| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrwopreglem5a | Structured version Visualization version GIF version | ||
| Description: If a friendship graph has two vertices with the same degree and two other vertices with different degrees, then there is a 4-cycle in the graph. Alternate version of frgrwopreglem5 30257 without a fixed degree and without using the sets 𝐴 and 𝐵. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 4-Feb-2022.) |
| Ref | Expression |
|---|---|
| frgrncvvdeq.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| frgrncvvdeq.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
| frgrwopreglem4a.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| frgrwopreglem5a | ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝑋} ∈ 𝐸) ∧ ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ FriendGraph ) | |
| 2 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
| 3 | simpl 482 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
| 4 | 2, 3 | anim12i 613 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) |
| 5 | simp2 1137 | . . 3 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝐴) ≠ (𝐷‘𝐵)) | |
| 6 | frgrncvvdeq.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 7 | frgrncvvdeq.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
| 8 | frgrwopreglem4a.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 9 | 6, 7, 8 | frgrwopreglem4a 30246 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵)) → {𝐴, 𝐵} ∈ 𝐸) |
| 10 | 1, 4, 5, 9 | syl3an 1160 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → {𝐴, 𝐵} ∈ 𝐸) |
| 11 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 12 | 11, 3 | anim12ci 614 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) |
| 13 | pm13.18 3007 | . . . . 5 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵)) → (𝐷‘𝑋) ≠ (𝐷‘𝐵)) | |
| 14 | 13 | 3adant3 1132 | . . . 4 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝑋) ≠ (𝐷‘𝐵)) |
| 15 | 14 | necomd 2981 | . . 3 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝐵) ≠ (𝐷‘𝑋)) |
| 16 | 6, 7, 8 | frgrwopreglem4a 30246 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐷‘𝐵) ≠ (𝐷‘𝑋)) → {𝐵, 𝑋} ∈ 𝐸) |
| 17 | 1, 12, 15, 16 | syl3an 1160 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → {𝐵, 𝑋} ∈ 𝐸) |
| 18 | simpr 484 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ 𝑉) | |
| 19 | 11, 18 | anim12i 613 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) |
| 20 | simp3 1138 | . . . 4 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝑋) ≠ (𝐷‘𝑌)) | |
| 21 | 6, 7, 8 | frgrwopreglem4a 30246 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → {𝑋, 𝑌} ∈ 𝐸) |
| 22 | 1, 19, 20, 21 | syl3an 1160 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → {𝑋, 𝑌} ∈ 𝐸) |
| 23 | 2, 18 | anim12ci 614 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉)) |
| 24 | pm13.181 3008 | . . . . . 6 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝐴) ≠ (𝐷‘𝑌)) | |
| 25 | 24 | 3adant2 1131 | . . . . 5 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝐴) ≠ (𝐷‘𝑌)) |
| 26 | 25 | necomd 2981 | . . . 4 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝑌) ≠ (𝐷‘𝐴)) |
| 27 | 6, 7, 8 | frgrwopreglem4a 30246 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐷‘𝑌) ≠ (𝐷‘𝐴)) → {𝑌, 𝐴} ∈ 𝐸) |
| 28 | 1, 23, 26, 27 | syl3an 1160 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → {𝑌, 𝐴} ∈ 𝐸) |
| 29 | 22, 28 | jca 511 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸)) |
| 30 | 10, 17, 29 | jca31 514 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝑋} ∈ 𝐸) ∧ ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 {cpr 4594 ‘cfv 6514 Vtxcvtx 28930 Edgcedg 28981 VtxDegcvtxdg 29400 FriendGraph cfrgr 30194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-xadd 13080 df-fz 13476 df-hash 14303 df-edg 28982 df-uhgr 28992 df-ushgr 28993 df-upgr 29016 df-umgr 29017 df-uspgr 29084 df-usgr 29085 df-nbgr 29267 df-vtxdg 29401 df-frgr 30195 |
| This theorem is referenced by: frgrwopreglem5 30257 |
| Copyright terms: Public domain | W3C validator |