| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrwopreglem5a | Structured version Visualization version GIF version | ||
| Description: If a friendship graph has two vertices with the same degree and two other vertices with different degrees, then there is a 4-cycle in the graph. Alternate version of frgrwopreglem5 30307 without a fixed degree and without using the sets 𝐴 and 𝐵. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 4-Feb-2022.) |
| Ref | Expression |
|---|---|
| frgrncvvdeq.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| frgrncvvdeq.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
| frgrwopreglem4a.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| frgrwopreglem5a | ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝑋} ∈ 𝐸) ∧ ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ FriendGraph ) | |
| 2 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
| 3 | simpl 482 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
| 4 | 2, 3 | anim12i 613 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) |
| 5 | simp2 1137 | . . 3 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝐴) ≠ (𝐷‘𝐵)) | |
| 6 | frgrncvvdeq.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 7 | frgrncvvdeq.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
| 8 | frgrwopreglem4a.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 9 | 6, 7, 8 | frgrwopreglem4a 30296 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵)) → {𝐴, 𝐵} ∈ 𝐸) |
| 10 | 1, 4, 5, 9 | syl3an 1160 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → {𝐴, 𝐵} ∈ 𝐸) |
| 11 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 12 | 11, 3 | anim12ci 614 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) |
| 13 | pm13.18 3014 | . . . . 5 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵)) → (𝐷‘𝑋) ≠ (𝐷‘𝐵)) | |
| 14 | 13 | 3adant3 1132 | . . . 4 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝑋) ≠ (𝐷‘𝐵)) |
| 15 | 14 | necomd 2988 | . . 3 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝐵) ≠ (𝐷‘𝑋)) |
| 16 | 6, 7, 8 | frgrwopreglem4a 30296 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐷‘𝐵) ≠ (𝐷‘𝑋)) → {𝐵, 𝑋} ∈ 𝐸) |
| 17 | 1, 12, 15, 16 | syl3an 1160 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → {𝐵, 𝑋} ∈ 𝐸) |
| 18 | simpr 484 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ 𝑉) | |
| 19 | 11, 18 | anim12i 613 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) |
| 20 | simp3 1138 | . . . 4 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝑋) ≠ (𝐷‘𝑌)) | |
| 21 | 6, 7, 8 | frgrwopreglem4a 30296 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → {𝑋, 𝑌} ∈ 𝐸) |
| 22 | 1, 19, 20, 21 | syl3an 1160 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → {𝑋, 𝑌} ∈ 𝐸) |
| 23 | 2, 18 | anim12ci 614 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉)) |
| 24 | pm13.181 3015 | . . . . . 6 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝐴) ≠ (𝐷‘𝑌)) | |
| 25 | 24 | 3adant2 1131 | . . . . 5 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝐴) ≠ (𝐷‘𝑌)) |
| 26 | 25 | necomd 2988 | . . . 4 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝑌) ≠ (𝐷‘𝐴)) |
| 27 | 6, 7, 8 | frgrwopreglem4a 30296 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐷‘𝑌) ≠ (𝐷‘𝐴)) → {𝑌, 𝐴} ∈ 𝐸) |
| 28 | 1, 23, 26, 27 | syl3an 1160 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → {𝑌, 𝐴} ∈ 𝐸) |
| 29 | 22, 28 | jca 511 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸)) |
| 30 | 10, 17, 29 | jca31 514 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝑋} ∈ 𝐸) ∧ ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 {cpr 4608 ‘cfv 6536 Vtxcvtx 28980 Edgcedg 29031 VtxDegcvtxdg 29450 FriendGraph cfrgr 30244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-xnn0 12580 df-z 12594 df-uz 12858 df-xadd 13134 df-fz 13530 df-hash 14354 df-edg 29032 df-uhgr 29042 df-ushgr 29043 df-upgr 29066 df-umgr 29067 df-uspgr 29134 df-usgr 29135 df-nbgr 29317 df-vtxdg 29451 df-frgr 30245 |
| This theorem is referenced by: frgrwopreglem5 30307 |
| Copyright terms: Public domain | W3C validator |