Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfiooicclem1 Structured version   Visualization version   GIF version

Theorem cncfiooicclem1 41744
Description: A continuous function 𝐹 on an open interval (𝐴(,)𝐵) can be extended to a continuous function 𝐺 on the corresponding closed interval, if it has a finite right limit 𝑅 in 𝐴 and a finite left limit 𝐿 in 𝐵. 𝐹 can be complex-valued. This lemma assumes 𝐴 < 𝐵, the invoking theorem drops this assumption. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfiooicclem1.x 𝑥𝜑
cncfiooicclem1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
cncfiooicclem1.a (𝜑𝐴 ∈ ℝ)
cncfiooicclem1.b (𝜑𝐵 ∈ ℝ)
cncfiooicclem1.altb (𝜑𝐴 < 𝐵)
cncfiooicclem1.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
cncfiooicclem1.l (𝜑𝐿 ∈ (𝐹 lim 𝐵))
cncfiooicclem1.r (𝜑𝑅 ∈ (𝐹 lim 𝐴))
Assertion
Ref Expression
cncfiooicclem1 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐿   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐺(𝑥)

Proof of Theorem cncfiooicclem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cncfiooicclem1.x . . . 4 𝑥𝜑
2 limccl 24161 . . . . . . 7 (𝐹 lim 𝐴) ⊆ ℂ
3 cncfiooicclem1.r . . . . . . 7 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
42, 3sseldi 3891 . . . . . 6 (𝜑𝑅 ∈ ℂ)
54ad2antrr 722 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → 𝑅 ∈ ℂ)
6 limccl 24161 . . . . . . . 8 (𝐹 lim 𝐵) ⊆ ℂ
7 cncfiooicclem1.l . . . . . . . 8 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
86, 7sseldi 3891 . . . . . . 7 (𝜑𝐿 ∈ ℂ)
98ad3antrrr 726 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → 𝐿 ∈ ℂ)
10 simplll 771 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝜑)
11 orel1 883 . . . . . . . . . . 11 𝑥 = 𝐴 → ((𝑥 = 𝐴𝑥 = 𝐵) → 𝑥 = 𝐵))
1211con3dimp 409 . . . . . . . . . 10 ((¬ 𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵) → ¬ (𝑥 = 𝐴𝑥 = 𝐵))
13 vex 3440 . . . . . . . . . . 11 𝑥 ∈ V
1413elpr 4499 . . . . . . . . . 10 (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴𝑥 = 𝐵))
1512, 14sylnibr 330 . . . . . . . . 9 ((¬ 𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵) → ¬ 𝑥 ∈ {𝐴, 𝐵})
1615adantll 710 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → ¬ 𝑥 ∈ {𝐴, 𝐵})
17 simpllr 772 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
18 cncfiooicclem1.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
1918rexrd 10542 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
2010, 19syl 17 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 ∈ ℝ*)
21 cncfiooicclem1.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ)
2221rexrd 10542 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
2310, 22syl 17 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
24 cncfiooicclem1.altb . . . . . . . . . . . . 13 (𝜑𝐴 < 𝐵)
2518, 21, 24ltled 10640 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
2610, 25syl 17 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴𝐵)
27 prunioo 12722 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
2820, 23, 26, 27syl3anc 1364 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
2917, 28eleqtrrd 2886 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}))
30 elun 4050 . . . . . . . . 9 (𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝑥 ∈ (𝐴(,)𝐵) ∨ 𝑥 ∈ {𝐴, 𝐵}))
3129, 30sylib 219 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝑥 ∈ (𝐴(,)𝐵) ∨ 𝑥 ∈ {𝐴, 𝐵}))
32 orel2 885 . . . . . . . 8 𝑥 ∈ {𝐴, 𝐵} → ((𝑥 ∈ (𝐴(,)𝐵) ∨ 𝑥 ∈ {𝐴, 𝐵}) → 𝑥 ∈ (𝐴(,)𝐵)))
3316, 31, 32sylc 65 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴(,)𝐵))
34 cncfiooicclem1.f . . . . . . . . 9 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
35 cncff 23189 . . . . . . . . 9 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
3634, 35syl 17 . . . . . . . 8 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
3736ffvelrnda 6721 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
3810, 33, 37syl2anc 584 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐹𝑥) ∈ ℂ)
399, 38ifclda 4419 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) ∈ ℂ)
405, 39ifclda 4419 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
41 cncfiooicclem1.g . . . 4 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
421, 40, 41fmptdf 6749 . . 3 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
43 elun 4050 . . . . . . 7 (𝑦 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝑦 ∈ (𝐴(,)𝐵) ∨ 𝑦 ∈ {𝐴, 𝐵}))
