| Step | Hyp | Ref
| Expression |
| 1 | | tosso.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐾) |
| 2 | | tosso.l |
. . . . . . . . 9
⊢ ≤ =
(le‘𝐾) |
| 3 | | tosso.s |
. . . . . . . . 9
⊢ < =
(lt‘𝐾) |
| 4 | 1, 2, 3 | pleval2 18352 |
. . . . . . . 8
⊢ ((𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑦 ↔ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦))) |
| 5 | 4 | 3expb 1120 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ≤ 𝑦 ↔ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦))) |
| 6 | 1, 2, 3 | pleval2 18352 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Poset ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑦 ≤ 𝑥 ↔ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥))) |
| 7 | | equcom 2018 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) |
| 8 | 7 | orbi2i 912 |
. . . . . . . . . 10
⊢ ((𝑦 < 𝑥 ∨ 𝑦 = 𝑥) ↔ (𝑦 < 𝑥 ∨ 𝑥 = 𝑦)) |
| 9 | 6, 8 | bitrdi 287 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Poset ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑦 ≤ 𝑥 ↔ (𝑦 < 𝑥 ∨ 𝑥 = 𝑦))) |
| 10 | 9 | 3com23 1126 |
. . . . . . . 8
⊢ ((𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑦 ≤ 𝑥 ↔ (𝑦 < 𝑥 ∨ 𝑥 = 𝑦))) |
| 11 | 10 | 3expb 1120 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑦 ≤ 𝑥 ↔ (𝑦 < 𝑥 ∨ 𝑥 = 𝑦))) |
| 12 | 5, 11 | orbi12d 918 |
. . . . . 6
⊢ ((𝐾 ∈ Poset ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) ↔ ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦) ∨ (𝑦 < 𝑥 ∨ 𝑥 = 𝑦)))) |
| 13 | | df-3or 1087 |
. . . . . . 7
⊢ ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦) ∨ 𝑦 < 𝑥)) |
| 14 | | or32 925 |
. . . . . . . 8
⊢ (((𝑥 < 𝑦 ∨ 𝑥 = 𝑦) ∨ 𝑦 < 𝑥) ↔ ((𝑥 < 𝑦 ∨ 𝑦 < 𝑥) ∨ 𝑥 = 𝑦)) |
| 15 | | orordir 929 |
. . . . . . . 8
⊢ (((𝑥 < 𝑦 ∨ 𝑦 < 𝑥) ∨ 𝑥 = 𝑦) ↔ ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦) ∨ (𝑦 < 𝑥 ∨ 𝑥 = 𝑦))) |
| 16 | 14, 15 | bitri 275 |
. . . . . . 7
⊢ (((𝑥 < 𝑦 ∨ 𝑥 = 𝑦) ∨ 𝑦 < 𝑥) ↔ ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦) ∨ (𝑦 < 𝑥 ∨ 𝑥 = 𝑦))) |
| 17 | 13, 16 | bitri 275 |
. . . . . 6
⊢ ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦) ∨ (𝑦 < 𝑥 ∨ 𝑥 = 𝑦))) |
| 18 | 12, 17 | bitr4di 289 |
. . . . 5
⊢ ((𝐾 ∈ Poset ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) ↔ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) |
| 19 | 18 | 2ralbidva 3207 |
. . . 4
⊢ (𝐾 ∈ Poset →
(∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) |
| 20 | 19 | pm5.32i 574 |
. . 3
⊢ ((𝐾 ∈ Poset ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) ↔ (𝐾 ∈ Poset ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) |
| 21 | 1, 2, 3 | pospo 18360 |
. . . 4
⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ Poset ↔ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ ))) |
| 22 | 21 | anbi1d 631 |
. . 3
⊢ (𝐾 ∈ 𝑉 → ((𝐾 ∈ Poset ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) ↔ (( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ ) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)))) |
| 23 | 20, 22 | bitrid 283 |
. 2
⊢ (𝐾 ∈ 𝑉 → ((𝐾 ∈ Poset ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) ↔ (( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ ) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)))) |
| 24 | 1, 2 | istos 18433 |
. 2
⊢ (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
| 25 | | df-so 5567 |
. . . 4
⊢ ( < Or 𝐵 ↔ ( < Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) |
| 26 | 25 | anbi1i 624 |
. . 3
⊢ (( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ ) ↔ (( < Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) ∧ ( I ↾ 𝐵) ⊆ ≤ )) |
| 27 | | an32 646 |
. . 3
⊢ ((( < Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) ∧ ( I ↾ 𝐵) ⊆ ≤ ) ↔ (( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ ) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) |
| 28 | 26, 27 | bitri 275 |
. 2
⊢ (( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ ) ↔ (( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ ) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) |
| 29 | 23, 24, 28 | 3bitr4g 314 |
1
⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ ))) |