Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iotan0 | Structured version Visualization version GIF version |
Description: Representation of "the unique element such that 𝜑 " with a class expression 𝐴 which is not the empty set (that means that "the unique element such that 𝜑 " exists). (Contributed by AV, 30-Jan-2024.) |
Ref | Expression |
---|---|
iotan0.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
iotan0 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm13.18 3026 | . . . . . 6 ⊢ ((𝐴 = (℩𝑥𝜑) ∧ 𝐴 ≠ ∅) → (℩𝑥𝜑) ≠ ∅) | |
2 | 1 | expcom 413 | . . . . 5 ⊢ (𝐴 ≠ ∅ → (𝐴 = (℩𝑥𝜑) → (℩𝑥𝜑) ≠ ∅)) |
3 | iotanul 6408 | . . . . . 6 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | |
4 | 3 | necon1ai 2972 | . . . . 5 ⊢ ((℩𝑥𝜑) ≠ ∅ → ∃!𝑥𝜑) |
5 | 2, 4 | syl6 35 | . . . 4 ⊢ (𝐴 ≠ ∅ → (𝐴 = (℩𝑥𝜑) → ∃!𝑥𝜑)) |
6 | 5 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≠ ∅ → (𝐴 = (℩𝑥𝜑) → ∃!𝑥𝜑))) |
7 | 6 | 3imp 1109 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → ∃!𝑥𝜑) |
8 | eqcom 2746 | . . . . 5 ⊢ (𝐴 = (℩𝑥𝜑) ↔ (℩𝑥𝜑) = 𝐴) | |
9 | iotan0.1 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
10 | 9 | iota2 6419 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) |
11 | 10 | biimprd 247 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃!𝑥𝜑) → ((℩𝑥𝜑) = 𝐴 → 𝜓)) |
12 | 8, 11 | syl5bi 241 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃!𝑥𝜑) → (𝐴 = (℩𝑥𝜑) → 𝜓)) |
13 | 12 | impancom 451 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑)) → (∃!𝑥𝜑 → 𝜓)) |
14 | 13 | 3adant2 1129 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → (∃!𝑥𝜑 → 𝜓)) |
15 | 7, 14 | mpd 15 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ∃!weu 2569 ≠ wne 2944 ∅c0 4261 ℩cio 6386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-sn 4567 df-pr 4569 df-uni 4845 df-iota 6388 |
This theorem is referenced by: sgrpidmnd 18371 |
Copyright terms: Public domain | W3C validator |