MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem5a Structured version   Visualization version   GIF version

Theorem frgrwopreglem5a 28671
Description: If a friendship graph has two vertices with the same degree and two other vertices with different degrees, then there is a 4-cycle in the graph. Alternate version of frgrwopreglem5 28681 without a fixed degree and without using the sets 𝐴 and 𝐵. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrncvvdeq.v 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreglem4a.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopreglem5a ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝑋} ∈ 𝐸) ∧ ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸)))

Proof of Theorem frgrwopreglem5a
StepHypRef Expression
1 id 22 . . 3 (𝐺 ∈ FriendGraph → 𝐺 ∈ FriendGraph )
2 simpl 483 . . . 4 ((𝐴𝑉𝑋𝑉) → 𝐴𝑉)
3 simpl 483 . . . 4 ((𝐵𝑉𝑌𝑉) → 𝐵𝑉)
42, 3anim12i 613 . . 3 (((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) → (𝐴𝑉𝐵𝑉))
5 simp2 1136 . . 3 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝐴) ≠ (𝐷𝐵))
6 frgrncvvdeq.v . . . 4 𝑉 = (Vtx‘𝐺)
7 frgrncvvdeq.d . . . 4 𝐷 = (VtxDeg‘𝐺)
8 frgrwopreglem4a.e . . . 4 𝐸 = (Edg‘𝐺)
96, 7, 8frgrwopreglem4a 28670 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐷𝐴) ≠ (𝐷𝐵)) → {𝐴, 𝐵} ∈ 𝐸)
101, 4, 5, 9syl3an 1159 . 2 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → {𝐴, 𝐵} ∈ 𝐸)
11 simpr 485 . . . 4 ((𝐴𝑉𝑋𝑉) → 𝑋𝑉)
1211, 3anim12ci 614 . . 3 (((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) → (𝐵𝑉𝑋𝑉))
13 pm13.18 3027 . . . . 5 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵)) → (𝐷𝑋) ≠ (𝐷𝐵))
14133adant3 1131 . . . 4 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝑋) ≠ (𝐷𝐵))
1514necomd 3001 . . 3 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝐵) ≠ (𝐷𝑋))
166, 7, 8frgrwopreglem4a 28670 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐵𝑉𝑋𝑉) ∧ (𝐷𝐵) ≠ (𝐷𝑋)) → {𝐵, 𝑋} ∈ 𝐸)
171, 12, 15, 16syl3an 1159 . 2 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → {𝐵, 𝑋} ∈ 𝐸)
18 simpr 485 . . . . 5 ((𝐵𝑉𝑌𝑉) → 𝑌𝑉)
1911, 18anim12i 613 . . . 4 (((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) → (𝑋𝑉𝑌𝑉))
20 simp3 1137 . . . 4 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝑋) ≠ (𝐷𝑌))
216, 7, 8frgrwopreglem4a 28670 . . . 4 ((𝐺 ∈ FriendGraph ∧ (𝑋𝑉𝑌𝑉) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → {𝑋, 𝑌} ∈ 𝐸)
221, 19, 20, 21syl3an 1159 . . 3 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → {𝑋, 𝑌} ∈ 𝐸)
232, 18anim12ci 614 . . . 4 (((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) → (𝑌𝑉𝐴𝑉))
24 pm13.181 3028 . . . . . 6 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝐴) ≠ (𝐷𝑌))
25243adant2 1130 . . . . 5 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝐴) ≠ (𝐷𝑌))
2625necomd 3001 . . . 4 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝑌) ≠ (𝐷𝐴))
276, 7, 8frgrwopreglem4a 28670 . . . 4 ((𝐺 ∈ FriendGraph ∧ (𝑌𝑉𝐴𝑉) ∧ (𝐷𝑌) ≠ (𝐷𝐴)) → {𝑌, 𝐴} ∈ 𝐸)
281, 23, 26, 27syl3an 1159 . . 3 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → {𝑌, 𝐴} ∈ 𝐸)
2922, 28jca 512 . 2 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸))
3010, 17, 29jca31 515 1 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝑋} ∈ 𝐸) ∧ ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  {cpr 4569  cfv 6432  Vtxcvtx 27364  Edgcedg 27415  VtxDegcvtxdg 27830   FriendGraph cfrgr 28618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-oadd 8292  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-dju 9660  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12582  df-xadd 12848  df-fz 13239  df-hash 14043  df-edg 27416  df-uhgr 27426  df-ushgr 27427  df-upgr 27450  df-umgr 27451  df-uspgr 27518  df-usgr 27519  df-nbgr 27698  df-vtxdg 27831  df-frgr 28619
This theorem is referenced by:  frgrwopreglem5  28681
  Copyright terms: Public domain W3C validator