| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 4atexlemex4 | Structured version Visualization version GIF version | ||
| Description: Lemma for 4atexlem7 40069. Show that when 𝐶 = 𝑆, 𝐷 satisfies the existence condition of the consequent. (Contributed by NM, 26-Nov-2012.) |
| Ref | Expression |
|---|---|
| 4thatlem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) |
| 4thatlem0.l | ⊢ ≤ = (le‘𝐾) |
| 4thatlem0.j | ⊢ ∨ = (join‘𝐾) |
| 4thatlem0.m | ⊢ ∧ = (meet‘𝐾) |
| 4thatlem0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| 4thatlem0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| 4thatlem0.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| 4thatlem0.v | ⊢ 𝑉 = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
| 4thatlem0.c | ⊢ 𝐶 = ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) |
| 4thatlem0.d | ⊢ 𝐷 = ((𝑅 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) |
| Ref | Expression |
|---|---|
| 4atexlemex4 | ⊢ ((𝜑 ∧ 𝐶 = 𝑆) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4thatlem.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) | |
| 2 | 4thatlem0.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | 4thatlem0.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 4 | 4thatlem0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 4thatlem0.u | . . . 4 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
| 6 | 1, 2, 3, 4, 5 | 4atexlemswapqr 40057 | . . 3 ⊢ (𝜑 → (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ 𝑊) ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅)))) |
| 7 | 4thatlem0.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
| 8 | 4thatlem0.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 9 | 4thatlem0.v | . . . . 5 ⊢ 𝑉 = ((𝑃 ∨ 𝑆) ∧ 𝑊) | |
| 10 | 4thatlem0.c | . . . . 5 ⊢ 𝐶 = ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) | |
| 11 | 4thatlem0.d | . . . . 5 ⊢ 𝐷 = ((𝑅 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) | |
| 12 | 1, 2, 3, 7, 4, 8, 5, 9, 10, 11 | 4atexlemcnd 40066 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| 13 | pm13.18 3006 | . . . . . 6 ⊢ ((𝐶 = 𝑆 ∧ 𝐶 ≠ 𝐷) → 𝑆 ≠ 𝐷) | |
| 14 | 13 | necomd 2980 | . . . . 5 ⊢ ((𝐶 = 𝑆 ∧ 𝐶 ≠ 𝐷) → 𝐷 ≠ 𝑆) |
| 15 | 14 | expcom 413 | . . . 4 ⊢ (𝐶 ≠ 𝐷 → (𝐶 = 𝑆 → 𝐷 ≠ 𝑆)) |
| 16 | 12, 15 | syl 17 | . . 3 ⊢ (𝜑 → (𝐶 = 𝑆 → 𝐷 ≠ 𝑆)) |
| 17 | biid 261 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ 𝑊) ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅))) ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ 𝑊) ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅)))) | |
| 18 | eqid 2729 | . . . 4 ⊢ ((𝑃 ∨ 𝑅) ∧ 𝑊) = ((𝑃 ∨ 𝑅) ∧ 𝑊) | |
| 19 | 17, 2, 3, 7, 4, 8, 18, 9, 11 | 4atexlemex2 40065 | . . 3 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ 𝑊) ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅))) ∧ 𝐷 ≠ 𝑆) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |
| 20 | 6, 16, 19 | syl6an 684 | . 2 ⊢ (𝜑 → (𝐶 = 𝑆 → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) |
| 21 | 20 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝐶 = 𝑆) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 lecple 17227 joincjn 18272 meetcmee 18273 Atomscatm 39256 HLchlt 39343 LHypclh 39978 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-llines 39492 df-lplanes 39493 df-lhyp 39982 |
| This theorem is referenced by: 4atexlemex6 40068 |
| Copyright terms: Public domain | W3C validator |