Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfiooicclem1 Structured version   Visualization version   GIF version

Theorem cncfiooicclem1 45889
Description: A continuous function 𝐹 on an open interval (𝐴(,)𝐵) can be extended to a continuous function 𝐺 on the corresponding closed interval, if it has a finite right limit 𝑅 in 𝐴 and a finite left limit 𝐿 in 𝐵. 𝐹 can be complex-valued. This lemma assumes 𝐴 < 𝐵, the invoking theorem drops this assumption. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfiooicclem1.x 𝑥𝜑
cncfiooicclem1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
cncfiooicclem1.a (𝜑𝐴 ∈ ℝ)
cncfiooicclem1.b (𝜑𝐵 ∈ ℝ)
cncfiooicclem1.altb (𝜑𝐴 < 𝐵)
cncfiooicclem1.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
cncfiooicclem1.l (𝜑𝐿 ∈ (𝐹 lim 𝐵))
cncfiooicclem1.r (𝜑𝑅 ∈ (𝐹 lim 𝐴))
Assertion
Ref Expression
cncfiooicclem1 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐿   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐺(𝑥)

Proof of Theorem cncfiooicclem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cncfiooicclem1.x . . . 4 𝑥𝜑
2 limccl 25833 . . . . . . 7 (𝐹 lim 𝐴) ⊆ ℂ
3 cncfiooicclem1.r . . . . . . 7 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
42, 3sselid 3961 . . . . . 6 (𝜑𝑅 ∈ ℂ)
54ad2antrr 726 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → 𝑅 ∈ ℂ)
6 limccl 25833 . . . . . . . 8 (𝐹 lim 𝐵) ⊆ ℂ
7 cncfiooicclem1.l . . . . . . . 8 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
86, 7sselid 3961 . . . . . . 7 (𝜑𝐿 ∈ ℂ)
98ad3antrrr 730 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → 𝐿 ∈ ℂ)
10 simplll 774 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝜑)
11 orel1 888 . . . . . . . . . . 11 𝑥 = 𝐴 → ((𝑥 = 𝐴𝑥 = 𝐵) → 𝑥 = 𝐵))
1211con3dimp 408 . . . . . . . . . 10 ((¬ 𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵) → ¬ (𝑥 = 𝐴𝑥 = 𝐵))
13 vex 3468 . . . . . . . . . . 11 𝑥 ∈ V
1413elpr 4631 . . . . . . . . . 10 (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴𝑥 = 𝐵))
1512, 14sylnibr 329 . . . . . . . . 9 ((¬ 𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵) → ¬ 𝑥 ∈ {𝐴, 𝐵})
1615adantll 714 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → ¬ 𝑥 ∈ {𝐴, 𝐵})
17 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
18 cncfiooicclem1.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
1918rexrd 11290 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
2010, 19syl 17 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 ∈ ℝ*)
21 cncfiooicclem1.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ)
2221rexrd 11290 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
2310, 22syl 17 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
24 cncfiooicclem1.altb . . . . . . . . . . . . 13 (𝜑𝐴 < 𝐵)
2518, 21, 24ltled 11388 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
2610, 25syl 17 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴𝐵)
27 prunioo 13503 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
2820, 23, 26, 27syl3anc 1373 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
2917, 28eleqtrrd 2838 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}))
30 elun 4133 . . . . . . . . 9 (𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝑥 ∈ (𝐴(,)𝐵) ∨ 𝑥 ∈ {𝐴, 𝐵}))
3129, 30sylib 218 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝑥 ∈ (𝐴(,)𝐵) ∨ 𝑥 ∈ {𝐴, 𝐵}))
32 orel2 890 . . . . . . . 8 𝑥 ∈ {𝐴, 𝐵} → ((𝑥 ∈ (𝐴(,)𝐵) ∨ 𝑥 ∈ {𝐴, 𝐵}) → 𝑥 ∈ (𝐴(,)𝐵)))
3316, 31, 32sylc 65 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴(,)𝐵))
34 cncfiooicclem1.f . . . . . . . . 9 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
35 cncff 24842 . . . . . . . . 9 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
3634, 35syl 17 . . . . . . . 8 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
3736ffvelcdmda 7079 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
3810, 33, 37syl2anc 584 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐹𝑥) ∈ ℂ)
399, 38ifclda 4541 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) ∈ ℂ)
405, 39ifclda 4541 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
41 cncfiooicclem1.g . . . 4 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
421, 40, 41fmptdf 7112 . . 3 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
43 elun 4133 . . . . . . 7 (𝑦 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝑦 ∈ (𝐴(,)𝐵) ∨ 𝑦 ∈ {𝐴, 𝐵}))
4419, 22, 25, 27syl3anc 1373 . . . . . . . 8 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
4544eleq2d 2821 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ 𝑦 ∈ (𝐴[,]𝐵)))
4643, 45bitr3id 285 . . . . . 6 (𝜑 → ((𝑦 ∈ (𝐴(,)𝐵) ∨ 𝑦 ∈ {𝐴, 𝐵}) ↔ 𝑦 ∈ (𝐴[,]𝐵)))
4746biimpar 477 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ (𝐴(,)𝐵) ∨ 𝑦 ∈ {𝐴, 𝐵}))
48 ioossicc 13455 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
49 fssres 6749 . . . . . . . . . . . . 13 ((𝐺:(𝐴[,]𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) → (𝐺 ↾ (𝐴(,)𝐵)):(𝐴(,)𝐵)⟶ℂ)
