Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 4atexlemex4 | Structured version Visualization version GIF version |
Description: Lemma for 4atexlem7 38016. Show that when 𝐶 = 𝑆, 𝐷 satisfies the existence condition of the consequent. (Contributed by NM, 26-Nov-2012.) |
Ref | Expression |
---|---|
4thatlem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) |
4thatlem0.l | ⊢ ≤ = (le‘𝐾) |
4thatlem0.j | ⊢ ∨ = (join‘𝐾) |
4thatlem0.m | ⊢ ∧ = (meet‘𝐾) |
4thatlem0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
4thatlem0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
4thatlem0.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
4thatlem0.v | ⊢ 𝑉 = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
4thatlem0.c | ⊢ 𝐶 = ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) |
4thatlem0.d | ⊢ 𝐷 = ((𝑅 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) |
Ref | Expression |
---|---|
4atexlemex4 | ⊢ ((𝜑 ∧ 𝐶 = 𝑆) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4thatlem.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) | |
2 | 4thatlem0.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | 4thatlem0.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
4 | 4thatlem0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 4thatlem0.u | . . . 4 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
6 | 1, 2, 3, 4, 5 | 4atexlemswapqr 38004 | . . 3 ⊢ (𝜑 → (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ 𝑊) ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅)))) |
7 | 4thatlem0.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
8 | 4thatlem0.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | 4thatlem0.v | . . . . 5 ⊢ 𝑉 = ((𝑃 ∨ 𝑆) ∧ 𝑊) | |
10 | 4thatlem0.c | . . . . 5 ⊢ 𝐶 = ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) | |
11 | 4thatlem0.d | . . . . 5 ⊢ 𝐷 = ((𝑅 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) | |
12 | 1, 2, 3, 7, 4, 8, 5, 9, 10, 11 | 4atexlemcnd 38013 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
13 | pm13.18 3024 | . . . . . 6 ⊢ ((𝐶 = 𝑆 ∧ 𝐶 ≠ 𝐷) → 𝑆 ≠ 𝐷) | |
14 | 13 | necomd 2998 | . . . . 5 ⊢ ((𝐶 = 𝑆 ∧ 𝐶 ≠ 𝐷) → 𝐷 ≠ 𝑆) |
15 | 14 | expcom 413 | . . . 4 ⊢ (𝐶 ≠ 𝐷 → (𝐶 = 𝑆 → 𝐷 ≠ 𝑆)) |
16 | 12, 15 | syl 17 | . . 3 ⊢ (𝜑 → (𝐶 = 𝑆 → 𝐷 ≠ 𝑆)) |
17 | biid 260 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ 𝑊) ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅))) ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ 𝑊) ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅)))) | |
18 | eqid 2738 | . . . 4 ⊢ ((𝑃 ∨ 𝑅) ∧ 𝑊) = ((𝑃 ∨ 𝑅) ∧ 𝑊) | |
19 | 17, 2, 3, 7, 4, 8, 18, 9, 11 | 4atexlemex2 38012 | . . 3 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ 𝑊) ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅))) ∧ 𝐷 ≠ 𝑆) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |
20 | 6, 16, 19 | syl6an 680 | . 2 ⊢ (𝜑 → (𝐶 = 𝑆 → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) |
21 | 20 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝐶 = 𝑆) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 lecple 16895 joincjn 17944 meetcmee 17945 Atomscatm 37204 HLchlt 37291 LHypclh 37925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-llines 37439 df-lplanes 37440 df-lhyp 37929 |
This theorem is referenced by: 4atexlemex6 38015 |
Copyright terms: Public domain | W3C validator |