Step | Hyp | Ref
| Expression |
1 | | tosso.b |
. . . . . . . . 9
β’ π΅ = (BaseβπΎ) |
2 | | tosso.l |
. . . . . . . . 9
β’ β€ =
(leβπΎ) |
3 | | tosso.s |
. . . . . . . . 9
β’ < =
(ltβπΎ) |
4 | 1, 2, 3 | pleval2 18296 |
. . . . . . . 8
β’ ((πΎ β Poset β§ π₯ β π΅ β§ π¦ β π΅) β (π₯ β€ π¦ β (π₯ < π¦ β¨ π₯ = π¦))) |
5 | 4 | 3expb 1118 |
. . . . . . 7
β’ ((πΎ β Poset β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯ β€ π¦ β (π₯ < π¦ β¨ π₯ = π¦))) |
6 | 1, 2, 3 | pleval2 18296 |
. . . . . . . . . 10
β’ ((πΎ β Poset β§ π¦ β π΅ β§ π₯ β π΅) β (π¦ β€ π₯ β (π¦ < π₯ β¨ π¦ = π₯))) |
7 | | equcom 2019 |
. . . . . . . . . . 11
β’ (π¦ = π₯ β π₯ = π¦) |
8 | 7 | orbi2i 909 |
. . . . . . . . . 10
β’ ((π¦ < π₯ β¨ π¦ = π₯) β (π¦ < π₯ β¨ π₯ = π¦)) |
9 | 6, 8 | bitrdi 286 |
. . . . . . . . 9
β’ ((πΎ β Poset β§ π¦ β π΅ β§ π₯ β π΅) β (π¦ β€ π₯ β (π¦ < π₯ β¨ π₯ = π¦))) |
10 | 9 | 3com23 1124 |
. . . . . . . 8
β’ ((πΎ β Poset β§ π₯ β π΅ β§ π¦ β π΅) β (π¦ β€ π₯ β (π¦ < π₯ β¨ π₯ = π¦))) |
11 | 10 | 3expb 1118 |
. . . . . . 7
β’ ((πΎ β Poset β§ (π₯ β π΅ β§ π¦ β π΅)) β (π¦ β€ π₯ β (π¦ < π₯ β¨ π₯ = π¦))) |
12 | 5, 11 | orbi12d 915 |
. . . . . 6
β’ ((πΎ β Poset β§ (π₯ β π΅ β§ π¦ β π΅)) β ((π₯ β€ π¦ β¨ π¦ β€ π₯) β ((π₯ < π¦ β¨ π₯ = π¦) β¨ (π¦ < π₯ β¨ π₯ = π¦)))) |
13 | | df-3or 1086 |
. . . . . . 7
β’ ((π₯ < π¦ β¨ π₯ = π¦ β¨ π¦ < π₯) β ((π₯ < π¦ β¨ π₯ = π¦) β¨ π¦ < π₯)) |
14 | | or32 922 |
. . . . . . . 8
β’ (((π₯ < π¦ β¨ π₯ = π¦) β¨ π¦ < π₯) β ((π₯ < π¦ β¨ π¦ < π₯) β¨ π₯ = π¦)) |
15 | | orordir 926 |
. . . . . . . 8
β’ (((π₯ < π¦ β¨ π¦ < π₯) β¨ π₯ = π¦) β ((π₯ < π¦ β¨ π₯ = π¦) β¨ (π¦ < π₯ β¨ π₯ = π¦))) |
16 | 14, 15 | bitri 274 |
. . . . . . 7
β’ (((π₯ < π¦ β¨ π₯ = π¦) β¨ π¦ < π₯) β ((π₯ < π¦ β¨ π₯ = π¦) β¨ (π¦ < π₯ β¨ π₯ = π¦))) |
17 | 13, 16 | bitri 274 |
. . . . . 6
β’ ((π₯ < π¦ β¨ π₯ = π¦ β¨ π¦ < π₯) β ((π₯ < π¦ β¨ π₯ = π¦) β¨ (π¦ < π₯ β¨ π₯ = π¦))) |
