MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem5a Structured version   Visualization version   GIF version

Theorem frgrwopreglem5a 30343
Description: If a friendship graph has two vertices with the same degree and two other vertices with different degrees, then there is a 4-cycle in the graph. Alternate version of frgrwopreglem5 30353 without a fixed degree and without using the sets 𝐴 and 𝐵. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrncvvdeq.v 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreglem4a.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopreglem5a ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝑋} ∈ 𝐸) ∧ ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸)))

Proof of Theorem frgrwopreglem5a
StepHypRef Expression
1 id 22 . . 3 (𝐺 ∈ FriendGraph → 𝐺 ∈ FriendGraph )
2 simpl 482 . . . 4 ((𝐴𝑉𝑋𝑉) → 𝐴𝑉)
3 simpl 482 . . . 4 ((𝐵𝑉𝑌𝑉) → 𝐵𝑉)
42, 3anim12i 612 . . 3 (((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) → (𝐴𝑉𝐵𝑉))
5 simp2 1137 . . 3 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝐴) ≠ (𝐷𝐵))
6 frgrncvvdeq.v . . . 4 𝑉 = (Vtx‘𝐺)
7 frgrncvvdeq.d . . . 4 𝐷 = (VtxDeg‘𝐺)
8 frgrwopreglem4a.e . . . 4 𝐸 = (Edg‘𝐺)
96, 7, 8frgrwopreglem4a 30342 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐷𝐴) ≠ (𝐷𝐵)) → {𝐴, 𝐵} ∈ 𝐸)
101, 4, 5, 9syl3an 1160 . 2 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → {𝐴, 𝐵} ∈ 𝐸)
11 simpr 484 . . . 4 ((𝐴𝑉𝑋𝑉) → 𝑋𝑉)
1211, 3anim12ci 613 . . 3 (((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) → (𝐵𝑉𝑋𝑉))
13 pm13.18 3028 . . . . 5 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵)) → (𝐷𝑋) ≠ (𝐷𝐵))
14133adant3 1132 . . . 4 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝑋) ≠ (𝐷𝐵))
1514necomd 3002 . . 3 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝐵) ≠ (𝐷𝑋))
166, 7, 8frgrwopreglem4a 30342 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐵𝑉𝑋𝑉) ∧ (𝐷𝐵) ≠ (𝐷𝑋)) → {𝐵, 𝑋} ∈ 𝐸)
171, 12, 15, 16syl3an 1160 . 2 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → {𝐵, 𝑋} ∈ 𝐸)
18 simpr 484 . . . . 5 ((𝐵𝑉𝑌𝑉) → 𝑌𝑉)
1911, 18anim12i 612 . . . 4 (((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) → (𝑋𝑉𝑌𝑉))
20 simp3 1138 . . . 4 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝑋) ≠ (𝐷𝑌))
216, 7, 8frgrwopreglem4a 30342 . . . 4 ((𝐺 ∈ FriendGraph ∧ (𝑋𝑉𝑌𝑉) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → {𝑋, 𝑌} ∈ 𝐸)
221, 19, 20, 21syl3an 1160 . . 3 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → {𝑋, 𝑌} ∈ 𝐸)
232, 18anim12ci 613 . . . 4 (((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) → (𝑌𝑉𝐴𝑉))
24 pm13.181 3029 . . . . . 6 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝐴) ≠ (𝐷𝑌))
25243adant2 1131 . . . . 5 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝐴) ≠ (𝐷𝑌))
2625necomd 3002 . . . 4 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝑌) ≠ (𝐷𝐴))
276, 7, 8frgrwopreglem4a 30342 . . . 4 ((𝐺 ∈ FriendGraph ∧ (𝑌𝑉𝐴𝑉) ∧ (𝐷𝑌) ≠ (𝐷𝐴)) → {𝑌, 𝐴} ∈ 𝐸)
281, 23, 26, 27syl3an 1160 . . 3 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → {𝑌, 𝐴} ∈ 𝐸)
2922, 28jca 511 . 2 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸))
3010, 17, 29jca31 514 1 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝑋} ∈ 𝐸) ∧ ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  {cpr 4650  cfv 6573  Vtxcvtx 29031  Edgcedg 29082  VtxDegcvtxdg 29501   FriendGraph cfrgr 30290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-xadd 13176  df-fz 13568  df-hash 14380  df-edg 29083  df-uhgr 29093  df-ushgr 29094  df-upgr 29117  df-umgr 29118  df-uspgr 29185  df-usgr 29186  df-nbgr 29368  df-vtxdg 29502  df-frgr 30291
This theorem is referenced by:  frgrwopreglem5  30353
  Copyright terms: Public domain W3C validator