4419, 22, 25, 27syl3anc 1364 . . . . . . . 8 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
4544eleq2d 2868 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ 𝑦 ∈ (𝐴[,]𝐵)))
4643, 45syl5bbr 286 . . . . . 6 (𝜑 → ((𝑦 ∈ (𝐴(,)𝐵) ∨ 𝑦 ∈ {𝐴, 𝐵}) ↔ 𝑦 ∈ (𝐴[,]𝐵)))
4746biimpar 478 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ (𝐴(,)𝐵) ∨ 𝑦 ∈ {𝐴, 𝐵}))
48 ioossicc 12677 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
49 fssres 6417 . . . . . . . . . . . . 13 ((𝐺:(𝐴[,]𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) → (𝐺 ↾ (𝐴(,)𝐵)):(𝐴(,)𝐵)⟶ℂ)
5042, 48, 49sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)):(𝐴(,)𝐵)⟶ℂ)
5150feqmptd 6606 . . . . . . . . . . 11 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑦)))
52 nfmpt1 5063 . . . . . . . . . . . . . . . 16 𝑥(𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
5341, 52nfcxfr 2947 . . . . . . . . . . . . . . 15 𝑥𝐺
54 nfcv 2949 . . . . . . . . . . . . . . 15 𝑥(𝐴(,)𝐵)
5553, 54nfres 5741 . . . . . . . . . . . . . 14 𝑥(𝐺 ↾ (𝐴(,)𝐵))
56 nfcv 2949 . . . . . . . . . . . . . 14 𝑥𝑦
5755, 56nffv 6553 . . . . . . . . . . . . 13 𝑥((𝐺 ↾ (𝐴(,)𝐵))‘𝑦)
58 nfcv 2949 . . . . . . . . . . . . . 14 𝑦(𝐺 ↾ (𝐴(,)𝐵))
59 nfcv 2949 . . . . . . . . . . . . . 14 𝑦𝑥
6058, 59nffv 6553 . . . . . . . . . . . . 13 𝑦((𝐺 ↾ (𝐴(,)𝐵))‘𝑥)
61 fveq2 6543 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((𝐺 ↾ (𝐴(,)𝐵))‘𝑦) = ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥))
6257, 60, 61cbvmpt 5065 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑦)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥))
6362a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑦)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥)))
64 fvres 6562 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴(,)𝐵) → ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐺𝑥))
6564adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐺𝑥))
66 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
6748, 66sseldi 3891 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
684adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℂ)
698ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝐵) → 𝐿 ∈ ℂ)
7037adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑥 = 𝐵) → (𝐹𝑥) ∈ ℂ)
7169, 70ifclda 4419 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) ∈ ℂ)
7268, 71ifcld 4430 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
7341fvmpt2 6650 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐴[,]𝐵) ∧ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ) → (𝐺𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
7467, 72, 73syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
75 elioo4g 12652 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
7675biimpi 217 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝐴(,)𝐵) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
7776simpld 495 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ))
7877simp1d 1135 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 ∈ ℝ*)
79 elioore 12623 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
8079rexrd 10542 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ*)
81 eliooord 12651 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑥𝑥 < 𝐵))
8281simpld 495 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑥)
83 xrltne 12411 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*𝐴 < 𝑥) → 𝑥𝐴)
8478, 80, 82, 83syl3anc 1364 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥𝐴)
8584adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐴)
8685neneqd 2989 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐴)
8786iffalsed 4396 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
8881simprd 496 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 < 𝐵)
8979, 88ltned 10628 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥𝐵)
9089neneqd 2989 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 = 𝐵)
9190iffalsed 4396 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴(,)𝐵) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
9291adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
9387, 92eqtrd 2831 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = (𝐹𝑥))
9465, 74, 933eqtrd 2835 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑥))
