Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfiooicclem1 Structured version   Visualization version   GIF version

Theorem cncfiooicclem1 45891
Description: A continuous function 𝐹 on an open interval (𝐴(,)𝐵) can be extended to a continuous function 𝐺 on the corresponding closed interval, if it has a finite right limit 𝑅 in 𝐴 and a finite left limit 𝐿 in 𝐵. 𝐹 can be complex-valued. This lemma assumes 𝐴 < 𝐵, the invoking theorem drops this assumption. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfiooicclem1.x 𝑥𝜑
cncfiooicclem1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
cncfiooicclem1.a (𝜑𝐴 ∈ ℝ)
cncfiooicclem1.b (𝜑𝐵 ∈ ℝ)
cncfiooicclem1.altb (𝜑𝐴 < 𝐵)
cncfiooicclem1.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
cncfiooicclem1.l (𝜑𝐿 ∈ (𝐹 lim 𝐵))
cncfiooicclem1.r (𝜑𝑅 ∈ (𝐹 lim 𝐴))
Assertion
Ref Expression
cncfiooicclem1 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐿   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐺(𝑥)

Proof of Theorem cncfiooicclem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cncfiooicclem1.x . . . 4 𝑥𝜑
2 limccl 25776 . . . . . . 7 (𝐹 lim 𝐴) ⊆ ℂ
3 cncfiooicclem1.r . . . . . . 7 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
42, 3sselid 3944 . . . . . 6 (𝜑𝑅 ∈ ℂ)
54ad2antrr 726 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → 𝑅 ∈ ℂ)
6 limccl 25776 . . . . . . . 8 (𝐹 lim 𝐵) ⊆ ℂ
7 cncfiooicclem1.l . . . . . . . 8 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
86, 7sselid 3944 . . . . . . 7 (𝜑𝐿 ∈ ℂ)
98ad3antrrr 730 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → 𝐿 ∈ ℂ)
10 simplll 774 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝜑)
11 orel1 888 . . . . . . . . . . 11 𝑥 = 𝐴 → ((𝑥 = 𝐴𝑥 = 𝐵) → 𝑥 = 𝐵))
1211con3dimp 408 . . . . . . . . . 10 ((¬ 𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵) → ¬ (𝑥 = 𝐴𝑥 = 𝐵))
13 vex 3451 . . . . . . . . . . 11 𝑥 ∈ V
1413elpr 4614 . . . . . . . . . 10 (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴𝑥 = 𝐵))
1512, 14sylnibr 329 . . . . . . . . 9 ((¬ 𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵) → ¬ 𝑥 ∈ {𝐴, 𝐵})
1615adantll 714 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → ¬ 𝑥 ∈ {𝐴, 𝐵})
17 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
18 cncfiooicclem1.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
1918rexrd 11224 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
2010, 19syl 17 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 ∈ ℝ*)
21 cncfiooicclem1.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ)
2221rexrd 11224 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
2310, 22syl 17 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
24 cncfiooicclem1.altb . . . . . . . . . . . . 13 (𝜑𝐴 < 𝐵)
2518, 21, 24ltled 11322 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
2610, 25syl 17 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴𝐵)
27 prunioo 13442 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
2820, 23, 26, 27syl3anc 1373 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
2917, 28eleqtrrd 2831 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}))
30 elun 4116 . . . . . . . . 9 (𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝑥 ∈ (𝐴(,)𝐵) ∨ 𝑥 ∈ {𝐴, 𝐵}))
3129, 30sylib 218 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝑥 ∈ (𝐴(,)𝐵) ∨ 𝑥 ∈ {𝐴, 𝐵}))
32 orel2 890 . . . . . . . 8 𝑥 ∈ {𝐴, 𝐵} → ((𝑥 ∈ (𝐴(,)𝐵) ∨ 𝑥 ∈ {𝐴, 𝐵}) → 𝑥 ∈ (𝐴(,)𝐵)))
3316, 31, 32sylc 65 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴(,)𝐵))
34 cncfiooicclem1.f . . . . . . . . 9 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
35 cncff 24786 . . . . . . . . 9 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
3634, 35syl 17 . . . . . . . 8 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
3736ffvelcdmda 7056 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
3810, 33, 37syl2anc 584 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐹𝑥) ∈ ℂ)
399, 38ifclda 4524 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) ∈ ℂ)
405, 39ifclda 4524 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
41 cncfiooicclem1.g . . . 4 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
421, 40, 41fmptdf 7089 . . 3 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
43 elun 4116 . . . . . . 7 (𝑦 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝑦 ∈ (𝐴(,)𝐵) ∨ 𝑦 ∈ {𝐴, 𝐵}))
4419, 22, 25, 27syl3anc 1373 . . . . . . . 8 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
4544eleq2d 2814 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ 𝑦 ∈ (𝐴[,]𝐵)))
4643, 45bitr3id 285 . . . . . 6 (𝜑 → ((𝑦 ∈ (𝐴(,)𝐵) ∨ 𝑦 ∈ {𝐴, 𝐵}) ↔ 𝑦 ∈ (𝐴[,]𝐵)))
4746biimpar 477 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ (𝐴(,)𝐵) ∨ 𝑦 ∈ {𝐴, 𝐵}))
48 ioossicc 13394 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
49 fssres 6726 . . . . . . . . . . . . 13 ((𝐺:(𝐴[,]𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) → (𝐺 ↾ (𝐴(,)𝐵)):(𝐴(,)𝐵)⟶ℂ)
