MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotan0 Structured version   Visualization version   GIF version

Theorem iotan0 6420
Description: Representation of "the unique element such that 𝜑 " with a class expression 𝐴 which is not the empty set (that means that "the unique element such that 𝜑 " exists). (Contributed by AV, 30-Jan-2024.)
Hypothesis
Ref Expression
iotan0.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
iotan0 ((𝐴𝑉𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem iotan0
StepHypRef Expression
1 pm13.18 3026 . . . . . 6 ((𝐴 = (℩𝑥𝜑) ∧ 𝐴 ≠ ∅) → (℩𝑥𝜑) ≠ ∅)
21expcom 413 . . . . 5 (𝐴 ≠ ∅ → (𝐴 = (℩𝑥𝜑) → (℩𝑥𝜑) ≠ ∅))
3 iotanul 6408 . . . . . 6 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)
43necon1ai 2972 . . . . 5 ((℩𝑥𝜑) ≠ ∅ → ∃!𝑥𝜑)
52, 4syl6 35 . . . 4 (𝐴 ≠ ∅ → (𝐴 = (℩𝑥𝜑) → ∃!𝑥𝜑))
65a1i 11 . . 3 (𝐴𝑉 → (𝐴 ≠ ∅ → (𝐴 = (℩𝑥𝜑) → ∃!𝑥𝜑)))
763imp 1109 . 2 ((𝐴𝑉𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → ∃!𝑥𝜑)
8 eqcom 2746 . . . . 5 (𝐴 = (℩𝑥𝜑) ↔ (℩𝑥𝜑) = 𝐴)
9 iotan0.1 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜓))
109iota2 6419 . . . . . 6 ((𝐴𝑉 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴))
1110biimprd 247 . . . . 5 ((𝐴𝑉 ∧ ∃!𝑥𝜑) → ((℩𝑥𝜑) = 𝐴𝜓))
128, 11syl5bi 241 . . . 4 ((𝐴𝑉 ∧ ∃!𝑥𝜑) → (𝐴 = (℩𝑥𝜑) → 𝜓))
1312impancom 451 . . 3 ((𝐴𝑉𝐴 = (℩𝑥𝜑)) → (∃!𝑥𝜑𝜓))
14133adant2 1129 . 2 ((𝐴𝑉𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → (∃!𝑥𝜑𝜓))
157, 14mpd 15 1 ((𝐴𝑉𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  ∃!weu 2569  wne 2944  c0 4261  cio 6386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-sn 4567  df-pr 4569  df-uni 4845  df-iota 6388
This theorem is referenced by:  sgrpidmnd  18371
  Copyright terms: Public domain W3C validator