5042, 48, 49sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)):(𝐴(,)𝐵)⟶ℂ)
5150feqmptd 6952 . . . . . . . . . . 11 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑦)))
52 nfmpt1 5225 . . . . . . . . . . . . . . . 16 𝑥(𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
5341, 52nfcxfr 2897 . . . . . . . . . . . . . . 15 𝑥𝐺
54 nfcv 2899 . . . . . . . . . . . . . . 15 𝑥(𝐴(,)𝐵)
5553, 54nfres 5973 . . . . . . . . . . . . . 14 𝑥(𝐺 ↾ (𝐴(,)𝐵))
56 nfcv 2899 . . . . . . . . . . . . . 14 𝑥𝑦
5755, 56nffv 6891 . . . . . . . . . . . . 13 𝑥((𝐺 ↾ (𝐴(,)𝐵))‘𝑦)
58 nfcv 2899 . . . . . . . . . . . . . 14 𝑦(𝐺 ↾ (𝐴(,)𝐵))
59 nfcv 2899 . . . . . . . . . . . . . 14 𝑦𝑥
6058, 59nffv 6891 . . . . . . . . . . . . 13 𝑦((𝐺 ↾ (𝐴(,)𝐵))‘𝑥)
61 fveq2 6881 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((𝐺 ↾ (𝐴(,)𝐵))‘𝑦) = ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥))
6257, 60, 61cbvmpt 5228 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑦)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥))
6362a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑦)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥)))
64 fvres 6900 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴(,)𝐵) → ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐺𝑥))
6564adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐺𝑥))
66 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
6748, 66sselid 3961 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
684adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℂ)
698ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝐵) → 𝐿 ∈ ℂ)
7037adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑥 = 𝐵) → (𝐹𝑥) ∈ ℂ)
7169, 70ifclda 4541 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) ∈ ℂ)
7268, 71ifcld 4552 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
7341fvmpt2 7002 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐴[,]𝐵) ∧ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ) → (𝐺𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
7467, 72, 73syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
75 elioo4g 13428 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
7675biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝐴(,)𝐵) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
7776simpld 494 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ))
7877simp1d 1142 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 ∈ ℝ*)
79 elioore 13397 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
8079rexrd 11290 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ*)
81 eliooord 13427 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑥𝑥 < 𝐵))
8281simpld 494 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑥)
83 xrltne 13184 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*𝐴 < 𝑥) → 𝑥𝐴)
8478, 80, 82, 83syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥𝐴)
8584adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐴)
8685neneqd 2938 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐴)
8786iffalsed 4516 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
8881simprd 495 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 < 𝐵)
8979, 88ltned 11376 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥𝐵)
9089neneqd 2938 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 = 𝐵)
9190iffalsed 4516 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴(,)𝐵) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
9291adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
9387, 92eqtrd 2771 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = (𝐹𝑥))
9465, 74, 933eqtrd 2775 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑥))
951, 94mpteq2da 5218 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)))
9651, 63, 953eqtrd 2775 . . . . . . . . . 10 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)))
9736feqmptd 6952 . . . . . . . . . . 11 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)))
98 ioosscn 13430 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ ℂ
9998a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
100 ssid 3986 . . . . . . . . . . . 12 ℂ ⊆ ℂ
101 eqid 2736 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
102 eqid 2736 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
103101cnfldtop 24727 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) ∈ Top
104 unicntop 24729 . . . . . . . . . . . . . . . 16 ℂ = (TopOpen‘ℂfld)
105104restid 17452 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
106103, 105ax-mp 5 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
107106eqcomi 2745 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
108101, 102, 107cncfcn 24859 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
10999, 100, 108sylancl 586 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
11034, 97, 1093eltr3d 2849 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
11196, 110eqeltrd 2835 . . . . . . . . 9 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
