Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfiooicclem1 Structured version   Visualization version   GIF version

Theorem cncfiooicclem1 44596
Description: A continuous function 𝐹 on an open interval (𝐴(,)𝐵) can be extended to a continuous function 𝐺 on the corresponding closed interval, if it has a finite right limit 𝑅 in 𝐴 and a finite left limit 𝐿 in 𝐵. 𝐹 can be complex-valued. This lemma assumes 𝐴 < 𝐵, the invoking theorem drops this assumption. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfiooicclem1.x 𝑥𝜑
cncfiooicclem1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
cncfiooicclem1.a (𝜑𝐴 ∈ ℝ)
cncfiooicclem1.b (𝜑𝐵 ∈ ℝ)
cncfiooicclem1.altb (𝜑𝐴 < 𝐵)
cncfiooicclem1.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
cncfiooicclem1.l (𝜑𝐿 ∈ (𝐹 lim 𝐵))
cncfiooicclem1.r (𝜑𝑅 ∈ (𝐹 lim 𝐴))
Assertion
Ref Expression
cncfiooicclem1 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐿   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐺(𝑥)

Proof of Theorem cncfiooicclem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cncfiooicclem1.x . . . 4 𝑥𝜑
2 limccl 25384 . . . . . . 7 (𝐹 lim 𝐴) ⊆ ℂ
3 cncfiooicclem1.r . . . . . . 7 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
42, 3sselid 3980 . . . . . 6 (𝜑𝑅 ∈ ℂ)
54ad2antrr 725 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → 𝑅 ∈ ℂ)
6 limccl 25384 . . . . . . . 8 (𝐹 lim 𝐵) ⊆ ℂ
7 cncfiooicclem1.l . . . . . . . 8 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
86, 7sselid 3980 . . . . . . 7 (𝜑𝐿 ∈ ℂ)
98ad3antrrr 729 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → 𝐿 ∈ ℂ)
10 simplll 774 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝜑)
11 orel1 888 . . . . . . . . . . 11 𝑥 = 𝐴 → ((𝑥 = 𝐴𝑥 = 𝐵) → 𝑥 = 𝐵))
1211con3dimp 410 . . . . . . . . . 10 ((¬ 𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵) → ¬ (𝑥 = 𝐴𝑥 = 𝐵))
13 vex 3479 . . . . . . . . . . 11 𝑥 ∈ V
1413elpr 4651 . . . . . . . . . 10 (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴𝑥 = 𝐵))
1512, 14sylnibr 329 . . . . . . . . 9 ((¬ 𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵) → ¬ 𝑥 ∈ {𝐴, 𝐵})
1615adantll 713 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → ¬ 𝑥 ∈ {𝐴, 𝐵})
17 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
18 cncfiooicclem1.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
1918rexrd 11261 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
2010, 19syl 17 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 ∈ ℝ*)
21 cncfiooicclem1.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ)
2221rexrd 11261 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
2310, 22syl 17 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
24 cncfiooicclem1.altb . . . . . . . . . . . . 13 (𝜑𝐴 < 𝐵)
2518, 21, 24ltled 11359 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
2610, 25syl 17 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴𝐵)
27 prunioo 13455 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
2820, 23, 26, 27syl3anc 1372 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
2917, 28eleqtrrd 2837 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}))
30 elun 4148 . . . . . . . . 9 (𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝑥 ∈ (𝐴(,)𝐵) ∨ 𝑥 ∈ {𝐴, 𝐵}))
3129, 30sylib 217 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝑥 ∈ (𝐴(,)𝐵) ∨ 𝑥 ∈ {𝐴, 𝐵}))
32 orel2 890 . . . . . . . 8 𝑥 ∈ {𝐴, 𝐵} → ((𝑥 ∈ (𝐴(,)𝐵) ∨ 𝑥 ∈ {𝐴, 𝐵}) → 𝑥 ∈ (𝐴(,)𝐵)))
3316, 31, 32sylc 65 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴(,)𝐵))
34 cncfiooicclem1.f . . . . . . . . 9 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
35 cncff 24401 . . . . . . . . 9 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
3634, 35syl 17 . . . . . . . 8 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
3736ffvelcdmda 7084 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
3810, 33, 37syl2anc 585 . . . . . 6 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐹𝑥) ∈ ℂ)
399, 38ifclda 4563 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) ∈ ℂ)
405, 39ifclda 4563 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
41 cncfiooicclem1.g . . . 4 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
421, 40, 41fmptdf 7114 . . 3 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