5042, 48, 49sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)):(𝐴(,)𝐵)⟶ℂ)
5150feqmptd 6929 . . . . . . . . . . 11 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑦)))
52 nfmpt1 5206 . . . . . . . . . . . . . . . 16 𝑥(𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
5341, 52nfcxfr 2889 . . . . . . . . . . . . . . 15 𝑥𝐺
54 nfcv 2891 . . . . . . . . . . . . . . 15 𝑥(𝐴(,)𝐵)
5553, 54nfres 5952 . . . . . . . . . . . . . 14 𝑥(𝐺 ↾ (𝐴(,)𝐵))
56 nfcv 2891 . . . . . . . . . . . . . 14 𝑥𝑦
5755, 56nffv 6868 . . . . . . . . . . . . 13 𝑥((𝐺 ↾ (𝐴(,)𝐵))‘𝑦)
58 nfcv 2891 . . . . . . . . . . . . . 14 𝑦(𝐺 ↾ (𝐴(,)𝐵))
59 nfcv 2891 . . . . . . . . . . . . . 14 𝑦𝑥
6058, 59nffv 6868 . . . . . . . . . . . . 13 𝑦((𝐺 ↾ (𝐴(,)𝐵))‘𝑥)
61 fveq2 6858 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((𝐺 ↾ (𝐴(,)𝐵))‘𝑦) = ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥))
6257, 60, 61cbvmpt 5209 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑦)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥))
6362a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑦)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥)))
64 fvres 6877 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴(,)𝐵) → ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐺𝑥))
6564adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐺𝑥))
66 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
6748, 66sselid 3944 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
684adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℂ)
698ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝐵) → 𝐿 ∈ ℂ)
7037adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑥 = 𝐵) → (𝐹𝑥) ∈ ℂ)
7169, 70ifclda 4524 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) ∈ ℂ)
7268, 71ifcld 4535 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
7341fvmpt2 6979 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐴[,]𝐵) ∧ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ) → (𝐺𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
7467, 72, 73syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
75 elioo4g 13367 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
7675biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝐴(,)𝐵) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
7776simpld 494 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ))
7877simp1d 1142 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 ∈ ℝ*)
79 elioore 13336 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
8079rexrd 11224 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ*)
81 eliooord 13366 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑥𝑥 < 𝐵))
8281simpld 494 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑥)
83 xrltne 13123 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*𝐴 < 𝑥) → 𝑥𝐴)
8478, 80, 82, 83syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥𝐴)
8584adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐴)
8685neneqd 2930 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐴)
8786iffalsed 4499 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
8881simprd 495 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 < 𝐵)
8979, 88ltned 11310 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥𝐵)
9089neneqd 2930 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 = 𝐵)
9190iffalsed 4499 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴(,)𝐵) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
9291adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
9387, 92eqtrd 2764 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = (𝐹𝑥))
9465, 74, 933eqtrd 2768 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑥))
951, 94mpteq2da 5199 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)))
9651, 63, 953eqtrd 2768 . . . . . . . . . 10 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)))
9736feqmptd 6929 . . . . . . . . . . 11 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)))
98 ioosscn 13369 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ ℂ
9998a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
100 ssid 3969 . . . . . . . . . . . 12 ℂ ⊆ ℂ
101 eqid 2729 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
102 eqid 2729 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
103101cnfldtop 24671 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) ∈ Top
104 unicntop 24673 . . . . . . . . . . . . . . . 16 ℂ = (TopOpen‘ℂfld)
105104restid 17396 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
106103, 105ax-mp 5 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
107106eqcomi 2738 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
108101, 102, 107cncfcn 24803 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
10999, 100, 108sylancl 586 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
11034, 97, 1093eltr3d 2842 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
11196, 110eqeltrd 2828 . . . . . . . . 9 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