112104restuni 23105 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴(,)𝐵) ⊆ ℂ) → (𝐴(,)𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
113103, 98, 112mp2an 692 . . . . . . . . . 10 (𝐴(,)𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
114113cncnpi 23221 . . . . . . . . 9 (((𝐺 ↾ (𝐴(,)𝐵)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐺 ↾ (𝐴(,)𝐵)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
115111, 114sylan 580 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐺 ↾ (𝐴(,)𝐵)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
116103a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (TopOpen‘ℂfld) ∈ Top)
11748a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
118 ovex 7443 . . . . . . . . . . . . 13 (𝐴[,]𝐵) ∈ V
119118a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴[,]𝐵) ∈ V)
120 restabs 23108 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) ∧ (𝐴[,]𝐵) ∈ V) → (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
121116, 117, 119, 120syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
122121eqcomd 2742 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)))
123122oveq1d 7425 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)))
124123fveq1d 6883 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) = (((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
125115, 124eleqtrd 2837 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐺 ↾ (𝐴(,)𝐵)) ∈ (((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
126 resttop 23103 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,]𝐵) ∈ V) → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ Top)
127103, 118, 126mp2an 692 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ Top
128127a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ Top)
12948a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
13018, 21iccssred 13456 . . . . . . . . . . . 12 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
131 ax-resscn 11191 . . . . . . . . . . . 12 ℝ ⊆ ℂ
132130, 131sstrdi 3976 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
133104restuni 23105 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℂ) → (𝐴[,]𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
134103, 132, 133sylancr 587 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
135129, 134sseqtrd 4000 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
136135adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
137 retop 24705 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
138137a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (topGen‘ran (,)) ∈ Top)
139 ioossre 13429 . . . . . . . . . . . . . . 15 (𝐴(,)𝐵) ⊆ ℝ
140 difss 4116 . . . . . . . . . . . . . . 15 (ℝ ∖ (𝐴[,]𝐵)) ⊆ ℝ
141139, 140unssi 4171 . . . . . . . . . . . . . 14 ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ
142141a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ)
143 ssun1 4158 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))
144143a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
145 uniretop 24706 . . . . . . . . . . . . . 14 ℝ = (topGen‘ran (,))
146145ntrss 22998 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ ∧ (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
147138, 142, 144, 146syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
148 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵))
149 ioontr 45507 . . . . . . . . . . . . 13 ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)
150148, 149eleqtrrdi 2846 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)))
151147, 150sseldd 3964 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
15248, 148sselid 3961 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
153151, 152elind 4180 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
154130adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴[,]𝐵) ⊆ ℝ)
155 eqid 2736 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
156145, 155restntr 23125 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
157138, 154, 117, 156syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
158153, 157eleqtrrd 2838 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)))
159 tgioo4 24749 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
160159a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ))
161160oveq1d 7425 . . . . . . . . . . . . 13 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,]𝐵)))
162103a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
163 reex 11225 . . . . . . . . . . . . . . 15 ℝ ∈ V
164163a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℝ ∈ V)
165 restabs 23108 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
166162, 130, 164, 165syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
167161, 166eqtrd 2771 . . . . . . . . . . . 12 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
168167fveq2d 6885 . . . . . . . . . . 11 (𝜑 → (int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))))