18 | 12, 17 | bitr4di 288 |
. . . . 5
β’ ((πΎ β Poset β§ (π₯ β π΅ β§ π¦ β π΅)) β ((π₯ β€ π¦ β¨ π¦ β€ π₯) β (π₯ < π¦ β¨ π₯ = π¦ β¨ π¦ < π₯))) |
19 | 18 | 2ralbidva 3214 |
. . . 4
β’ (πΎ β Poset β
(βπ₯ β π΅ βπ¦ β π΅ (π₯ β€ π¦ β¨ π¦ β€ π₯) β βπ₯ β π΅ βπ¦ β π΅ (π₯ < π¦ β¨ π₯ = π¦ β¨ π¦ < π₯))) |
20 | 19 | pm5.32i 573 |
. . 3
β’ ((πΎ β Poset β§
βπ₯ β π΅ βπ¦ β π΅ (π₯ β€ π¦ β¨ π¦ β€ π₯)) β (πΎ β Poset β§ βπ₯ β π΅ βπ¦ β π΅ (π₯ < π¦ β¨ π₯ = π¦ β¨ π¦ < π₯))) |
21 | 1, 2, 3 | pospo 18304 |
. . . 4
β’ (πΎ β π β (πΎ β Poset β ( < Po π΅ β§ ( I βΎ π΅) β β€ ))) |
22 | 21 | anbi1d 628 |
. . 3
β’ (πΎ β π β ((πΎ β Poset β§ βπ₯ β π΅ βπ¦ β π΅ (π₯ < π¦ β¨ π₯ = π¦ β¨ π¦ < π₯)) β (( < Po π΅ β§ ( I βΎ π΅) β β€ ) β§ βπ₯ β π΅ βπ¦ β π΅ (π₯ < π¦ β¨ π₯ = π¦ β¨ π¦ < π₯)))) |
23 | 20, 22 | bitrid 282 |
. 2
β’ (πΎ β π β ((πΎ β Poset β§ βπ₯ β π΅ βπ¦ β π΅ (π₯ β€ π¦ β¨ π¦ β€ π₯)) β (( < Po π΅ β§ ( I βΎ π΅) β β€ ) β§ βπ₯ β π΅ βπ¦ β π΅ (π₯ < π¦ β¨ π₯ = π¦ β¨ π¦ < π₯)))) |
24 | 1, 2 | istos 18377 |
. 2
β’ (πΎ β Toset β (πΎ β Poset β§
βπ₯ β π΅ βπ¦ β π΅ (π₯ β€ π¦ β¨ π¦ β€ π₯))) |
25 | | df-so 5590 |
. . . 4
β’ ( < Or π΅ β ( < Po π΅ β§ βπ₯ β π΅ βπ¦ β π΅ (π₯ < π¦ β¨ π₯ = π¦ β¨ π¦ < π₯))) |
26 | 25 | anbi1i 622 |
. . 3
β’ (( < Or π΅ β§ ( I βΎ π΅) β β€ ) β (( < Po π΅ β§ βπ₯ β π΅ βπ¦ β π΅ (π₯ < π¦ β¨ π₯ = π¦ β¨ π¦ < π₯)) β§ ( I βΎ π΅) β β€ )) |
27 | | an32 642 |
. . 3
β’ ((( < Po π΅ β§ βπ₯ β π΅ βπ¦ β π΅ (π₯ < π¦ β¨ π₯ = π¦ β¨ π¦ < π₯)) β§ ( I βΎ π΅) β β€ ) β (( < Po π΅ β§ ( I βΎ π΅) β β€ ) β§ βπ₯ β π΅ βπ¦ β π΅ (π₯ < π¦ β¨ π₯ = π¦ β¨ π¦ < π₯))) |
28 | 26, 27 | bitri 274 |
. 2
β’ (( < Or π΅ β§ ( I βΎ π΅) β β€ ) β (( < Po π΅ β§ ( I βΎ π΅) β β€ ) β§ βπ₯ β π΅ βπ¦ β π΅ (π₯ < π¦ β¨ π₯ = π¦ β¨ π¦ < π₯))) |
29 | 23, 24, 28 | 3bitr4g 313 |
1
β’ (πΎ β π β (πΎ β Toset β ( < Or π΅ β§ ( I βΎ π΅) β β€ ))) |