43 elun 4148 . . . . . . 7 (𝑦 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝑦 ∈ (𝐴(,)𝐵) ∨ 𝑦 ∈ {𝐴, 𝐵}))
4419, 22, 25, 27syl3anc 1372 . . . . . . . 8 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
4544eleq2d 2820 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ 𝑦 ∈ (𝐴[,]𝐵)))
4643, 45bitr3id 285 . . . . . 6 (𝜑 → ((𝑦 ∈ (𝐴(,)𝐵) ∨ 𝑦 ∈ {𝐴, 𝐵}) ↔ 𝑦 ∈ (𝐴[,]𝐵)))
4746biimpar 479 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ (𝐴(,)𝐵) ∨ 𝑦 ∈ {𝐴, 𝐵}))
48 ioossicc 13407 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
49 fssres 6755 . . . . . . . . . . . . 13 ((𝐺:(𝐴[,]𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) → (𝐺 ↾ (𝐴(,)𝐵)):(𝐴(,)𝐵)⟶ℂ)
5042, 48, 49sylancl 587 . . . . . . . . . . . 12 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)):(𝐴(,)𝐵)⟶ℂ)
5150feqmptd 6958 . . . . . . . . . . 11 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑦)))
52 nfmpt1 5256 . . . . . . . . . . . . . . . 16 𝑥(𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
5341, 52nfcxfr 2902 . . . . . . . . . . . . . . 15 𝑥𝐺
54 nfcv 2904 . . . . . . . . . . . . . . 15 𝑥(𝐴(,)𝐵)
5553, 54nfres 5982 . . . . . . . . . . . . . 14 𝑥(𝐺 ↾ (𝐴(,)𝐵))
56 nfcv 2904 . . . . . . . . . . . . . 14 𝑥𝑦
5755, 56nffv 6899 . . . . . . . . . . . . 13 𝑥((𝐺 ↾ (𝐴(,)𝐵))‘𝑦)
58 nfcv 2904 . . . . . . . . . . . . . 14 𝑦(𝐺 ↾ (𝐴(,)𝐵))
59 nfcv 2904 . . . . . . . . . . . . . 14 𝑦𝑥
6058, 59nffv 6899 . . . . . . . . . . . . 13 𝑦((𝐺 ↾ (𝐴(,)𝐵))‘𝑥)
61 fveq2 6889 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((𝐺 ↾ (𝐴(,)𝐵))‘𝑦) = ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥))
6257, 60, 61cbvmpt 5259 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑦)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥))
6362a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑦)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥)))
64 fvres 6908 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴(,)𝐵) → ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐺𝑥))
6564adantl 483 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐺𝑥))
66 simpr 486 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
6748, 66sselid 3980 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
684adantr 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℂ)
698ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝐵) → 𝐿 ∈ ℂ)
7037adantr 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑥 = 𝐵) → (𝐹𝑥) ∈ ℂ)
7169, 70ifclda 4563 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) ∈ ℂ)
7268, 71ifcld 4574 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
7341fvmpt2 7007 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐴[,]𝐵) ∧ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ) → (𝐺𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
7467, 72, 73syl2anc 585 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
75 elioo4g 13381 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
7675biimpi 215 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝐴(,)𝐵) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ) ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
7776simpld 496 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ))
7877simp1d 1143 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 ∈ ℝ*)
79 elioore 13351 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
8079rexrd 11261 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ*)
81 eliooord 13380 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑥𝑥 < 𝐵))
8281simpld 496 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑥)
83 xrltne 13139 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*𝐴 < 𝑥) → 𝑥𝐴)
8478, 80, 82, 83syl3anc 1372 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥𝐴)
8584adantl 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐴)
8685neneqd 2946 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐴)
8786iffalsed 4539 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
8881simprd 497 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 < 𝐵)
8979, 88ltned 11347 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥𝐵)
9089neneqd 2946 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 = 𝐵)
9190iffalsed 4539 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴(,)𝐵) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
9291adantl 483 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
