MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpf1o Structured version   Visualization version   GIF version

Theorem xpf1o 8983
Description: Construct a bijection on a Cartesian product given bijections on the factors. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
xpf1o.1 (𝜑 → (𝑥𝐴𝑋):𝐴1-1-onto𝐵)
xpf1o.2 (𝜑 → (𝑦𝐶𝑌):𝐶1-1-onto𝐷)
Assertion
Ref Expression
xpf1o (𝜑 → (𝑥𝐴, 𝑦𝐶 ↦ ⟨𝑋, 𝑌⟩):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐶,𝑦   𝑦,𝑋   𝑥,𝐵   𝑦,𝐷   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑦)   𝐷(𝑥)   𝑋(𝑥)   𝑌(𝑦)

Proof of Theorem xpf1o
Dummy variables 𝑡 𝑠 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 7910 . . . . . 6 (𝑢 ∈ (𝐴 × 𝐶) → (1st𝑢) ∈ 𝐴)
21adantl 482 . . . . 5 ((𝜑𝑢 ∈ (𝐴 × 𝐶)) → (1st𝑢) ∈ 𝐴)
3 xpf1o.1 . . . . . . . 8 (𝜑 → (𝑥𝐴𝑋):𝐴1-1-onto𝐵)
4 eqid 2737 . . . . . . . . 9 (𝑥𝐴𝑋) = (𝑥𝐴𝑋)
54f1ompt 7025 . . . . . . . 8 ((𝑥𝐴𝑋):𝐴1-1-onto𝐵 ↔ (∀𝑥𝐴 𝑋𝐵 ∧ ∀𝑧𝐵 ∃!𝑥𝐴 𝑧 = 𝑋))
63, 5sylib 217 . . . . . . 7 (𝜑 → (∀𝑥𝐴 𝑋𝐵 ∧ ∀𝑧𝐵 ∃!𝑥𝐴 𝑧 = 𝑋))
76simpld 495 . . . . . 6 (𝜑 → ∀𝑥𝐴 𝑋𝐵)
87adantr 481 . . . . 5 ((𝜑𝑢 ∈ (𝐴 × 𝐶)) → ∀𝑥𝐴 𝑋𝐵)
9 nfcsb1v 3867 . . . . . . 7 𝑥(1st𝑢) / 𝑥𝑋
109nfel1 2921 . . . . . 6 𝑥(1st𝑢) / 𝑥𝑋𝐵
11 csbeq1a 3856 . . . . . . 7 (𝑥 = (1st𝑢) → 𝑋 = (1st𝑢) / 𝑥𝑋)
1211eleq1d 2822 . . . . . 6 (𝑥 = (1st𝑢) → (𝑋𝐵(1st𝑢) / 𝑥𝑋𝐵))
1310, 12rspc 3558 . . . . 5 ((1st𝑢) ∈ 𝐴 → (∀𝑥𝐴 𝑋𝐵(1st𝑢) / 𝑥𝑋𝐵))
142, 8, 13sylc 65 . . . 4 ((𝜑𝑢 ∈ (𝐴 × 𝐶)) → (1st𝑢) / 𝑥𝑋𝐵)
15 xp2nd 7911 . . . . . 6 (𝑢 ∈ (𝐴 × 𝐶) → (2nd𝑢) ∈ 𝐶)
1615adantl 482 . . . . 5 ((𝜑𝑢 ∈ (𝐴 × 𝐶)) → (2nd𝑢) ∈ 𝐶)
17 xpf1o.2 . . . . . . . 8 (𝜑 → (𝑦𝐶𝑌):𝐶1-1-onto𝐷)
