Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemex4 Structured version   Visualization version   GIF version

Theorem 4atexlemex4 39248
Description: Lemma for 4atexlem7 39250. Show that when 𝐢 = 𝑆, 𝐷 satisfies the existence condition of the consequent. (Contributed by NM, 26-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (πœ‘ ↔ (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))))
4thatlem0.l ≀ = (leβ€˜πΎ)
4thatlem0.j ∨ = (joinβ€˜πΎ)
4thatlem0.m ∧ = (meetβ€˜πΎ)
4thatlem0.a 𝐴 = (Atomsβ€˜πΎ)
4thatlem0.h 𝐻 = (LHypβ€˜πΎ)
4thatlem0.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
4thatlem0.v 𝑉 = ((𝑃 ∨ 𝑆) ∧ π‘Š)
4thatlem0.c 𝐢 = ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))
4thatlem0.d 𝐷 = ((𝑅 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))
Assertion
Ref Expression
4atexlemex4 ((πœ‘ ∧ 𝐢 = 𝑆) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐢   𝑧, ∨   𝑧, ≀   𝑧,𝑃   𝑧,𝑆   𝑧,π‘Š   𝑧,𝐷
Allowed substitution hints:   πœ‘(𝑧)   𝑄(𝑧)   𝑅(𝑧)   𝑇(𝑧)   π‘ˆ(𝑧)   𝐻(𝑧)   𝐾(𝑧)   ∧ (𝑧)   𝑉(𝑧)

Proof of Theorem 4atexlemex4
StepHypRef Expression
1 4thatlem.ph . . . 4 (πœ‘ ↔ (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))))
2 4thatlem0.l . . . 4 ≀ = (leβ€˜πΎ)
3 4thatlem0.j . . . 4 ∨ = (joinβ€˜πΎ)
4 4thatlem0.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
5 4thatlem0.u . . . 4 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
61, 2, 3, 4, 54atexlemswapqr 39238 . . 3 (πœ‘ β†’ (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ π‘Š) ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑅 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑅))))
7 4thatlem0.m . . . . 5 ∧ = (meetβ€˜πΎ)
8 4thatlem0.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
9 4thatlem0.v . . . . 5 𝑉 = ((𝑃 ∨ 𝑆) ∧ π‘Š)
10 4thatlem0.c . . . . 5 𝐢 = ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))
11 4thatlem0.d . . . . 5 𝐷 = ((𝑅 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))
121, 2, 3, 7, 4, 8, 5, 9, 10, 114atexlemcnd 39247 . . . 4 (πœ‘ β†’ 𝐢 β‰  𝐷)
13 pm13.18 3021 . . . . . 6 ((𝐢 = 𝑆 ∧ 𝐢 β‰  𝐷) β†’ 𝑆 β‰  𝐷)
1413necomd 2995 . . . . 5 ((𝐢 = 𝑆 ∧ 𝐢 β‰  𝐷) β†’ 𝐷 β‰  𝑆)
1514expcom 413 . . . 4 (𝐢 β‰  𝐷 β†’ (𝐢 = 𝑆 β†’ 𝐷 β‰  𝑆))
1612, 15syl 17 . . 3 (πœ‘ β†’ (𝐢 = 𝑆 β†’ 𝐷 β‰  𝑆))
17 biid 261 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ π‘Š) ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑅 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑅))) ↔ (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ π‘Š) ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑅 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑅))))
18 eqid 2731 . . . 4 ((𝑃 ∨ 𝑅) ∧ π‘Š) = ((𝑃 ∨ 𝑅) ∧ π‘Š)
1917, 2, 3, 7, 4, 8, 18, 9, 114atexlemex2 39246 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ π‘Š) ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑅 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑅))) ∧ 𝐷 β‰  𝑆) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))
206, 16, 19syl6an 681 . 2 (πœ‘ β†’ (𝐢 = 𝑆 β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))))
2120imp 406 1 ((πœ‘ ∧ 𝐢 = 𝑆) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  βˆƒwrex 3069   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7412  lecple 17209  joincjn 18269  meetcmee 18270  Atomscatm 38437  HLchlt 38524  LHypclh 39159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-proset 18253  df-poset 18271  df-plt 18288  df-lub 18304  df-glb 18305  df-join 18306  df-meet 18307  df-p0 18383  df-p1 18384  df-lat 18390  df-clat 18457  df-oposet 38350  df-ol 38352  df-oml 38353  df-covers 38440  df-ats 38441  df-atl 38472  df-cvlat 38496  df-hlat 38525  df-llines 38673  df-lplanes 38674  df-lhyp 39163
This theorem is referenced by:  4atexlemex6  39249
  Copyright terms: Public domain W3C validator