9387, 92eqtrd 2773 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = (𝐹𝑥))
9465, 74, 933eqtrd 2777 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑥))
951, 94mpteq2da 5246 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺 ↾ (𝐴(,)𝐵))‘𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)))
9651, 63, 953eqtrd 2777 . . . . . . . . . 10 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)))
9736feqmptd 6958 . . . . . . . . . . 11 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)))
98 ioosscn 13383 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ ℂ
9998a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
100 ssid 4004 . . . . . . . . . . . 12 ℂ ⊆ ℂ
101 eqid 2733 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
102 eqid 2733 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
103101cnfldtop 24292 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) ∈ Top
104 unicntop 24294 . . . . . . . . . . . . . . . 16 ℂ = (TopOpen‘ℂfld)
105104restid 17376 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
106103, 105ax-mp 5 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
107106eqcomi 2742 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
108101, 102, 107cncfcn 24418 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
10999, 100, 108sylancl 587 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
11034, 97, 1093eltr3d 2848 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
11196, 110eqeltrd 2834 . . . . . . . . 9 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
112104restuni 22658 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴(,)𝐵) ⊆ ℂ) → (𝐴(,)𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
113103, 98, 112mp2an 691 . . . . . . . . . 10 (𝐴(,)𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
114113cncnpi 22774 . . . . . . . . 9 (((𝐺 ↾ (𝐴(,)𝐵)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐺 ↾ (𝐴(,)𝐵)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
115111, 114sylan 581 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐺 ↾ (𝐴(,)𝐵)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
116103a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (TopOpen‘ℂfld) ∈ Top)
11748a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
118 ovex 7439 . . . . . . . . . . . . 13 (𝐴[,]𝐵) ∈ V
119118a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴[,]𝐵) ∈ V)
120 restabs 22661 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) ∧ (𝐴[,]𝐵) ∈ V) → (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
121116, 117, 119, 120syl3anc 1372 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
122121eqcomd 2739 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)))
123122oveq1d 7421 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)))
124123fveq1d 6891 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) = (((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
125115, 124eleqtrd 2836 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐺 ↾ (𝐴(,)𝐵)) ∈ (((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
126 resttop 22656 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,]𝐵) ∈ V) → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ Top)
127103, 118, 126mp2an 691 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ Top
128127a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ Top)
12948a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
13018, 21iccssred 13408 . . . . . . . . . . . 12 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
131 ax-resscn 11164 . . . . . . . . . . . 12 ℝ ⊆ ℂ
132130, 131sstrdi 3994 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
133104restuni 22658 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℂ) → (𝐴[,]𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
134103, 132, 133sylancr 588 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
135129, 134sseqtrd 4022 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
136135adantr 482 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
137 retop 24270 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
138137a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (topGen‘ran (,)) ∈ Top)
139 ioossre 13382 . . . . . . . . . . . . . . 15 (𝐴(,)𝐵) ⊆ ℝ
140 difss 4131 . . . . . . . . . . . . . . 15 (ℝ ∖ (𝐴[,]𝐵)) ⊆ ℝ