169168fveq1d 6883 . . . . . . . . . 10 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)))
170169adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)))
171158, 170eleqtrd 2837 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)))
172134feq2d 6697 . . . . . . . . . 10 (𝜑 → (𝐺:(𝐴[,]𝐵)⟶ℂ ↔ 𝐺: ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))⟶ℂ))
17342, 172mpbid 232 . . . . . . . . 9 (𝜑𝐺: ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))⟶ℂ)
174173adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐺: ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))⟶ℂ)
175 eqid 2736 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))
176175, 104cnprest 23232 . . . . . . . 8 (((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ Top ∧ (𝐴(,)𝐵) ⊆ ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))) ∧ (𝑦 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)) ∧ 𝐺: ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))⟶ℂ)) → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝐺 ↾ (𝐴(,)𝐵)) ∈ (((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
177128, 136, 171, 174, 176syl22anc 838 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝐺 ↾ (𝐴(,)𝐵)) ∈ (((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
178125, 177mpbird 257 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
179 elpri 4630 . . . . . . 7 (𝑦 ∈ {𝐴, 𝐵} → (𝑦 = 𝐴𝑦 = 𝐵))
180 iftrue 4511 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
181 lbicc2 13486 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
18219, 22, 25, 181syl3anc 1373 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ (𝐴[,]𝐵))
18341, 180, 182, 3fvmptd3 7014 . . . . . . . . . . . 12 (𝜑 → (𝐺𝐴) = 𝑅)
18497eqcomd 2742 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) = 𝐹)
18596, 184eqtr2d 2772 . . . . . . . . . . . . . . 15 (𝜑𝐹 = (𝐺 ↾ (𝐴(,)𝐵)))
186185oveq1d 7425 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 lim 𝐴) = ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐴))
1873, 186eleqtrd 2837 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐴))
18818, 21, 24, 42limciccioolb 45617 . . . . . . . . . . . . 13 (𝜑 → ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐴) = (𝐺 lim 𝐴))
189187, 188eleqtrd 2837 . . . . . . . . . . . 12 (𝜑𝑅 ∈ (𝐺 lim 𝐴))
190183, 189eqeltrd 2835 . . . . . . . . . . 11 (𝜑 → (𝐺𝐴) ∈ (𝐺 lim 𝐴))
191 eqid 2736 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))
192101, 191cnplimc 25845 . . . . . . . . . . . 12 (((𝐴[,]𝐵) ⊆ ℂ ∧ 𝐴 ∈ (𝐴[,]𝐵)) → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ (𝐺𝐴) ∈ (𝐺 lim 𝐴))))
193132, 182, 192syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ (𝐺𝐴) ∈ (𝐺 lim 𝐴))))
19442, 190, 193mpbir2and 713 . . . . . . . . . 10 (𝜑𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴))
195194adantr 480 . . . . . . . . 9 ((𝜑𝑦 = 𝐴) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴))
196 fveq2 6881 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴))
197196eqcomd 2742 . . . . . . . . . 10 (𝑦 = 𝐴 → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
198197adantl 481 . . . . . . . . 9 ((𝜑𝑦 = 𝐴) → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
199195, 198eleqtrd 2837 . . . . . . . 8 ((𝜑𝑦 = 𝐴) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
200180adantl 481 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐵𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
201 eqtr2 2757 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝐵𝑥 = 𝐴) → 𝐵 = 𝐴)
202 iftrue 4511 . . . . . . . . . . . . . . . . . 18 (𝐵 = 𝐴 → if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))) = 𝑅)
203202eqcomd 2742 . . . . . . . . . . . . . . . . 17 (𝐵 = 𝐴𝑅 = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
204201, 203syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐵𝑥 = 𝐴) → 𝑅 = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
205200, 204eqtrd 2771 . . . . . . . . . . . . . . 15 ((𝑥 = 𝐵𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
206 iffalse 4514 . . . . . . . . . . . . . . . . 17 𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
207206adantl 481 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
208 iftrue 4511 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = 𝐿)
209208adantr 480 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = 𝐿)
210 df-ne 2934 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐴 ↔ ¬ 𝑥 = 𝐴)
211 pm13.18 3014 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝐵𝑥𝐴) → 𝐵𝐴)
212210, 211sylan2br 595 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → 𝐵𝐴)
213212neneqd 2938 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → ¬ 𝐵 = 𝐴)
214213iffalsed 4516 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))) = if(𝐵 = 𝐵, 𝐿, (𝐹𝐵)))
215 eqid 2736 . . . . . . . . . . . . . . . . . 18 𝐵 = 𝐵
216215iftruei 4512 . . . . . . . . . . . . . . . . 17 if(𝐵 = 𝐵, 𝐿, (𝐹𝐵)) = 𝐿
217214, 216eqtr2di 2788 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → 𝐿 = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