951, 94mpteq2da 5059 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)))
9651, 63, 953eqtrd 2835 . . . . . . . . . 10 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)))
9736feqmptd 6606 . . . . . . . . . . 11 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)))
98 ioosscn 41337 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ ℂ
9998a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
100 ssid 3914 . . . . . . . . . . . 12 ℂ ⊆ ℂ
101 eqid 2795 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
102 eqid 2795 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
103101cnfldtop 23080 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) ∈ Top
104 unicntop 23082 . . . . . . . . . . . . . . . 16 ℂ = (TopOpen‘ℂfld)
105104restid 16541 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
106103, 105ax-mp 5 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
107106eqcomi 2804 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
108101, 102, 107cncfcn 23205 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
10999, 100, 108sylancl 586 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
11034, 97, 1093eltr3d 2897 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
11196, 110eqeltrd 2883 . . . . . . . . 9 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
112104restuni 21459 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴(,)𝐵) ⊆ ℂ) → (𝐴(,)𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
113103, 98, 112mp2an 688 . . . . . . . . . 10 (𝐴(,)𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
114113cncnpi 21575 . . . . . . . . 9 (((𝐺 ↾ (𝐴(,)𝐵)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐺 ↾ (𝐴(,)𝐵)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
115111, 114sylan 580 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐺 ↾ (𝐴(,)𝐵)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
116103a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (TopOpen‘ℂfld) ∈ Top)
11748a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
118 ovex 7053 . . . . . . . . . . . . 13 (𝐴[,]𝐵) ∈ V
119118a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴[,]𝐵) ∈ V)
120 restabs 21462 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) ∧ (𝐴[,]𝐵) ∈ V) → (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
121116, 117, 119, 120syl3anc 1364 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
122121eqcomd 2801 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)))
123122oveq1d 7036 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)))
124123fveq1d 6545 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) = (((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
125115, 124eleqtrd 2885 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐺 ↾ (𝐴(,)𝐵)) ∈ (((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
126 resttop 21457 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,]𝐵) ∈ V) → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ Top)
127103, 118, 126mp2an 688 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ Top
128127a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ Top)
12948a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
13018, 21iccssred 41348 . . . . . . . . . . . 12 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
131 ax-resscn 10445 . . . . . . . . . . . 12 ℝ ⊆ ℂ
132130, 131syl6ss 3905 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
133104restuni 21459 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℂ) → (𝐴[,]𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
134103, 132, 133sylancr 587 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
135129, 134sseqtrd 3932 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
136135adantr 481 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
137 retop 23058 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
138137a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (topGen‘ran (,)) ∈ Top)
139 ioossre 12653 . . . . . . . . . . . . . . 15 (𝐴(,)𝐵) ⊆ ℝ
140 difss 4033 . . . . . . . . . . . . . . 15 (ℝ ∖ (𝐴[,]𝐵)) ⊆ ℝ
141139, 140unssi 4086 . . . . . . . . . . . . . 14 ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ
142141a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ)
143 ssun1 4073 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))
144143a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