141139, 140unssi 4185 . . . . . . . . . . . . . 14 ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ
142141a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ)
143 ssun1 4172 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))
144143a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
145 uniretop 24271 . . . . . . . . . . . . . 14 ℝ = (topGen‘ran (,))
146145ntrss 22551 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ ∧ (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
147138, 142, 144, 146syl3anc 1372 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
148 simpr 486 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵))
149 ioontr 44211 . . . . . . . . . . . . 13 ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)
150148, 149eleqtrrdi 2845 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)))
151147, 150sseldd 3983 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
15248, 148sselid 3980 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
153151, 152elind 4194 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
154130adantr 482 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴[,]𝐵) ⊆ ℝ)
155 eqid 2733 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
156145, 155restntr 22678 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
157138, 154, 117, 156syl3anc 1372 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
158153, 157eleqtrrd 2837 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)))
159101tgioo2 24311 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
160159a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ))
161160oveq1d 7421 . . . . . . . . . . . . 13 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,]𝐵)))
162103a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
163 reex 11198 . . . . . . . . . . . . . . 15 ℝ ∈ V
164163a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℝ ∈ V)
165 restabs 22661 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
166162, 130, 164, 165syl3anc 1372 . . . . . . . . . . . . 13 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
167161, 166eqtrd 2773 . . . . . . . . . . . 12 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
168167fveq2d 6893 . . . . . . . . . . 11 (𝜑 → (int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))))
169168fveq1d 6891 . . . . . . . . . 10 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)))
170169adantr 482 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)))
171158, 170eleqtrd 2836 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)))
172134feq2d 6701 . . . . . . . . . 10 (𝜑 → (𝐺:(𝐴[,]𝐵)⟶ℂ ↔ 𝐺: ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))⟶ℂ))
17342, 172mpbid 231 . . . . . . . . 9 (𝜑𝐺: ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))⟶ℂ)
174173adantr 482 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐺: ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))⟶ℂ)
175 eqid 2733 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))
176175, 104cnprest 22785 . . . . . . . 8 (((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ Top ∧ (𝐴(,)𝐵) ⊆ ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))) ∧ (𝑦 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,)𝐵)) ∧ 𝐺: ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))⟶ℂ)) → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝐺 ↾ (𝐴(,)𝐵)) ∈ (((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
177128, 136, 171, 174, 176syl22anc 838 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝐺 ↾ (𝐴(,)𝐵)) ∈ (((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
178125, 177mpbird 257 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
179 elpri 4650 . . . . . . 7 (𝑦 ∈ {𝐴, 𝐵} → (𝑦 = 𝐴𝑦 = 𝐵))
180 iftrue 4534 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
181 lbicc2 13438 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
18219, 22, 25, 181syl3anc 1372 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ (𝐴[,]𝐵))
18341, 180, 182, 3fvmptd3 7019 . . . . . . . . . . . 12 (𝜑 → (𝐺𝐴) = 𝑅)
18497eqcomd 2739 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) = 𝐹)
18596, 184eqtr2d 2774 . . . . . . . . . . . . . . 15 (𝜑𝐹 = (𝐺 ↾ (𝐴(,)𝐵)))
186185oveq1d 7421 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 lim 𝐴) = ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐴))