18 eqid 2737 . . . . . . . . 9 (𝑦𝐶𝑌) = (𝑦𝐶𝑌)
1918f1ompt 7025 . . . . . . . 8 ((𝑦𝐶𝑌):𝐶1-1-onto𝐷 ↔ (∀𝑦𝐶 𝑌𝐷 ∧ ∀𝑤𝐷 ∃!𝑦𝐶 𝑤 = 𝑌))
2017, 19sylib 217 . . . . . . 7 (𝜑 → (∀𝑦𝐶 𝑌𝐷 ∧ ∀𝑤𝐷 ∃!𝑦𝐶 𝑤 = 𝑌))
2120simpld 495 . . . . . 6 (𝜑 → ∀𝑦𝐶 𝑌𝐷)
2221adantr 481 . . . . 5 ((𝜑𝑢 ∈ (𝐴 × 𝐶)) → ∀𝑦𝐶 𝑌𝐷)
23 nfcsb1v 3867 . . . . . . 7 𝑦(2nd𝑢) / 𝑦𝑌
2423nfel1 2921 . . . . . 6 𝑦(2nd𝑢) / 𝑦𝑌𝐷
25 csbeq1a 3856 . . . . . . 7 (𝑦 = (2nd𝑢) → 𝑌 = (2nd𝑢) / 𝑦𝑌)
2625eleq1d 2822 . . . . . 6 (𝑦 = (2nd𝑢) → (𝑌𝐷(2nd𝑢) / 𝑦𝑌𝐷))
2724, 26rspc 3558 . . . . 5 ((2nd𝑢) ∈ 𝐶 → (∀𝑦𝐶 𝑌𝐷(2nd𝑢) / 𝑦𝑌𝐷))
2816, 22, 27sylc 65 . . . 4 ((𝜑𝑢 ∈ (𝐴 × 𝐶)) → (2nd𝑢) / 𝑦𝑌𝐷)
2914, 28opelxpd 5646 . . 3 ((𝜑𝑢 ∈ (𝐴 × 𝐶)) → ⟨(1st𝑢) / 𝑥𝑋, (2nd𝑢) / 𝑦𝑌⟩ ∈ (𝐵 × 𝐷))
3029ralrimiva 3140 . 2 (𝜑 → ∀𝑢 ∈ (𝐴 × 𝐶)⟨(1st𝑢) / 𝑥𝑋, (2nd𝑢) / 𝑦𝑌⟩ ∈ (𝐵 × 𝐷))
316simprd 496 . . . . . . . . . 10 (𝜑 → ∀𝑧𝐵 ∃!𝑥𝐴 𝑧 = 𝑋)
3231r19.21bi 3231 . . . . . . . . 9 ((𝜑𝑧𝐵) → ∃!𝑥𝐴 𝑧 = 𝑋)
33 reu6 3671 . . . . . . . . 9 (∃!𝑥𝐴 𝑧 = 𝑋 ↔ ∃𝑠𝐴𝑥𝐴 (𝑧 = 𝑋𝑥 = 𝑠))
3432, 33sylib 217 . . . . . . . 8 ((𝜑𝑧𝐵) → ∃𝑠𝐴𝑥𝐴 (𝑧 = 𝑋𝑥 = 𝑠))
3520simprd 496 . . . . . . . . . 10 (𝜑 → ∀𝑤𝐷 ∃!𝑦𝐶 𝑤 = 𝑌)
3635r19.21bi 3231 . . . . . . . . 9 ((𝜑𝑤𝐷) → ∃!𝑦𝐶 𝑤 = 𝑌)
37 reu6 3671 . . . . . . . . 9 (∃!𝑦𝐶 𝑤 = 𝑌 ↔ ∃𝑡𝐶𝑦𝐶 (𝑤 = 𝑌𝑦 = 𝑡))
3836, 37sylib 217 . . . . . . . 8 ((𝜑𝑤𝐷) → ∃𝑡𝐶𝑦𝐶 (𝑤 = 𝑌𝑦 = 𝑡))
3934, 38anim12dan 619 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐷)) → (∃𝑠𝐴𝑥𝐴 (𝑧 = 𝑋𝑥 = 𝑠) ∧ ∃𝑡𝐶𝑦𝐶 (𝑤 = 𝑌𝑦 = 𝑡)))
40 reeanv 3214 . . . . . . . 8 (∃𝑠𝐴𝑡𝐶 (∀𝑥𝐴 (𝑧 = 𝑋𝑥 = 𝑠) ∧ ∀𝑦𝐶 (𝑤 = 𝑌𝑦 = 𝑡)) ↔ (∃𝑠𝐴𝑥𝐴 (𝑧 = 𝑋𝑥 = 𝑠) ∧ ∃𝑡𝐶𝑦𝐶 (𝑤 = 𝑌𝑦 = 𝑡)))
41 pm4.38 635 . . . . . . . . . . . . . . 15 (((𝑧 = 𝑋𝑥 = 𝑠) ∧ (𝑤 = 𝑌𝑦 = 𝑡)) → ((𝑧 = 𝑋𝑤 = 𝑌) ↔ (𝑥 = 𝑠𝑦 = 𝑡)))