218207, 209, 2173eqtrd 2775 . . . . . . . . . . . . . . 15 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
219205, 218pm2.61dan 812 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
22021leidd 11808 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐵)
22118, 21, 21, 25, 220eliccd 45500 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ (𝐴[,]𝐵))
222216, 8eqeltrid 2839 . . . . . . . . . . . . . . 15 (𝜑 → if(𝐵 = 𝐵, 𝐿, (𝐹𝐵)) ∈ ℂ)
2234, 222ifcld 4552 . . . . . . . . . . . . . 14 (𝜑 → if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))) ∈ ℂ)
22441, 219, 221, 223fvmptd3 7014 . . . . . . . . . . . . 13 (𝜑 → (𝐺𝐵) = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
22518, 24gtned 11375 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐴)
226225neneqd 2938 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝐵 = 𝐴)
227226iffalsed 4516 . . . . . . . . . . . . 13 (𝜑 → if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))) = if(𝐵 = 𝐵, 𝐿, (𝐹𝐵)))
228216a1i 11 . . . . . . . . . . . . 13 (𝜑 → if(𝐵 = 𝐵, 𝐿, (𝐹𝐵)) = 𝐿)
229224, 227, 2283eqtrd 2775 . . . . . . . . . . . 12 (𝜑 → (𝐺𝐵) = 𝐿)
230185oveq1d 7425 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 lim 𝐵) = ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐵))
2317, 230eleqtrd 2837 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐵))
23218, 21, 24, 42limcicciooub 45633 . . . . . . . . . . . . 13 (𝜑 → ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐵) = (𝐺 lim 𝐵))
233231, 232eleqtrd 2837 . . . . . . . . . . . 12 (𝜑𝐿 ∈ (𝐺 lim 𝐵))
234229, 233eqeltrd 2835 . . . . . . . . . . 11 (𝜑 → (𝐺𝐵) ∈ (𝐺 lim 𝐵))
235101, 191cnplimc 25845 . . . . . . . . . . . 12 (((𝐴[,]𝐵) ⊆ ℂ ∧ 𝐵 ∈ (𝐴[,]𝐵)) → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ (𝐺𝐵) ∈ (𝐺 lim 𝐵))))
236132, 221, 235syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ (𝐺𝐵) ∈ (𝐺 lim 𝐵))))
23742, 234, 236mpbir2and 713 . . . . . . . . . 10 (𝜑𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵))
238237adantr 480 . . . . . . . . 9 ((𝜑𝑦 = 𝐵) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵))
239 fveq2 6881 . . . . . . . . . . 11 (𝑦 = 𝐵 → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵))
240239eqcomd 2742 . . . . . . . . . 10 (𝑦 = 𝐵 → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
241240adantl 481 . . . . . . . . 9 ((𝜑𝑦 = 𝐵) → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
242238, 241eleqtrd 2837 . . . . . . . 8 ((𝜑𝑦 = 𝐵) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
243199, 242jaodan 959 . . . . . . 7 ((𝜑 ∧ (𝑦 = 𝐴𝑦 = 𝐵)) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
244179, 243sylan2 593 . . . . . 6 ((𝜑𝑦 ∈ {𝐴, 𝐵}) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
245178, 244jaodan 959 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∨ 𝑦 ∈ {𝐴, 𝐵})) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
24647, 245syldan 591 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
247246ralrimiva 3133 . . 3 (𝜑 → ∀𝑦 ∈ (𝐴[,]𝐵)𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
248101cnfldtopon 24726 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
249 resttopon 23104 . . . . 5 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴[,]𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
250248, 132, 249sylancr 587 . . . 4 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
251 cncnp 23223 . . . 4 ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐺 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴[,]𝐵)𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
252250, 248, 251sylancl 586 . . 3 (𝜑 → (𝐺 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴[,]𝐵)𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
25342, 247, 252mpbir2and 713 . 2 (𝜑𝐺 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
254101, 191, 107cncfcn 24859 . . 3 (((𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
255132, 100, 254sylancl 586 . 2 (𝜑 → ((𝐴[,]𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
256253, 255eleqtrrd 2838 1 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wne 2933  wral 3052  Vcvv 3464  cdif 3928  cun 3929  cin 3930  wss 3931  ifcif 4505  {cpr 4608   cuni 4888   class class class wbr 5124  cmpt 5206  ran crn 5660  cres 5661  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  *cxr 11273   < clt 11274  cle 11275  (,)cioo 13367  [,]cicc 13370  t crest 17439  TopOpenctopn 17440  topGenctg 17456  fldccnfld 21320  Topctop 22836  TopOnctopon 22853  intcnt 22960   Cn ccn 23167   CnP ccnp 23168  cnccncf 24825   lim climc 25820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9428  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-starv 17291  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-rest 17441  df-topn 17442  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-cn 23170  df-cnp 23171  df-xms 24264  df-ms 24265  df-cncf 24827  df-limc 25824
This theorem is referenced by:  cncfiooicc  45890
  Copyright terms: Public domain W3C validator