MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tosso Structured version   Visualization version   GIF version

Theorem tosso 18325
Description: Write the totally ordered set structure predicate in terms of the proper class strict order predicate. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
tosso.b 𝐵 = (Base‘𝐾)
tosso.l = (le‘𝐾)
tosso.s < = (lt‘𝐾)
Assertion
Ref Expression
tosso (𝐾𝑉 → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ )))

Proof of Theorem tosso
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tosso.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
2 tosso.l . . . . . . . . 9 = (le‘𝐾)
3 tosso.s . . . . . . . . 9 < = (lt‘𝐾)
41, 2, 3pleval2 18243 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑥𝐵𝑦𝐵) → (𝑥 𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
543expb 1120 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
61, 2, 3pleval2 18243 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ 𝑦𝐵𝑥𝐵) → (𝑦 𝑥 ↔ (𝑦 < 𝑥𝑦 = 𝑥)))
7 equcom 2019 . . . . . . . . . . 11 (𝑦 = 𝑥𝑥 = 𝑦)
87orbi2i 912 . . . . . . . . . 10 ((𝑦 < 𝑥𝑦 = 𝑥) ↔ (𝑦 < 𝑥𝑥 = 𝑦))
96, 8bitrdi 287 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ 𝑦𝐵𝑥𝐵) → (𝑦 𝑥 ↔ (𝑦 < 𝑥𝑥 = 𝑦)))
1093com23 1126 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑥𝐵𝑦𝐵) → (𝑦 𝑥 ↔ (𝑦 < 𝑥𝑥 = 𝑦)))
11103expb 1120 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 𝑥 ↔ (𝑦 < 𝑥𝑥 = 𝑦)))
125, 11orbi12d 918 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 𝑦𝑦 𝑥) ↔ ((𝑥 < 𝑦𝑥 = 𝑦) ∨ (𝑦 < 𝑥𝑥 = 𝑦))))
13 df-3or 1087 . . . . . . 7 ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ((𝑥 < 𝑦𝑥 = 𝑦) ∨ 𝑦 < 𝑥))
14 or32 925 . . . . . . . 8 (((𝑥 < 𝑦𝑥 = 𝑦) ∨ 𝑦 < 𝑥) ↔ ((𝑥 < 𝑦𝑦 < 𝑥) ∨ 𝑥 = 𝑦))
15 orordir 929 . . . . . . . 8 (((𝑥 < 𝑦𝑦 < 𝑥) ∨ 𝑥 = 𝑦) ↔ ((𝑥 < 𝑦𝑥 = 𝑦) ∨ (𝑦 < 𝑥𝑥 = 𝑦)))
1614, 15bitri 275 . . . . . . 7 (((𝑥 < 𝑦𝑥 = 𝑦) ∨ 𝑦 < 𝑥) ↔ ((𝑥 < 𝑦𝑥 = 𝑦) ∨ (𝑦 < 𝑥𝑥 = 𝑦)))
1713, 16bitri 275 . . . . . 6 ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ((𝑥 < 𝑦𝑥 = 𝑦) ∨ (𝑦 < 𝑥𝑥 = 𝑦)))
1812, 17bitr4di 289 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 𝑦𝑦 𝑥) ↔ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
19182ralbidva 3195 . . . 4 (𝐾 ∈ Poset → (∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
2019pm5.32i 574 . . 3 ((𝐾 ∈ Poset ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)) ↔ (𝐾 ∈ Poset ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
211, 2, 3pospo 18251 . . . 4 (𝐾𝑉 → (𝐾 ∈ Poset ↔ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )))
2221anbi1d 631 . . 3 (𝐾𝑉 → ((𝐾 ∈ Poset ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ↔ (( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))))
2320, 22bitrid 283 . 2 (𝐾𝑉 → ((𝐾 ∈ Poset ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)) ↔ (( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))))
241, 2istos 18324 . 2 (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)))
25 df-so 5528 . . . 4 ( < Or 𝐵 ↔ ( < Po 𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
2625anbi1i 624 . . 3 (( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ ) ↔ (( < Po 𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ ( I ↾ 𝐵) ⊆ ))
27 an32 646 . . 3 ((( < Po 𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ ( I ↾ 𝐵) ⊆ ) ↔ (( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
2826, 27bitri 275 . 2 (( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ ) ↔ (( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
2923, 24, 283bitr4g 314 1 (𝐾𝑉 → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wss 3898   class class class wbr 5093   I cid 5513   Po wpo 5525   Or wor 5526  cres 5621  cfv 6486  Basecbs 17122  lecple 17170  Posetcpo 18215  ltcplt 18216  Tosetctos 18322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6442  df-fun 6488  df-fv 6494  df-proset 18202  df-poset 18221  df-plt 18236  df-toset 18323
This theorem is referenced by:  orngsqr  20783  retos  21557  opsrtoslem2  21992  opsrso  21994  toslub  32961  tosglb  32963
  Copyright terms: Public domain W3C validator