4241ex 413 . . . . . . . . . . . . . 14 ((𝑧 = 𝑋𝑥 = 𝑠) → ((𝑤 = 𝑌𝑦 = 𝑡) → ((𝑧 = 𝑋𝑤 = 𝑌) ↔ (𝑥 = 𝑠𝑦 = 𝑡))))
4342ralimdv 3163 . . . . . . . . . . . . 13 ((𝑧 = 𝑋𝑥 = 𝑠) → (∀𝑦𝐶 (𝑤 = 𝑌𝑦 = 𝑡) → ∀𝑦𝐶 ((𝑧 = 𝑋𝑤 = 𝑌) ↔ (𝑥 = 𝑠𝑦 = 𝑡))))
4443com12 32 . . . . . . . . . . . 12 (∀𝑦𝐶 (𝑤 = 𝑌𝑦 = 𝑡) → ((𝑧 = 𝑋𝑥 = 𝑠) → ∀𝑦𝐶 ((𝑧 = 𝑋𝑤 = 𝑌) ↔ (𝑥 = 𝑠𝑦 = 𝑡))))
4544ralimdv 3163 . . . . . . . . . . 11 (∀𝑦𝐶 (𝑤 = 𝑌𝑦 = 𝑡) → (∀𝑥𝐴 (𝑧 = 𝑋𝑥 = 𝑠) → ∀𝑥𝐴𝑦𝐶 ((𝑧 = 𝑋𝑤 = 𝑌) ↔ (𝑥 = 𝑠𝑦 = 𝑡))))
4645impcom 408 . . . . . . . . . 10 ((∀𝑥𝐴 (𝑧 = 𝑋𝑥 = 𝑠) ∧ ∀𝑦𝐶 (𝑤 = 𝑌𝑦 = 𝑡)) → ∀𝑥𝐴𝑦𝐶 ((𝑧 = 𝑋𝑤 = 𝑌) ↔ (𝑥 = 𝑠𝑦 = 𝑡)))
4746reximi 3084 . . . . . . . . 9 (∃𝑡𝐶 (∀𝑥𝐴 (𝑧 = 𝑋𝑥 = 𝑠) ∧ ∀𝑦𝐶 (𝑤 = 𝑌𝑦 = 𝑡)) → ∃𝑡𝐶𝑥𝐴𝑦𝐶 ((𝑧 = 𝑋𝑤 = 𝑌) ↔ (𝑥 = 𝑠𝑦 = 𝑡)))
4847reximi 3084 . . . . . . . 8 (∃𝑠𝐴𝑡𝐶 (∀𝑥𝐴 (𝑧 = 𝑋𝑥 = 𝑠) ∧ ∀𝑦𝐶 (𝑤 = 𝑌𝑦 = 𝑡)) → ∃𝑠𝐴𝑡𝐶𝑥𝐴𝑦𝐶 ((𝑧 = 𝑋𝑤 = 𝑌) ↔ (𝑥 = 𝑠𝑦 = 𝑡)))
4940, 48sylbir 234 . . . . . . 7 ((∃𝑠𝐴𝑥𝐴 (𝑧 = 𝑋𝑥 = 𝑠) ∧ ∃𝑡𝐶𝑦𝐶 (𝑤 = 𝑌𝑦 = 𝑡)) → ∃𝑠𝐴𝑡𝐶𝑥𝐴𝑦𝐶 ((𝑧 = 𝑋𝑤 = 𝑌) ↔ (𝑥 = 𝑠𝑦 = 𝑡)))
5039, 49syl 17 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐷)) → ∃𝑠𝐴𝑡𝐶𝑥𝐴𝑦𝐶 ((𝑧 = 𝑋𝑤 = 𝑌) ↔ (𝑥 = 𝑠𝑦 = 𝑡)))
51 vex 3445 . . . . . . . . . . . . . . 15 𝑠 ∈ V
52 vex 3445 . . . . . . . . . . . . . . 15 𝑡 ∈ V
5351, 52op1std 7888 . . . . . . . . . . . . . 14 (𝑢 = ⟨𝑠, 𝑡⟩ → (1st𝑢) = 𝑠)
5453csbeq1d 3846 . . . . . . . . . . . . 13 (𝑢 = ⟨𝑠, 𝑡⟩ → (1st𝑢) / 𝑥𝑋 = 𝑠 / 𝑥𝑋)
5554eqeq2d 2748 . . . . . . . . . . . 12 (𝑢 = ⟨𝑠, 𝑡⟩ → (𝑧 = (1st𝑢) / 𝑥𝑋𝑧 = 𝑠 / 𝑥𝑋))
5651, 52op2ndd 7889 . . . . . . . . . . . . . 14 (𝑢 = ⟨𝑠, 𝑡⟩ → (2nd𝑢) = 𝑡)
5756csbeq1d 3846 . . . . . . . . . . . . 13 (𝑢 = ⟨𝑠, 𝑡⟩ → (2nd𝑢) / 𝑦𝑌 = 𝑡 / 𝑦𝑌)