112104restuni 23049 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴(,)𝐵) ⊆ ℂ) → (𝐴(,)𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
113103, 98, 112mp2an 692 . . . . . . . . . 10 (𝐴(,)𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
114113cncnpi 23165 . . . . . . . . 9 (((𝐺 ↾ (𝐴(,)𝐵)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐺 ↾ (𝐴(,)𝐵)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
115111, 114sylan 580 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐺 ↾ (𝐴(,)𝐵)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
116103a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (TopOpen‘ℂfld) ∈ Top)
11748a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
118 ovex 7420 . . . . . . . . . . . . 13 (𝐴[,]𝐵) ∈ V
119118a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴[,]𝐵) ∈ V)
120 restabs 23052 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) ∧ (𝐴[,]𝐵) ∈ V) → (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
121116, 117, 119, 120syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
122121eqcomd 2735 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)))
123122oveq1d 7402 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)))
124123fveq1d 6860 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) = (((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
125115, 124eleqtrd 2830 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐺 ↾ (𝐴(,)𝐵)) ∈ (((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
126 resttop 23047 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,]𝐵) ∈ V) → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ Top)
127103, 118, 126mp2an 692 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ Top
128127a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ Top)
12948a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
13018, 21iccssred 13395 . . . . . . . . . . . 12 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
131 ax-resscn 11125 . . . . . . . . . . . 12 ℝ ⊆ ℂ
132130, 131sstrdi 3959 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
133104restuni 23049 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℂ) → (𝐴[,]𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
134103, 132, 133sylancr 587 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
135129, 134sseqtrd 3983 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
136135adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
137 retop 24649 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
138137a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (topGen‘ran (,)) ∈ Top)
139 ioossre 13368 . . . . . . . . . . . . . . 15 (𝐴(,)𝐵) ⊆ ℝ
140 difss 4099 . . . . . . . . . . . . . . 15 (ℝ ∖ (𝐴[,]𝐵)) ⊆ ℝ
141139, 140unssi 4154 . . . . . . . . . . . . . 14 ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ
142141a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ)
143 ssun1 4141 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))
144143a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
145 uniretop 24650 . . . . . . . . . . . . . 14 ℝ = (topGen‘ran (,))
146145ntrss 22942 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ ∧ (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
147138, 142, 144, 146syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
148 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵))
149 ioontr 45509 . . . . . . . . . . . . 13 ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)
150148, 149eleqtrrdi 2839 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)))
151147, 150sseldd 3947 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
15248, 148sselid 3944 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
153151, 152elind 4163 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
154130adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴[,]𝐵) ⊆ ℝ)
155 eqid 2729 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
156145, 155restntr 23069 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
157138, 154, 117, 156syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
158153, 157eleqtrrd 2831 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)))
159 tgioo4 24693 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
160159a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ))
161160oveq1d 7402 . . . . . . . . . . . . 13 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,]𝐵)))
162103a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
163 reex 11159 . . . . . . . . . . . . . . 15 ℝ ∈ V
164163a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℝ ∈ V)
165 restabs 23052 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
166162, 130, 164, 165syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
167161, 166eqtrd 2764 . . . . . . . . . . . 12 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
168167fveq2d 6862 . . . . . . . . . . 11 (𝜑 → (int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))))