145 uniretop 23059 . . . . . . . . . . . . . 14 ℝ = (topGen‘ran (,))
146145ntrss 21352 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ ∧ (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
147138, 142, 144, 146syl3anc 1364 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
148 simpr 485 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵))
149 ioontr 41355 . . . . . . . . . . . . 13 ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)
150148, 149syl6eleqr 2894 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)))
151147, 150sseldd 3894 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
15248, 148sseldi 3891 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
153151, 152elind 4096 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
154130adantr 481 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴[,]𝐵) ⊆ ℝ)
155 eqid 2795 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
156145, 155restntr 21479 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
157138, 154, 117, 156syl3anc 1364 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
158153, 157eleqtrrd 2886 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)))
159101tgioo2 23099 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
160159a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ))
161160oveq1d 7036 . . . . . . . . . . . . 13 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,]𝐵)))
162103a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
163 reex 10479 . . . . . . . . . . . . . . 15 ℝ ∈ V
164163a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℝ ∈ V)
165 restabs 21462 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
166162, 130, 164, 165syl3anc 1364 . . . . . . . . . . . . 13 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
167161, 166eqtrd 2831 . . . . . . . . . . . 12 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
168167fveq2d 6547 . . . . . . . . . . 11 (𝜑 → (int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))))
169168fveq1d 6545 . . . . . . . . . 10 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)))
170169adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)))
171158, 170eleqtrd 2885 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)))
172134feq2d 6373 . . . . . . . . . 10 (𝜑 → (𝐺:(𝐴[,]𝐵)⟶ℂ ↔ 𝐺: ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))⟶ℂ))
17342, 172mpbid 233 . . . . . . . . 9 (𝜑𝐺: ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))⟶ℂ)
174173adantr 481 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐺: ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))⟶ℂ)
175 eqid 2795 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))
176175, 104cnprest 21586 . . . . . . . 8 (((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ Top ∧ (𝐴(,)𝐵) ⊆ ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))) ∧ (𝑦 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)) ∧ 𝐺: ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))⟶ℂ)) → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝐺 ↾ (𝐴(,)𝐵)) ∈ (((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
177128, 136, 171, 174, 176syl22anc 835 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝐺 ↾ (𝐴(,)𝐵)) ∈ (((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
178125, 177mpbird 258 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
179 elpri 4498 . . . . . . 7 (𝑦 ∈ {𝐴, 𝐵} → (𝑦 = 𝐴𝑦 = 𝐵))
180 iftrue 4391 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
181 lbicc2 12707 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
18219, 22, 25, 181syl3anc 1364 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ (𝐴[,]𝐵))
18341, 180, 182, 3fvmptd3 6662 . . . . . . . . . . . 12 (𝜑 → (𝐺𝐴) = 𝑅)
18497eqcomd 2801 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) = 𝐹)
18596, 184eqtr2d 2832 . . . . . . . . . . . . . . 15 (𝜑𝐹 = (𝐺 ↾ (𝐴(,)𝐵)))
186185oveq1d 7036 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 lim 𝐴) = ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐴))
1873, 186eleqtrd 2885 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐴))
18818, 21, 24, 42limciccioolb 41470 . . . . . . . . . . . . 13 (𝜑 → ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐴) = (𝐺 lim 𝐴))
189187, 188eleqtrd 2885 . . . . . . . . . . . 12 (𝜑𝑅 ∈ (𝐺 lim 𝐴))
190183, 189eqeltrd 2883 . . . . . . . . . . 11 (𝜑 → (𝐺𝐴) ∈ (𝐺 lim 𝐴))
