‘₯) ∨ π‘₯ = 𝑦) ↔ ((π‘₯ < 𝑦 ∨ π‘₯ = 𝑦) ∨ (𝑦 < π‘₯ ∨ π‘₯ = 𝑦)))
1614, 15bitri 274 . . . . . . 7 (((π‘₯ < 𝑦 ∨ π‘₯ = 𝑦) ∨ 𝑦 < π‘₯) ↔ ((π‘₯ < 𝑦 ∨ π‘₯ = 𝑦) ∨ (𝑦 < π‘₯ ∨ π‘₯ = 𝑦)))
1713, 16bitri 274 . . . . . 6 ((π‘₯ < 𝑦 ∨ π‘₯ = 𝑦 ∨ 𝑦 < π‘₯) ↔ ((π‘₯ < 𝑦 ∨ π‘₯ = 𝑦) ∨ (𝑦 < π‘₯ ∨ π‘₯ = 𝑦)))
1812, 17bitr4di 288 . . . . 5 ((𝐾 ∈ Poset ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ ((π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯) ↔ (π‘₯ < 𝑦 ∨ π‘₯ = 𝑦 ∨ 𝑦 < π‘₯)))
19182ralbidva 3214 . . . 4 (𝐾 ∈ Poset β†’ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ < 𝑦 ∨ π‘₯ = 𝑦 ∨ 𝑦 < π‘₯)))
2019pm5.32i 573 . . 3 ((𝐾 ∈ Poset ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯)) ↔ (𝐾 ∈ Poset ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ < 𝑦 ∨ π‘₯ = 𝑦 ∨ 𝑦 < π‘₯)))
211, 2, 3pospo 18304 . . . 4 (𝐾 ∈ 𝑉 β†’ (𝐾 ∈ Poset ↔ ( < Po 𝐡 ∧ ( I β†Ύ 𝐡) βŠ† ≀ )))
2221anbi1d 628 . . 3 (𝐾 ∈ 𝑉 β†’ ((𝐾 ∈ Poset ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ < 𝑦 ∨ π‘₯ = 𝑦 ∨ 𝑦 < π‘₯)) ↔ (( < Po 𝐡 ∧ ( I β†Ύ 𝐡) βŠ† ≀ ) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ < 𝑦 ∨ π‘₯ = 𝑦 ∨ 𝑦 < π‘₯))))
2320, 22bitrid 282 . 2 (𝐾 ∈ 𝑉 β†’ ((𝐾 ∈ Poset ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯)) ↔ (( < Po 𝐡 ∧ ( I β†Ύ 𝐡) βŠ† ≀ ) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ < 𝑦 ∨ π‘₯ = 𝑦 ∨ 𝑦 < π‘₯))))
241, 2istos 18377 . 2 (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯)))
25 df-so 5590 . . . 4 ( < Or 𝐡 ↔ ( < Po 𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ < 𝑦 ∨ π‘₯ = 𝑦 ∨ 𝑦 < π‘₯)))
2625anbi1i 622 . . 3 (( < Or 𝐡 ∧ ( I β†Ύ 𝐡) βŠ† ≀ ) ↔ (( < Po 𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ < 𝑦 ∨ π‘₯ = 𝑦 ∨ 𝑦 < π‘₯)) ∧ ( I β†Ύ 𝐡) βŠ† ≀ ))
27 an32 642 . . 3 ((( < Po 𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ < 𝑦 ∨ π‘₯ = 𝑦 ∨ 𝑦 < π‘₯)) ∧ ( I β†Ύ 𝐡) βŠ† ≀ ) ↔ (( < Po 𝐡 ∧ ( I β†Ύ 𝐡) βŠ† ≀ ) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ < 𝑦 ∨ π‘₯ = 𝑦 ∨ 𝑦 < π‘₯)))
2826, 27bitri 274 . 2 (( < Or 𝐡 ∧ ( I β†Ύ 𝐡) βŠ† ≀ ) ↔ (( < Po 𝐡 ∧ ( I β†Ύ 𝐡) βŠ† ≀ ) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ < 𝑦 ∨ π‘₯ = 𝑦 ∨ 𝑦 < π‘₯)))
2923, 24, 283bitr4g 313 1 (𝐾 ∈ 𝑉 β†’ (𝐾 ∈ Toset ↔ ( < Or 𝐡 ∧ ( I β†Ύ 𝐡) βŠ† ≀ )))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∨ wo 843   ∨ w3o 1084   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059   βŠ† wss 3949   class class class wbr 5149   I cid 5574   Po wpo 5587   Or wor 5588   β†Ύ cres 5679  β€˜cfv 6544  Basecbs 17150  lecple 17210  Posetcpo 18266  ltcplt 18267  Tosetctos 18375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-res 5689  df-iota 6496  df-fun 6546  df-fv 6552  df-proset 18254  df-poset 18272  df-plt 18289  df-toset 18376
This theorem is referenced by:  retos  21392  opsrtoslem2  21838  opsrso  21840  toslub  32408  tosglb  32410  orngsqr  32690
  Copyright terms: Public domain W3C validator