169168fveq1d 6860 . . . . . . . . . 10 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)))
170169adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)))
171158, 170eleqtrd 2830 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)))
172134feq2d 6672 . . . . . . . . . 10 (𝜑 → (𝐺:(𝐴[,]𝐵)⟶ℂ ↔ 𝐺: ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))⟶ℂ))
17342, 172mpbid 232 . . . . . . . . 9 (𝜑𝐺: ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))⟶ℂ)
174173adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐺: ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))⟶ℂ)
175 eqid 2729 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))
176175, 104cnprest 23176 . . . . . . . 8 (((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ Top ∧ (𝐴(,)𝐵) ⊆ ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))) ∧ (𝑦 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)) ∧ 𝐺: ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))⟶ℂ)) → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝐺 ↾ (𝐴(,)𝐵)) ∈ (((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
177128, 136, 171, 174, 176syl22anc 838 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝐺 ↾ (𝐴(,)𝐵)) ∈ (((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
178125, 177mpbird 257 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
179 elpri 4613 . . . . . . 7 (𝑦 ∈ {𝐴, 𝐵} → (𝑦 = 𝐴𝑦 = 𝐵))
180 iftrue 4494 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
181 lbicc2 13425 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
18219, 22, 25, 181syl3anc 1373 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ (𝐴[,]𝐵))
18341, 180, 182, 3fvmptd3 6991 . . . . . . . . . . . 12 (𝜑 → (𝐺𝐴) = 𝑅)
18497eqcomd 2735 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) = 𝐹)
18596, 184eqtr2d 2765 . . . . . . . . . . . . . . 15 (𝜑𝐹 = (𝐺 ↾ (𝐴(,)𝐵)))
186185oveq1d 7402 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 lim 𝐴) = ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐴))
1873, 186eleqtrd 2830 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐴))
18818, 21, 24, 42limciccioolb 45619 . . . . . . . . . . . . 13 (𝜑 → ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐴) = (𝐺 lim 𝐴))
189187, 188eleqtrd 2830 . . . . . . . . . . . 12 (𝜑𝑅 ∈ (𝐺 lim 𝐴))
190183, 189eqeltrd 2828 . . . . . . . . . . 11 (𝜑 → (𝐺𝐴) ∈ (𝐺 lim 𝐴))
191 eqid 2729 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))
192101, 191cnplimc 25788 . . . . . . . . . . . 12 (((𝐴[,]𝐵) ⊆ ℂ ∧ 𝐴 ∈ (𝐴[,]𝐵)) → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ (𝐺𝐴) ∈ (𝐺 lim 𝐴))))
193132, 182, 192syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ (𝐺𝐴) ∈ (𝐺 lim 𝐴))))
19442, 190, 193mpbir2and 713 . . . . . . . . . 10 (𝜑𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴))
195194adantr 480 . . . . . . . . 9 ((𝜑𝑦 = 𝐴) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴))
196 fveq2 6858 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴))
197196eqcomd 2735 . . . . . . . . . 10 (𝑦 = 𝐴 → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
198197adantl 481 . . . . . . . . 9 ((𝜑𝑦 = 𝐴) → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
199195, 198eleqtrd 2830 . . . . . . . 8 ((𝜑𝑦 = 𝐴) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
200180adantl 481 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐵𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
201 eqtr2 2750 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝐵𝑥 = 𝐴) → 𝐵 = 𝐴)
202 iftrue 4494 . . . . . . . . . . . . . . . . . 18 (𝐵 = 𝐴 → if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))) = 𝑅)
203202eqcomd 2735 . . . . . . . . . . . . . . . . 17 (𝐵 = 𝐴𝑅 = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
204201, 203syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐵𝑥 = 𝐴) → 𝑅 = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
205200, 204eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝑥 = 𝐵𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
206 iffalse 4497 . . . . . . . . . . . . . . . . 17 𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
207206adantl 481 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
208 iftrue 4494 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = 𝐿)
209208adantr 480 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = 𝐿)
210 df-ne 2926 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐴 ↔ ¬ 𝑥 = 𝐴)
211 pm13.18 3006 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝐵𝑥𝐴) → 𝐵𝐴)
212210, 211sylan2br 595 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → 𝐵𝐴)
213212neneqd 2930 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → ¬ 𝐵 = 𝐴)
214213iffalsed 4499 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))) = if(𝐵 = 𝐵, 𝐿, (𝐹𝐵)))
215 eqid 2729 . . . . . . . . . . . . . . . . . 18 𝐵 = 𝐵
216215iftruei 4495 . . . . . . . . . . . . . . . . 17 if(𝐵 = 𝐵, 𝐿, (𝐹𝐵)) = 𝐿
