MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tosso Structured version   Visualization version   GIF version

Theorem tosso 18477
Description: Write the totally ordered set structure predicate in terms of the proper class strict order predicate. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
tosso.b 𝐵 = (Base‘𝐾)
tosso.l = (le‘𝐾)
tosso.s < = (lt‘𝐾)
Assertion
Ref Expression
tosso (𝐾𝑉 → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ )))

Proof of Theorem tosso
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tosso.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
2 tosso.l . . . . . . . . 9 = (le‘𝐾)
3 tosso.s . . . . . . . . 9 < = (lt‘𝐾)
41, 2, 3pleval2 18395 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑥𝐵𝑦𝐵) → (𝑥 𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
543expb 1119 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
61, 2, 3pleval2 18395 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ 𝑦𝐵𝑥𝐵) → (𝑦 𝑥 ↔ (𝑦 < 𝑥𝑦 = 𝑥)))
7 equcom 2015 . . . . . . . . . . 11 (𝑦 = 𝑥𝑥 = 𝑦)
87orbi2i 912 . . . . . . . . . 10 ((𝑦 < 𝑥𝑦 = 𝑥) ↔ (𝑦 < 𝑥𝑥 = 𝑦))
96, 8bitrdi 287 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ 𝑦𝐵𝑥𝐵) → (𝑦 𝑥 ↔ (𝑦 < 𝑥𝑥 = 𝑦)))
1093com23 1125 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑥𝐵𝑦𝐵) → (𝑦 𝑥 ↔ (𝑦 < 𝑥𝑥 = 𝑦)))
11103expb 1119 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 𝑥 ↔ (𝑦 < 𝑥𝑥 = 𝑦)))
125, 11orbi12d 918 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 𝑦𝑦 𝑥) ↔ ((𝑥 < 𝑦𝑥 = 𝑦) ∨ (𝑦 < 𝑥𝑥 = 𝑦))))
13 df-3or 1087 . . . . . . 7 ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ((𝑥 < 𝑦𝑥 = 𝑦) ∨ 𝑦 < 𝑥))
14 or32 925 . . . . . . . 8 (((𝑥 < 𝑦𝑥 = 𝑦) ∨ 𝑦 < 𝑥) ↔ ((𝑥 < 𝑦𝑦 < 𝑥) ∨ 𝑥 = 𝑦))
15 orordir 929 . . . . . . . 8 (((𝑥 < 𝑦𝑦 < 𝑥) ∨ 𝑥 = 𝑦) ↔ ((𝑥 < 𝑦𝑥 = 𝑦) ∨ (𝑦 < 𝑥𝑥 = 𝑦)))
1614, 15bitri 275 . . . . . . 7 (((𝑥 < 𝑦𝑥 = 𝑦) ∨ 𝑦 < 𝑥) ↔ ((𝑥 < 𝑦𝑥 = 𝑦) ∨ (𝑦 < 𝑥𝑥 = 𝑦)))
1713, 16bitri 275 . . . . . 6 ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ((𝑥 < 𝑦𝑥 = 𝑦) ∨ (𝑦 < 𝑥𝑥 = 𝑦)))
1812, 17bitr4di 289 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 𝑦𝑦 𝑥) ↔ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
19182ralbidva 3217 . . . 4 (𝐾 ∈ Poset → (∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
2019pm5.32i 574 . . 3 ((𝐾 ∈ Poset ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)) ↔ (𝐾 ∈ Poset ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
211, 2, 3pospo 18403 . . . 4 (𝐾𝑉 → (𝐾 ∈ Poset ↔ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )))
2221anbi1d 631 . . 3 (𝐾𝑉 → ((𝐾 ∈ Poset ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ↔ (( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))))
2320, 22bitrid 283 . 2 (𝐾𝑉 → ((𝐾 ∈ Poset ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)) ↔ (( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))))
241, 2istos 18476 . 2 (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)))
25 df-so 5598 . . . 4 ( < Or 𝐵 ↔ ( < Po 𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
2625anbi1i 624 . . 3 (( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ ) ↔ (( < Po 𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ ( I ↾ 𝐵) ⊆ ))
27 an32 646 . . 3 ((( < Po 𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ ( I ↾ 𝐵) ⊆ ) ↔ (( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
2826, 27bitri 275 . 2 (( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ ) ↔ (( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
2923, 24, 283bitr4g 314 1 (𝐾𝑉 → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wss 3963   class class class wbr 5148   I cid 5582   Po wpo 5595   Or wor 5596  cres 5691  cfv 6563  Basecbs 17245  lecple 17305  Posetcpo 18365  ltcplt 18366  Tosetctos 18474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571  df-proset 18352  df-poset 18371  df-plt 18388  df-toset 18475
This theorem is referenced by:  retos  21654  opsrtoslem2  22098  opsrso  22100  toslub  32948  tosglb  32950  orngsqr  33314
  Copyright terms: Public domain W3C validator