| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotan0 | Structured version Visualization version GIF version | ||
| Description: Representation of "the unique element such that 𝜑 " with a class expression 𝐴 which is not the empty set (that means that "the unique element such that 𝜑 " exists). (Contributed by AV, 30-Jan-2024.) |
| Ref | Expression |
|---|---|
| iotan0.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| iotan0 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm13.18 3010 | . . . . . 6 ⊢ ((𝐴 = (℩𝑥𝜑) ∧ 𝐴 ≠ ∅) → (℩𝑥𝜑) ≠ ∅) | |
| 2 | 1 | expcom 413 | . . . . 5 ⊢ (𝐴 ≠ ∅ → (𝐴 = (℩𝑥𝜑) → (℩𝑥𝜑) ≠ ∅)) |
| 3 | iotanul 6466 | . . . . . 6 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | |
| 4 | 3 | necon1ai 2956 | . . . . 5 ⊢ ((℩𝑥𝜑) ≠ ∅ → ∃!𝑥𝜑) |
| 5 | 2, 4 | syl6 35 | . . . 4 ⊢ (𝐴 ≠ ∅ → (𝐴 = (℩𝑥𝜑) → ∃!𝑥𝜑)) |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≠ ∅ → (𝐴 = (℩𝑥𝜑) → ∃!𝑥𝜑))) |
| 7 | 6 | 3imp 1110 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → ∃!𝑥𝜑) |
| 8 | eqcom 2740 | . . . . 5 ⊢ (𝐴 = (℩𝑥𝜑) ↔ (℩𝑥𝜑) = 𝐴) | |
| 9 | iotan0.1 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 10 | 9 | iota2 6475 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) |
| 11 | 10 | biimprd 248 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃!𝑥𝜑) → ((℩𝑥𝜑) = 𝐴 → 𝜓)) |
| 12 | 8, 11 | biimtrid 242 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃!𝑥𝜑) → (𝐴 = (℩𝑥𝜑) → 𝜓)) |
| 13 | 12 | impancom 451 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑)) → (∃!𝑥𝜑 → 𝜓)) |
| 14 | 13 | 3adant2 1131 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → (∃!𝑥𝜑 → 𝜓)) |
| 15 | 7, 14 | mpd 15 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∃!weu 2565 ≠ wne 2929 ∅c0 4282 ℩cio 6440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-sn 4576 df-pr 4578 df-uni 4859 df-iota 6442 |
| This theorem is referenced by: sgrpidmnd 18649 |
| Copyright terms: Public domain | W3C validator |