217214, 216eqtr2di 2781 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → 𝐿 = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
218207, 209, 2173eqtrd 2768 . . . . . . . . . . . . . . 15 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
219205, 218pm2.61dan 812 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
22021leidd 11744 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐵)
22118, 21, 21, 25, 220eliccd 45502 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ (𝐴[,]𝐵))
222216, 8eqeltrid 2832 . . . . . . . . . . . . . . 15 (𝜑 → if(𝐵 = 𝐵, 𝐿, (𝐹𝐵)) ∈ ℂ)
2234, 222ifcld 4535 . . . . . . . . . . . . . 14 (𝜑 → if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))) ∈ ℂ)
22441, 219, 221, 223fvmptd3 6991 . . . . . . . . . . . . 13 (𝜑 → (𝐺𝐵) = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
22518, 24gtned 11309 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐴)
226225neneqd 2930 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝐵 = 𝐴)
227226iffalsed 4499 . . . . . . . . . . . . 13 (𝜑 → if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))) = if(𝐵 = 𝐵, 𝐿, (𝐹𝐵)))
228216a1i 11 . . . . . . . . . . . . 13 (𝜑 → if(𝐵 = 𝐵, 𝐿, (𝐹𝐵)) = 𝐿)
229224, 227, 2283eqtrd 2768 . . . . . . . . . . . 12 (𝜑 → (𝐺𝐵) = 𝐿)
230185oveq1d 7402 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 lim 𝐵) = ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐵))
2317, 230eleqtrd 2830 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐵))
23218, 21, 24, 42limcicciooub 45635 . . . . . . . . . . . . 13 (𝜑 → ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐵) = (𝐺 lim 𝐵))
233231, 232eleqtrd 2830 . . . . . . . . . . . 12 (𝜑𝐿 ∈ (𝐺 lim 𝐵))
234229, 233eqeltrd 2828 . . . . . . . . . . 11 (𝜑 → (𝐺𝐵) ∈ (𝐺 lim 𝐵))
235101, 191cnplimc 25788 . . . . . . . . . . . 12 (((𝐴[,]𝐵) ⊆ ℂ ∧ 𝐵 ∈ (𝐴[,]𝐵)) → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ (𝐺𝐵) ∈ (𝐺 lim 𝐵))))
236132, 221, 235syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ (𝐺𝐵) ∈ (𝐺 lim 𝐵))))
23742, 234, 236mpbir2and 713 . . . . . . . . . 10 (𝜑𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵))
238237adantr 480 . . . . . . . . 9 ((𝜑𝑦 = 𝐵) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵))
239 fveq2 6858 . . . . . . . . . . 11 (𝑦 = 𝐵 → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵))
240239eqcomd 2735 . . . . . . . . . 10 (𝑦 = 𝐵 → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
241240adantl 481 . . . . . . . . 9 ((𝜑𝑦 = 𝐵) → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
242238, 241eleqtrd 2830 . . . . . . . 8 ((𝜑𝑦 = 𝐵) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
243199, 242jaodan 959 . . . . . . 7 ((𝜑 ∧ (𝑦 = 𝐴𝑦 = 𝐵)) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
244179, 243sylan2 593 . . . . . 6 ((𝜑𝑦 ∈ {𝐴, 𝐵}) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
245178, 244jaodan 959 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∨ 𝑦 ∈ {𝐴, 𝐵})) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
24647, 245syldan 591 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
247246ralrimiva 3125 . . 3 (𝜑 → ∀𝑦 ∈ (𝐴[,]𝐵)𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
248101cnfldtopon 24670 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
249 resttopon 23048 . . . . 5 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴[,]𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
250248, 132, 249sylancr 587 . . . 4 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
251 cncnp 23167 . . . 4 ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐺 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴[,]𝐵)𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
252250, 248, 251sylancl 586 . . 3 (𝜑 → (𝐺 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴[,]𝐵)𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
25342, 247, 252mpbir2and 713 . 2 (𝜑𝐺 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
254101, 191, 107cncfcn 24803 . . 3 (((𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
255132, 100, 254sylancl 586 . 2 (𝜑 → ((𝐴[,]𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
256253, 255eleqtrrd 2831 1 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wne 2925  wral 3044  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  ifcif 4488  {cpr 4591   cuni 4871   class class class wbr 5107  cmpt 5188  ran crn 5639  cres 5640  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  *cxr 11207   < clt 11208  cle 11209  (,)cioo 13306  [,]cicc 13309  t crest 17383  TopOpenctopn 17384  topGenctg 17400  fldccnfld 21264  Topctop 22780  TopOnctopon 22797  intcnt 22904   Cn ccn 23111   CnP ccnp 23112  cnccncf 24769   lim climc 25763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-rest 17385  df-topn 17386  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-cn 23114  df-cnp 23115  df-xms 24208  df-ms 24209  df-cncf 24771  df-limc 25767
This theorem is referenced by:  cncfiooicc  45892
  Copyright terms: Public domain W3C validator