191 eqid 2795 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))
192101, 191cnplimc 24173 . . . . . . . . . . . 12 (((𝐴[,]𝐵) ⊆ ℂ ∧ 𝐴 ∈ (𝐴[,]𝐵)) → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ (𝐺𝐴) ∈ (𝐺 lim 𝐴))))
193132, 182, 192syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ (𝐺𝐴) ∈ (𝐺 lim 𝐴))))
19442, 190, 193mpbir2and 709 . . . . . . . . . 10 (𝜑𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴))
195194adantr 481 . . . . . . . . 9 ((𝜑𝑦 = 𝐴) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴))
196 fveq2 6543 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴))
197196eqcomd 2801 . . . . . . . . . 10 (𝑦 = 𝐴 → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
198197adantl 482 . . . . . . . . 9 ((𝜑𝑦 = 𝐴) → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
199195, 198eleqtrd 2885 . . . . . . . 8 ((𝜑𝑦 = 𝐴) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
200180adantl 482 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐵𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
201 eqtr2 2817 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝐵𝑥 = 𝐴) → 𝐵 = 𝐴)
202 iftrue 4391 . . . . . . . . . . . . . . . . . 18 (𝐵 = 𝐴 → if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))) = 𝑅)
203202eqcomd 2801 . . . . . . . . . . . . . . . . 17 (𝐵 = 𝐴𝑅 = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
204201, 203syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐵𝑥 = 𝐴) → 𝑅 = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
205200, 204eqtrd 2831 . . . . . . . . . . . . . . 15 ((𝑥 = 𝐵𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
206 iffalse 4394 . . . . . . . . . . . . . . . . 17 𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
207206adantl 482 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
208 iftrue 4391 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = 𝐿)
209208adantr 481 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = 𝐿)
210 df-ne 2985 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐴 ↔ ¬ 𝑥 = 𝐴)
211 pm13.18 3065 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝐵𝑥𝐴) → 𝐵𝐴)
212210, 211sylan2br 594 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → 𝐵𝐴)
213212neneqd 2989 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → ¬ 𝐵 = 𝐴)
214213iffalsed 4396 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))) = if(𝐵 = 𝐵, 𝐿, (𝐹𝐵)))
215 eqid 2795 . . . . . . . . . . . . . . . . . 18 𝐵 = 𝐵
216215iftruei 4392 . . . . . . . . . . . . . . . . 17 if(𝐵 = 𝐵, 𝐿, (𝐹𝐵)) = 𝐿
217214, 216syl6req 2848 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → 𝐿 = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
218207, 209, 2173eqtrd 2835 . . . . . . . . . . . . . . 15 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
219205, 218pm2.61dan 809 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
22021leidd 11059 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐵)
22118, 21, 21, 25, 220eliccd 41347 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ (𝐴[,]𝐵))
222216, 8syl5eqel 2887 . . . . . . . . . . . . . . 15 (𝜑 → if(𝐵 = 𝐵, 𝐿, (𝐹𝐵)) ∈ ℂ)
2234, 222ifcld 4430 . . . . . . . . . . . . . 14 (𝜑 → if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))) ∈ ℂ)
22441, 219, 221, 223fvmptd3 6662 . . . . . . . . . . . . 13 (𝜑 → (𝐺𝐵) = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
22518, 24gtned 10627 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐴)
226225neneqd 2989 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝐵 = 𝐴)
227226iffalsed 4396 . . . . . . . . . . . . 13 (𝜑 → if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))) = if(𝐵 = 𝐵, 𝐿, (𝐹𝐵)))
228216a1i 11 . . . . . . . . . . . . 13 (𝜑 → if(𝐵 = 𝐵, 𝐿, (𝐹𝐵)) = 𝐿)
229224, 227, 2283eqtrd 2835 . . . . . . . . . . . 12 (𝜑 → (𝐺𝐵) = 𝐿)
230185oveq1d 7036 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 lim 𝐵) = ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐵))
2317, 230eleqtrd 2885 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐵))
23218, 21, 24, 42limcicciooub 41486 . . . . . . . . . . . . 13 (𝜑 → ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐵) = (𝐺 lim 𝐵))
233231, 232eleqtrd 2885 . . . . . . . . . . . 12 (𝜑𝐿 ∈ (𝐺 lim 𝐵))
234229, 233eqeltrd 2883 . . . . . . . . . . 11 (𝜑 → (𝐺𝐵) ∈ (𝐺 lim 𝐵))
235101, 191cnplimc 24173 . . . . . . . . . . . 12 (((𝐴[,]𝐵) ⊆ ℂ ∧ 𝐵 ∈ (𝐴[,]𝐵)) → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ (𝐺𝐵) ∈ (𝐺 lim 𝐵))))