1873, 186eleqtrd 2836 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐴))
18818, 21, 24, 42limciccioolb 44324 . . . . . . . . . . . . 13 (𝜑 → ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐴) = (𝐺 lim 𝐴))
189187, 188eleqtrd 2836 . . . . . . . . . . . 12 (𝜑𝑅 ∈ (𝐺 lim 𝐴))
190183, 189eqeltrd 2834 . . . . . . . . . . 11 (𝜑 → (𝐺𝐴) ∈ (𝐺 lim 𝐴))
191 eqid 2733 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))
192101, 191cnplimc 25396 . . . . . . . . . . . 12 (((𝐴[,]𝐵) ⊆ ℂ ∧ 𝐴 ∈ (𝐴[,]𝐵)) → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ (𝐺𝐴) ∈ (𝐺 lim 𝐴))))
193132, 182, 192syl2anc 585 . . . . . . . . . . 11 (𝜑 → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ (𝐺𝐴) ∈ (𝐺 lim 𝐴))))
19442, 190, 193mpbir2and 712 . . . . . . . . . 10 (𝜑𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴))
195194adantr 482 . . . . . . . . 9 ((𝜑𝑦 = 𝐴) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴))
196 fveq2 6889 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴))
197196eqcomd 2739 . . . . . . . . . 10 (𝑦 = 𝐴 → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
198197adantl 483 . . . . . . . . 9 ((𝜑𝑦 = 𝐴) → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐴) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
199195, 198eleqtrd 2836 . . . . . . . 8 ((𝜑𝑦 = 𝐴) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
200180adantl 483 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐵𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
201 eqtr2 2757 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝐵𝑥 = 𝐴) → 𝐵 = 𝐴)
202 iftrue 4534 . . . . . . . . . . . . . . . . . 18 (𝐵 = 𝐴 → if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))) = 𝑅)
203202eqcomd 2739 . . . . . . . . . . . . . . . . 17 (𝐵 = 𝐴𝑅 = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
204201, 203syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐵𝑥 = 𝐴) → 𝑅 = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
205200, 204eqtrd 2773 . . . . . . . . . . . . . . 15 ((𝑥 = 𝐵𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
206 iffalse 4537 . . . . . . . . . . . . . . . . 17 𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
207206adantl 483 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
208 iftrue 4534 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = 𝐿)
209208adantr 482 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = 𝐿)
210 df-ne 2942 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐴 ↔ ¬ 𝑥 = 𝐴)
211 pm13.18 3023 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝐵𝑥𝐴) → 𝐵𝐴)
212210, 211sylan2br 596 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → 𝐵𝐴)
213212neneqd 2946 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → ¬ 𝐵 = 𝐴)
214213iffalsed 4539 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))) = if(𝐵 = 𝐵, 𝐿, (𝐹𝐵)))
215 eqid 2733 . . . . . . . . . . . . . . . . . 18 𝐵 = 𝐵
216215iftruei 4535 . . . . . . . . . . . . . . . . 17 if(𝐵 = 𝐵, 𝐿, (𝐹𝐵)) = 𝐿
217214, 216eqtr2di 2790 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → 𝐿 = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
218207, 209, 2173eqtrd 2777 . . . . . . . . . . . . . . 15 ((𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
219205, 218pm2.61dan 812 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
22021leidd 11777 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐵)
22118, 21, 21, 25, 220eliccd 44204 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ (𝐴[,]𝐵))
222216, 8eqeltrid 2838 . . . . . . . . . . . . . . 15 (𝜑 → if(𝐵 = 𝐵, 𝐿, (𝐹𝐵)) ∈ ℂ)
2234, 222ifcld 4574 . . . . . . . . . . . . . 14 (𝜑 → if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))) ∈ ℂ)
22441, 219, 221, 223fvmptd3 7019 . . . . . . . . . . . . 13 (𝜑 → (𝐺𝐵) = if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))))
22518, 24gtned 11346 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐴)
226225neneqd 2946 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝐵 = 𝐴)
227226iffalsed 4539 . . . . . . . . . . . . 13 (𝜑 → if(𝐵 = 𝐴, 𝑅, if(𝐵 = 𝐵, 𝐿, (𝐹𝐵))) = if(𝐵 = 𝐵, 𝐿, (𝐹𝐵)))
228216a1i 11 . . . . . . . . . . . . 13 (𝜑 → if(𝐵 = 𝐵, 𝐿, (𝐹𝐵)) = 𝐿)
229224, 227, 2283eqtrd 2777 . . . . . . . . . . . 12 (𝜑 → (𝐺𝐵) = 𝐿)
230185oveq1d 7421 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 lim 𝐵) = ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐵))
