MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tosso Structured version   Visualization version   GIF version

Theorem tosso 18489
Description: Write the totally ordered set structure predicate in terms of the proper class strict order predicate. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
tosso.b 𝐵 = (Base‘𝐾)
tosso.l = (le‘𝐾)
tosso.s < = (lt‘𝐾)
Assertion
Ref Expression
tosso (𝐾𝑉 → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ )))

Proof of Theorem tosso
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tosso.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
2 tosso.l . . . . . . . . 9 = (le‘𝐾)
3 tosso.s . . . . . . . . 9 < = (lt‘𝐾)
41, 2, 3pleval2 18407 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑥𝐵𝑦𝐵) → (𝑥 𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
543expb 1120 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
61, 2, 3pleval2 18407 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ 𝑦𝐵𝑥𝐵) → (𝑦 𝑥 ↔ (𝑦 < 𝑥𝑦 = 𝑥)))
7 equcom 2017 . . . . . . . . . . 11 (𝑦 = 𝑥𝑥 = 𝑦)
87orbi2i 911 . . . . . . . . . 10 ((𝑦 < 𝑥𝑦 = 𝑥) ↔ (𝑦 < 𝑥𝑥 = 𝑦))
96, 8bitrdi 287 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ 𝑦𝐵𝑥𝐵) → (𝑦 𝑥 ↔ (𝑦 < 𝑥𝑥 = 𝑦)))
1093com23 1126 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑥𝐵𝑦𝐵) → (𝑦 𝑥 ↔ (𝑦 < 𝑥𝑥 = 𝑦)))
11103expb 1120 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 𝑥 ↔ (𝑦 < 𝑥𝑥 = 𝑦)))
125, 11orbi12d 917 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 𝑦𝑦 𝑥) ↔ ((𝑥 < 𝑦𝑥 = 𝑦) ∨ (𝑦 < 𝑥𝑥 = 𝑦))))
13 df-3or 1088 . . . . . . 7 ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ((𝑥 < 𝑦𝑥 = 𝑦) ∨ 𝑦 < 𝑥))
14 or32 924 . . . . . . . 8 (((𝑥 < 𝑦𝑥 = 𝑦) ∨ 𝑦 < 𝑥) ↔ ((𝑥 < 𝑦𝑦 < 𝑥) ∨ 𝑥 = 𝑦))
15 orordir 928 . . . . . . . 8 (((𝑥 < 𝑦𝑦 < 𝑥) ∨ 𝑥 = 𝑦) ↔ ((𝑥 < 𝑦𝑥 = 𝑦) ∨ (𝑦 < 𝑥𝑥 = 𝑦)))
1614, 15bitri 275 . . . . . . 7 (((𝑥 < 𝑦𝑥 = 𝑦) ∨ 𝑦 < 𝑥) ↔ ((𝑥 < 𝑦𝑥 = 𝑦) ∨ (𝑦 < 𝑥𝑥 = 𝑦)))
1713, 16bitri 275 . . . . . 6 ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ((𝑥 < 𝑦𝑥 = 𝑦) ∨ (𝑦 < 𝑥𝑥 = 𝑦)))
1812, 17bitr4di 289 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 𝑦𝑦 𝑥) ↔ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
19182ralbidva 3225 . . . 4 (𝐾 ∈ Poset → (∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
2019pm5.32i 574 . . 3 ((𝐾 ∈ Poset ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)) ↔ (𝐾 ∈ Poset ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
211, 2, 3pospo 18415 . . . 4 (𝐾𝑉 → (𝐾 ∈ Poset ↔ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )))
2221anbi1d 630 . . 3 (𝐾𝑉 → ((𝐾 ∈ Poset ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ↔ (( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))))
2320, 22bitrid 283 . 2 (𝐾𝑉 → ((𝐾 ∈ Poset ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)) ↔ (( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))))
241, 2istos 18488 . 2 (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)))
25 df-so 5608 . . . 4 ( < Or 𝐵 ↔ ( < Po 𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
2625anbi1i 623 . . 3 (( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ ) ↔ (( < Po 𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ ( I ↾ 𝐵) ⊆ ))
27 an32 645 . . 3 ((( < Po 𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ ( I ↾ 𝐵) ⊆ ) ↔ (( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
2826, 27bitri 275 . 2 (( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ ) ↔ (( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
2923, 24, 283bitr4g 314 1 (𝐾𝑉 → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3o 1086  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wss 3976   class class class wbr 5166   I cid 5592   Po wpo 5605   Or wor 5606  cres 5702  cfv 6573  Basecbs 17258  lecple 17318  Posetcpo 18377  ltcplt 18378  Tosetctos 18486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581  df-proset 18365  df-poset 18383  df-plt 18400  df-toset 18487
This theorem is referenced by:  retos  21659  opsrtoslem2  22103  opsrso  22105  toslub  32946  tosglb  32948  orngsqr  33299
  Copyright terms: Public domain W3C validator