MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem5a Structured version   Visualization version   GIF version

Theorem frgrwopreglem5a 30259
Description: If a friendship graph has two vertices with the same degree and two other vertices with different degrees, then there is a 4-cycle in the graph. Alternate version of frgrwopreglem5 30269 without a fixed degree and without using the sets 𝐴 and 𝐵. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrncvvdeq.v 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreglem4a.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopreglem5a ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝑋} ∈ 𝐸) ∧ ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸)))

Proof of Theorem frgrwopreglem5a
StepHypRef Expression
1 id 22 . . 3 (𝐺 ∈ FriendGraph → 𝐺 ∈ FriendGraph )
2 simpl 482 . . . 4 ((𝐴𝑉𝑋𝑉) → 𝐴𝑉)
3 simpl 482 . . . 4 ((𝐵𝑉𝑌𝑉) → 𝐵𝑉)
42, 3anim12i 613 . . 3 (((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) → (𝐴𝑉𝐵𝑉))
5 simp2 1137 . . 3 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝐴) ≠ (𝐷𝐵))
6 frgrncvvdeq.v . . . 4 𝑉 = (Vtx‘𝐺)
7 frgrncvvdeq.d . . . 4 𝐷 = (VtxDeg‘𝐺)
8 frgrwopreglem4a.e . . . 4 𝐸 = (Edg‘𝐺)
96, 7, 8frgrwopreglem4a 30258 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐷𝐴) ≠ (𝐷𝐵)) → {𝐴, 𝐵} ∈ 𝐸)
101, 4, 5, 9syl3an 1160 . 2 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → {𝐴, 𝐵} ∈ 𝐸)
11 simpr 484 . . . 4 ((𝐴𝑉𝑋𝑉) → 𝑋𝑉)
1211, 3anim12ci 614 . . 3 (((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) → (𝐵𝑉𝑋𝑉))
13 pm13.18 3006 . . . . 5 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵)) → (𝐷𝑋) ≠ (𝐷𝐵))
14133adant3 1132 . . . 4 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝑋) ≠ (𝐷𝐵))
1514necomd 2980 . . 3 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝐵) ≠ (𝐷𝑋))
166, 7, 8frgrwopreglem4a 30258 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐵𝑉𝑋𝑉) ∧ (𝐷𝐵) ≠ (𝐷𝑋)) → {𝐵, 𝑋} ∈ 𝐸)
171, 12, 15, 16syl3an 1160 . 2 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → {𝐵, 𝑋} ∈ 𝐸)
18 simpr 484 . . . . 5 ((𝐵𝑉𝑌𝑉) → 𝑌𝑉)
1911, 18anim12i 613 . . . 4 (((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) → (𝑋𝑉𝑌𝑉))
20 simp3 1138 . . . 4 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝑋) ≠ (𝐷𝑌))
216, 7, 8frgrwopreglem4a 30258 . . . 4 ((𝐺 ∈ FriendGraph ∧ (𝑋𝑉𝑌𝑉) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → {𝑋, 𝑌} ∈ 𝐸)
221, 19, 20, 21syl3an 1160 . . 3 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → {𝑋, 𝑌} ∈ 𝐸)
232, 18anim12ci 614 . . . 4 (((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) → (𝑌𝑉𝐴𝑉))
24 pm13.181 3007 . . . . . 6 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝐴) ≠ (𝐷𝑌))
25243adant2 1131 . . . . 5 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝐴) ≠ (𝐷𝑌))
2625necomd 2980 . . . 4 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝑌) ≠ (𝐷𝐴))
276, 7, 8frgrwopreglem4a 30258 . . . 4 ((𝐺 ∈ FriendGraph ∧ (𝑌𝑉𝐴𝑉) ∧ (𝐷𝑌) ≠ (𝐷𝐴)) → {𝑌, 𝐴} ∈ 𝐸)
281, 23, 26, 27syl3an 1160 . . 3 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → {𝑌, 𝐴} ∈ 𝐸)
2922, 28jca 511 . 2 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸))
3010, 17, 29jca31 514 1 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝑋} ∈ 𝐸) ∧ ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {cpr 4579  cfv 6482  Vtxcvtx 28945  Edgcedg 28996  VtxDegcvtxdg 29415   FriendGraph cfrgr 30206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-xadd 13015  df-fz 13411  df-hash 14238  df-edg 28997  df-uhgr 29007  df-ushgr 29008  df-upgr 29031  df-umgr 29032  df-uspgr 29099  df-usgr 29100  df-nbgr 29282  df-vtxdg 29416  df-frgr 30207
This theorem is referenced by:  frgrwopreglem5  30269
  Copyright terms: Public domain W3C validator