5857eqeq2d 2748 . . . . . . . . . . . 12 (𝑢 = ⟨𝑠, 𝑡⟩ → (𝑤 = (2nd𝑢) / 𝑦𝑌𝑤 = 𝑡 / 𝑦𝑌))
5955, 58anbi12d 631 . . . . . . . . . . 11 (𝑢 = ⟨𝑠, 𝑡⟩ → ((𝑧 = (1st𝑢) / 𝑥𝑋𝑤 = (2nd𝑢) / 𝑦𝑌) ↔ (𝑧 = 𝑠 / 𝑥𝑋𝑤 = 𝑡 / 𝑦𝑌)))
60 eqeq1 2741 . . . . . . . . . . 11 (𝑢 = ⟨𝑠, 𝑡⟩ → (𝑢 = 𝑣 ↔ ⟨𝑠, 𝑡⟩ = 𝑣))
6159, 60bibi12d 345 . . . . . . . . . 10 (𝑢 = ⟨𝑠, 𝑡⟩ → (((𝑧 = (1st𝑢) / 𝑥𝑋𝑤 = (2nd𝑢) / 𝑦𝑌) ↔ 𝑢 = 𝑣) ↔ ((𝑧 = 𝑠 / 𝑥𝑋𝑤 = 𝑡 / 𝑦𝑌) ↔ ⟨𝑠, 𝑡⟩ = 𝑣)))
6261ralxp 5771 . . . . . . . . 9 (∀𝑢 ∈ (𝐴 × 𝐶)((𝑧 = (1st𝑢) / 𝑥𝑋𝑤 = (2nd𝑢) / 𝑦𝑌) ↔ 𝑢 = 𝑣) ↔ ∀𝑠𝐴𝑡𝐶 ((𝑧 = 𝑠 / 𝑥𝑋𝑤 = 𝑡 / 𝑦𝑌) ↔ ⟨𝑠, 𝑡⟩ = 𝑣))
63 nfv 1916 . . . . . . . . . 10 𝑠𝑦𝐶 ((𝑧 = 𝑋𝑤 = 𝑌) ↔ ⟨𝑥, 𝑦⟩ = 𝑣)
64 nfcv 2905 . . . . . . . . . . 11 𝑥𝐶
65 nfcsb1v 3867 . . . . . . . . . . . . . 14 𝑥𝑠 / 𝑥𝑋
6665nfeq2 2922 . . . . . . . . . . . . 13 𝑥 𝑧 = 𝑠 / 𝑥𝑋
67 nfv 1916 . . . . . . . . . . . . 13 𝑥 𝑤 = 𝑡 / 𝑦𝑌
6866, 67nfan 1901 . . . . . . . . . . . 12 𝑥(𝑧 = 𝑠 / 𝑥𝑋𝑤 = 𝑡 / 𝑦𝑌)
69 nfv 1916 . . . . . . . . . . . 12 𝑥𝑠, 𝑡⟩ = 𝑣
7068, 69nfbi 1905 . . . . . . . . . . 11 𝑥((𝑧 = 𝑠 / 𝑥𝑋𝑤 = 𝑡 / 𝑦𝑌) ↔ ⟨𝑠, 𝑡⟩ = 𝑣)
7164, 70nfralw 3291 . . . . . . . . . 10 𝑥𝑡𝐶 ((𝑧 = 𝑠 / 𝑥𝑋𝑤 = 𝑡 / 𝑦𝑌) ↔ ⟨𝑠, 𝑡⟩ = 𝑣)
72 nfv 1916 . . . . . . . . . . . 12 𝑡((𝑧 = 𝑋𝑤 = 𝑌) ↔ ⟨𝑥, 𝑦⟩ = 𝑣)
73 nfv 1916 . . . . . . . . . . . . . 14 𝑦 𝑧 = 𝑋
74 nfcsb1v 3867 . . . . . . . . . . . . . . 15 𝑦𝑡 / 𝑦𝑌
7574nfeq2 2922 . . . . . . . . . . . . . 14 𝑦 𝑤 = 𝑡 / 𝑦𝑌
7673, 75nfan 1901 . . . . . . . . . . . . 13 𝑦(𝑧 = 𝑋𝑤 = 𝑡 / 𝑦𝑌)
77 nfv 1916 . . . . . . . . . . . . 13 𝑦𝑥, 𝑡⟩ = 𝑣
7876, 77nfbi 1905 . . . . . . . . . . . 12 𝑦((𝑧 = 𝑋𝑤 = 𝑡 / 𝑦𝑌) ↔ ⟨𝑥, 𝑡⟩ = 𝑣)
79 csbeq1a 3856 . . . . . . . . . . . . . . 15 (𝑦 = 𝑡𝑌 = 𝑡 / 𝑦𝑌)
