| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 4atexlemex4 | Structured version Visualization version GIF version | ||
| Description: Lemma for 4atexlem7 40036. Show that when 𝐶 = 𝑆, 𝐷 satisfies the existence condition of the consequent. (Contributed by NM, 26-Nov-2012.) |
| Ref | Expression |
|---|---|
| 4thatlem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) |
| 4thatlem0.l | ⊢ ≤ = (le‘𝐾) |
| 4thatlem0.j | ⊢ ∨ = (join‘𝐾) |
| 4thatlem0.m | ⊢ ∧ = (meet‘𝐾) |
| 4thatlem0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| 4thatlem0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| 4thatlem0.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| 4thatlem0.v | ⊢ 𝑉 = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
| 4thatlem0.c | ⊢ 𝐶 = ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) |
| 4thatlem0.d | ⊢ 𝐷 = ((𝑅 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) |
| Ref | Expression |
|---|---|
| 4atexlemex4 | ⊢ ((𝜑 ∧ 𝐶 = 𝑆) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4thatlem.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) | |
| 2 | 4thatlem0.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | 4thatlem0.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 4 | 4thatlem0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 4thatlem0.u | . . . 4 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
| 6 | 1, 2, 3, 4, 5 | 4atexlemswapqr 40024 | . . 3 ⊢ (𝜑 → (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ 𝑊) ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅)))) |
| 7 | 4thatlem0.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
| 8 | 4thatlem0.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 9 | 4thatlem0.v | . . . . 5 ⊢ 𝑉 = ((𝑃 ∨ 𝑆) ∧ 𝑊) | |
| 10 | 4thatlem0.c | . . . . 5 ⊢ 𝐶 = ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) | |
| 11 | 4thatlem0.d | . . . . 5 ⊢ 𝐷 = ((𝑅 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) | |
| 12 | 1, 2, 3, 7, 4, 8, 5, 9, 10, 11 | 4atexlemcnd 40033 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| 13 | pm13.18 3012 | . . . . . 6 ⊢ ((𝐶 = 𝑆 ∧ 𝐶 ≠ 𝐷) → 𝑆 ≠ 𝐷) | |
| 14 | 13 | necomd 2986 | . . . . 5 ⊢ ((𝐶 = 𝑆 ∧ 𝐶 ≠ 𝐷) → 𝐷 ≠ 𝑆) |
| 15 | 14 | expcom 413 | . . . 4 ⊢ (𝐶 ≠ 𝐷 → (𝐶 = 𝑆 → 𝐷 ≠ 𝑆)) |
| 16 | 12, 15 | syl 17 | . . 3 ⊢ (𝜑 → (𝐶 = 𝑆 → 𝐷 ≠ 𝑆)) |
| 17 | biid 261 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ 𝑊) ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅))) ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ 𝑊) ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅)))) | |
| 18 | eqid 2734 | . . . 4 ⊢ ((𝑃 ∨ 𝑅) ∧ 𝑊) = ((𝑃 ∨ 𝑅) ∧ 𝑊) | |
| 19 | 17, 2, 3, 7, 4, 8, 18, 9, 11 | 4atexlemex2 40032 | . . 3 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ 𝑊) ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅))) ∧ 𝐷 ≠ 𝑆) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |
| 20 | 6, 16, 19 | syl6an 684 | . 2 ⊢ (𝜑 → (𝐶 = 𝑆 → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) |
| 21 | 20 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝐶 = 𝑆) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 lecple 17280 joincjn 18327 meetcmee 18328 Atomscatm 39223 HLchlt 39310 LHypclh 39945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-proset 18310 df-poset 18329 df-plt 18344 df-lub 18360 df-glb 18361 df-join 18362 df-meet 18363 df-p0 18439 df-p1 18440 df-lat 18446 df-clat 18513 df-oposet 39136 df-ol 39138 df-oml 39139 df-covers 39226 df-ats 39227 df-atl 39258 df-cvlat 39282 df-hlat 39311 df-llines 39459 df-lplanes 39460 df-lhyp 39949 |
| This theorem is referenced by: 4atexlemex6 40035 |
| Copyright terms: Public domain | W3C validator |