| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotan0 | Structured version Visualization version GIF version | ||
| Description: Representation of "the unique element such that 𝜑 " with a class expression 𝐴 which is not the empty set (that means that "the unique element such that 𝜑 " exists). (Contributed by AV, 30-Jan-2024.) |
| Ref | Expression |
|---|---|
| iotan0.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| iotan0 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm13.18 3014 | . . . . . 6 ⊢ ((𝐴 = (℩𝑥𝜑) ∧ 𝐴 ≠ ∅) → (℩𝑥𝜑) ≠ ∅) | |
| 2 | 1 | expcom 413 | . . . . 5 ⊢ (𝐴 ≠ ∅ → (𝐴 = (℩𝑥𝜑) → (℩𝑥𝜑) ≠ ∅)) |
| 3 | iotanul 6514 | . . . . . 6 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | |
| 4 | 3 | necon1ai 2960 | . . . . 5 ⊢ ((℩𝑥𝜑) ≠ ∅ → ∃!𝑥𝜑) |
| 5 | 2, 4 | syl6 35 | . . . 4 ⊢ (𝐴 ≠ ∅ → (𝐴 = (℩𝑥𝜑) → ∃!𝑥𝜑)) |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≠ ∅ → (𝐴 = (℩𝑥𝜑) → ∃!𝑥𝜑))) |
| 7 | 6 | 3imp 1110 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → ∃!𝑥𝜑) |
| 8 | eqcom 2743 | . . . . 5 ⊢ (𝐴 = (℩𝑥𝜑) ↔ (℩𝑥𝜑) = 𝐴) | |
| 9 | iotan0.1 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 10 | 9 | iota2 6525 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) |
| 11 | 10 | biimprd 248 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃!𝑥𝜑) → ((℩𝑥𝜑) = 𝐴 → 𝜓)) |
| 12 | 8, 11 | biimtrid 242 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃!𝑥𝜑) → (𝐴 = (℩𝑥𝜑) → 𝜓)) |
| 13 | 12 | impancom 451 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑)) → (∃!𝑥𝜑 → 𝜓)) |
| 14 | 13 | 3adant2 1131 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → (∃!𝑥𝜑 → 𝜓)) |
| 15 | 7, 14 | mpd 15 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃!weu 2568 ≠ wne 2933 ∅c0 4313 ℩cio 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-sn 4607 df-pr 4609 df-uni 4889 df-iota 6489 |
| This theorem is referenced by: sgrpidmnd 18722 |
| Copyright terms: Public domain | W3C validator |