2317, 230eleqtrd 2836 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐵))
23218, 21, 24, 42limcicciooub 44340 . . . . . . . . . . . . 13 (𝜑 → ((𝐺 ↾ (𝐴(,)𝐵)) lim 𝐵) = (𝐺 lim 𝐵))
233231, 232eleqtrd 2836 . . . . . . . . . . . 12 (𝜑𝐿 ∈ (𝐺 lim 𝐵))
234229, 233eqeltrd 2834 . . . . . . . . . . 11 (𝜑 → (𝐺𝐵) ∈ (𝐺 lim 𝐵))
235101, 191cnplimc 25396 . . . . . . . . . . . 12 (((𝐴[,]𝐵) ⊆ ℂ ∧ 𝐵 ∈ (𝐴[,]𝐵)) → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ (𝐺𝐵) ∈ (𝐺 lim 𝐵))))
236132, 221, 235syl2anc 585 . . . . . . . . . . 11 (𝜑 → (𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ (𝐺𝐵) ∈ (𝐺 lim 𝐵))))
23742, 234, 236mpbir2and 712 . . . . . . . . . 10 (𝜑𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵))
238237adantr 482 . . . . . . . . 9 ((𝜑𝑦 = 𝐵) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵))
239 fveq2 6889 . . . . . . . . . . 11 (𝑦 = 𝐵 → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵))
240239eqcomd 2739 . . . . . . . . . 10 (𝑦 = 𝐵 → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
241240adantl 483 . . . . . . . . 9 ((𝜑𝑦 = 𝐵) → ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝐵) = ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
242238, 241eleqtrd 2836 . . . . . . . 8 ((𝜑𝑦 = 𝐵) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
243199, 242jaodan 957 . . . . . . 7 ((𝜑 ∧ (𝑦 = 𝐴𝑦 = 𝐵)) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
244179, 243sylan2 594 . . . . . 6 ((𝜑𝑦 ∈ {𝐴, 𝐵}) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
245178, 244jaodan 957 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∨ 𝑦 ∈ {𝐴, 𝐵})) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
24647, 245syldan 592 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
247246ralrimiva 3147 . . 3 (𝜑 → ∀𝑦 ∈ (𝐴[,]𝐵)𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
248101cnfldtopon 24291 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
249 resttopon 22657 . . . . 5 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴[,]𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
250248, 132, 249sylancr 588 . . . 4 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
251 cncnp 22776 . . . 4 ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐺 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴[,]𝐵)𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
252250, 248, 251sylancl 587 . . 3 (𝜑 → (𝐺 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴[,]𝐵)𝐺 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
25342, 247, 252mpbir2and 712 . 2 (𝜑𝐺 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
254101, 191, 107cncfcn 24418 . . 3 (((𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
255132, 100, 254sylancl 587 . 2 (𝜑 → ((𝐴[,]𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
256253, 255eleqtrrd 2837 1 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wnf 1786  wcel 2107  wne 2941  wral 3062  Vcvv 3475  cdif 3945  cun 3946  cin 3947  wss 3948  ifcif 4528  {cpr 4630   cuni 4908   class class class wbr 5148  cmpt 5231  ran crn 5677  cres 5678  wf 6537  cfv 6541  (class class class)co 7406  cc 11105  cr 11106  *cxr 11244   < clt 11245  cle 11246  (,)cioo 13321  [,]cicc 13324  t crest 17363  TopOpenctopn 17364  topGenctg 17380  fldccnfld 20937  Topctop 22387  TopOnctopon 22404  intcnt 22513   Cn ccn 22720   CnP ccnp 22721  cnccncf 24384   lim climc 25371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-er 8700  df-map 8819  df-pm 8820  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fi 9403  df-sup 9434  df-inf 9435  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ioc 13326  df-ico 13327  df-icc 13328  df-fz 13482  df-seq 13964  df-exp 14025  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-struct 17077  df-slot 17112  df-ndx 17124  df-base 17142  df-plusg 17207  df-mulr 17208  df-starv 17209  df-tset 17213  df-ple 17214  df-ds 17216  df-unif 17217  df-rest 17365  df-topn 17366  df-topgen 17386  df-psmet 20929  df-xmet 20930  df-met 20931  df-bl 20932  df-mopn 20933  df-cnfld 20938  df-top 22388  df-topon 22405  df-topsp 22427  df-bases 22441  df-cld 22515  df-ntr 22516  df-cls 22517  df-cn 22723  df-cnp 22724  df-xms 23818  df-ms 23819  df-cncf 24386  df-limc 25375
This theorem is referenced by:  cncfiooicc  44597
  Copyright terms: Public domain W3C validator