MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem5a Structured version   Visualization version   GIF version

Theorem frgrwopreglem5a 28576
Description: If a friendship graph has two vertices with the same degree and two other vertices with different degrees, then there is a 4-cycle in the graph. Alternate version of frgrwopreglem5 28586 without a fixed degree and without using the sets 𝐴 and 𝐵. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrncvvdeq.v 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreglem4a.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopreglem5a ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝑋} ∈ 𝐸) ∧ ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸)))

Proof of Theorem frgrwopreglem5a
StepHypRef Expression
1 id 22 . . 3 (𝐺 ∈ FriendGraph → 𝐺 ∈ FriendGraph )
2 simpl 482 . . . 4 ((𝐴𝑉𝑋𝑉) → 𝐴𝑉)
3 simpl 482 . . . 4 ((𝐵𝑉𝑌𝑉) → 𝐵𝑉)
42, 3anim12i 612 . . 3 (((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) → (𝐴𝑉𝐵𝑉))
5 simp2 1135 . . 3 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝐴) ≠ (𝐷𝐵))
6 frgrncvvdeq.v . . . 4 𝑉 = (Vtx‘𝐺)
7 frgrncvvdeq.d . . . 4 𝐷 = (VtxDeg‘𝐺)
8 frgrwopreglem4a.e . . . 4 𝐸 = (Edg‘𝐺)
96, 7, 8frgrwopreglem4a 28575 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐷𝐴) ≠ (𝐷𝐵)) → {𝐴, 𝐵} ∈ 𝐸)
101, 4, 5, 9syl3an 1158 . 2 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → {𝐴, 𝐵} ∈ 𝐸)
11 simpr 484 . . . 4 ((𝐴𝑉𝑋𝑉) → 𝑋𝑉)
1211, 3anim12ci 613 . . 3 (((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) → (𝐵𝑉𝑋𝑉))
13 pm13.18 3024 . . . . 5 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵)) → (𝐷𝑋) ≠ (𝐷𝐵))
14133adant3 1130 . . . 4 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝑋) ≠ (𝐷𝐵))
1514necomd 2998 . . 3 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝐵) ≠ (𝐷𝑋))
166, 7, 8frgrwopreglem4a 28575 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐵𝑉𝑋𝑉) ∧ (𝐷𝐵) ≠ (𝐷𝑋)) → {𝐵, 𝑋} ∈ 𝐸)
171, 12, 15, 16syl3an 1158 . 2 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → {𝐵, 𝑋} ∈ 𝐸)
18 simpr 484 . . . . 5 ((𝐵𝑉𝑌𝑉) → 𝑌𝑉)
1911, 18anim12i 612 . . . 4 (((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) → (𝑋𝑉𝑌𝑉))
20 simp3 1136 . . . 4 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝑋) ≠ (𝐷𝑌))
216, 7, 8frgrwopreglem4a 28575 . . . 4 ((𝐺 ∈ FriendGraph ∧ (𝑋𝑉𝑌𝑉) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → {𝑋, 𝑌} ∈ 𝐸)
221, 19, 20, 21syl3an 1158 . . 3 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → {𝑋, 𝑌} ∈ 𝐸)
232, 18anim12ci 613 . . . 4 (((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) → (𝑌𝑉𝐴𝑉))
24 pm13.181 3025 . . . . . 6 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝐴) ≠ (𝐷𝑌))
25243adant2 1129 . . . . 5 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝐴) ≠ (𝐷𝑌))
2625necomd 2998 . . . 4 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝑌) ≠ (𝐷𝐴))
276, 7, 8frgrwopreglem4a 28575 . . . 4 ((𝐺 ∈ FriendGraph ∧ (𝑌𝑉𝐴𝑉) ∧ (𝐷𝑌) ≠ (𝐷𝐴)) → {𝑌, 𝐴} ∈ 𝐸)
281, 23, 26, 27syl3an 1158 . . 3 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → {𝑌, 𝐴} ∈ 𝐸)
2922, 28jca 511 . 2 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸))
3010, 17, 29jca31 514 1 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝑋} ∈ 𝐸) ∧ ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  {cpr 4560  cfv 6418  Vtxcvtx 27269  Edgcedg 27320  VtxDegcvtxdg 27735   FriendGraph cfrgr 28523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-xadd 12778  df-fz 13169  df-hash 13973  df-edg 27321  df-uhgr 27331  df-ushgr 27332  df-upgr 27355  df-umgr 27356  df-uspgr 27423  df-usgr 27424  df-nbgr 27603  df-vtxdg 27736  df-frgr 28524
This theorem is referenced by:  frgrwopreglem5  28586
  Copyright terms: Public domain W3C validator