236132, 221, 235syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ (𝐺𝐵) ∈ (𝐺 lim 𝐵))))
23742, 234, 236mpbir2and 709 . . . . . . . . . 10 (𝜑𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵))
238237adantr 481 . . . . . . . . 9 ((𝜑𝑦 = 𝐵) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵))
239 fveq2 6543 . . . . . . . . . . 11 (𝑦 = 𝐵 → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵))
240239eqcomd 2801 . . . . . . . . . 10 (𝑦 = 𝐵 → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
241240adantl 482 . . . . . . . . 9 ((𝜑𝑦 = 𝐵) → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
242238, 241eleqtrd 2885 . . . . . . . 8 ((𝜑𝑦 = 𝐵) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
243199, 242jaodan 952 . . . . . . 7 ((𝜑 ∧ (𝑦 = 𝐴𝑦 = 𝐵)) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
244179, 243sylan2 592 . . . . . 6 ((𝜑𝑦 ∈ {𝐴, 𝐵}) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
245178, 244jaodan 952 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∨ 𝑦 ∈ {𝐴, 𝐵})) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
24647, 245syldan 591 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
247246ralrimiva 3149 . . 3 (𝜑 → ∀𝑦 ∈ (𝐴[,]𝐵)𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
248101cnfldtopon 23079 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
249 resttopon 21458 . . . . 5 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴[,]𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
250248, 132, 249sylancr 587 . . . 4 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
251 cncnp 21577 . . . 4 ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐺 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴[,]𝐵)𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
252250, 248, 251sylancl 586 . . 3 (𝜑 → (𝐺 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴[,]𝐵)𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
25342, 247, 252mpbir2and 709 . 2 (𝜑𝐺 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
254101, 191, 107cncfcn 23205 . . 3 (((𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
255132, 100, 254sylancl 586 . 2 (𝜑 → ((𝐴[,]𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
256253, 255eleqtrrd 2886 1 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  w3a 1080   = wceq 1522  wnf 1765  wcel 2081  wne 2984  wral 3105  Vcvv 3437  cdif 3860  cun 3861  cin 3862  wss 3863  ifcif 4385  {cpr 4478   cuni 4749   class class class wbr 4966  cmpt 5045  ran crn 5449  cres 5450  wf 6226  cfv 6230  (class class class)co 7021  cc 10386  cr 10387  *cxr 10525   < clt 10526  cle 10527  (,)cioo 12593  [,]cicc 12596  t crest 16528  TopOpenctopn 16529  topGenctg 16545  fldccnfld 20232  Topctop 21190  TopOnctopon 21207  intcnt 21314   Cn ccn 21521   CnP ccnp 21522  cnccncf 23172   lim climc 24148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465  ax-pre-sup 10466
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-iin 4832  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-1st 7550  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-1o 7958  df-oadd 7962  df-er 8144  df-map 8263  df-pm 8264  df-en 8363  df-dom 8364  df-sdom 8365  df-fin 8366  df-fi 8726  df-sup 8757  df-inf 8758  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-div 11151  df-nn 11492  df-2 11553  df-3 11554  df-4 11555  df-5 11556  df-6 11557  df-7 11558  df-8 11559  df-9 11560  df-n0 11751  df-z 11835  df-dec 11953  df-uz 12099  df-q 12203  df-rp 12245  df-xneg 12362  df-xadd 12363  df-xmul 12364  df-ioo 12597  df-ioc 12598  df-ico 12599  df-icc 12600  df-fz 12748  df-seq 13225  df-exp 13285  df-cj 14297  df-re 14298  df-im 14299  df-sqrt 14433  df-abs 14434  df-struct 16319  df-ndx 16320  df-slot 16321  df-base 16323  df-plusg 16412  df-mulr 16413  df-starv 16414  df-tset 16418  df-ple 16419  df-ds 16421  df-unif 16422  df-rest 16530  df-topn 16531  df-topgen 16551  df-psmet 20224  df-xmet 20225  df-met 20226  df-bl 20227  df-mopn 20228  df-cnfld 20233  df-top 21191  df-topon 21208  df-topsp 21230  df-bases 21243  df-cld 21316  df-ntr 21317  df-cls 21318  df-cn 21524  df-cnp 21525  df-xms 22618  df-ms 22619  df-cncf 23174  df-limc 24152
This theorem is referenced by:  cncfiooicc  41745
  Copyright terms: Public domain W3C validator