8079eqeq2d 2748 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → (𝑤 = 𝑌𝑤 = 𝑡 / 𝑦𝑌))
8180anbi2d 629 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → ((𝑧 = 𝑋𝑤 = 𝑌) ↔ (𝑧 = 𝑋𝑤 = 𝑡 / 𝑦𝑌)))
82 opeq2 4816 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑡⟩)
8382eqeq1d 2739 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (⟨𝑥, 𝑦⟩ = 𝑣 ↔ ⟨𝑥, 𝑡⟩ = 𝑣))
8481, 83bibi12d 345 . . . . . . . . . . . 12 (𝑦 = 𝑡 → (((𝑧 = 𝑋𝑤 = 𝑌) ↔ ⟨𝑥, 𝑦⟩ = 𝑣) ↔ ((𝑧 = 𝑋𝑤 = 𝑡 / 𝑦𝑌) ↔ ⟨𝑥, 𝑡⟩ = 𝑣)))
8572, 78, 84cbvralw 3286 . . . . . . . . . . 11 (∀𝑦𝐶 ((𝑧 = 𝑋𝑤 = 𝑌) ↔ ⟨𝑥, 𝑦⟩ = 𝑣) ↔ ∀𝑡𝐶 ((𝑧 = 𝑋𝑤 = 𝑡 / 𝑦𝑌) ↔ ⟨𝑥, 𝑡⟩ = 𝑣))
86 csbeq1a 3856 . . . . . . . . . . . . . . 15 (𝑥 = 𝑠𝑋 = 𝑠 / 𝑥𝑋)
8786eqeq2d 2748 . . . . . . . . . . . . . 14 (𝑥 = 𝑠 → (𝑧 = 𝑋𝑧 = 𝑠 / 𝑥𝑋))
8887anbi1d 630 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → ((𝑧 = 𝑋𝑤 = 𝑡 / 𝑦𝑌) ↔ (𝑧 = 𝑠 / 𝑥𝑋𝑤 = 𝑡 / 𝑦𝑌)))
89 opeq1 4815 . . . . . . . . . . . . . 14 (𝑥 = 𝑠 → ⟨𝑥, 𝑡⟩ = ⟨𝑠, 𝑡⟩)
9089eqeq1d 2739 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (⟨𝑥, 𝑡⟩ = 𝑣 ↔ ⟨𝑠, 𝑡⟩ = 𝑣))
9188, 90bibi12d 345 . . . . . . . . . . . 12 (𝑥 = 𝑠 → (((𝑧 = 𝑋𝑤 = 𝑡 / 𝑦𝑌) ↔ ⟨𝑥, 𝑡⟩ = 𝑣) ↔ ((𝑧 = 𝑠 / 𝑥𝑋𝑤 = 𝑡 / 𝑦𝑌) ↔ ⟨𝑠, 𝑡⟩ = 𝑣)))
9291ralbidv 3171 . . . . . . . . . . 11 (𝑥 = 𝑠 → (∀𝑡𝐶 ((𝑧 = 𝑋𝑤 = 𝑡 / 𝑦𝑌) ↔ ⟨𝑥, 𝑡⟩ = 𝑣) ↔ ∀𝑡𝐶 ((𝑧 = 𝑠 / 𝑥𝑋𝑤 = 𝑡 / 𝑦𝑌) ↔ ⟨𝑠, 𝑡⟩ = 𝑣)))
9385, 92bitrid 282 . . . . . . . . . 10 (𝑥 = 𝑠 → (∀𝑦𝐶 ((𝑧 = 𝑋𝑤 = 𝑌) ↔ ⟨𝑥, 𝑦⟩ = 𝑣) ↔ ∀𝑡𝐶 ((𝑧 = 𝑠 / 𝑥𝑋𝑤 = 𝑡 / 𝑦𝑌) ↔ ⟨𝑠, 𝑡⟩ = 𝑣)))
9463, 71, 93cbvralw 3286 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐶 ((𝑧 = 𝑋𝑤 = 𝑌) ↔ ⟨𝑥, 𝑦⟩ = 𝑣) ↔ ∀𝑠𝐴𝑡𝐶 ((𝑧 = 𝑠 / 𝑥𝑋𝑤 = 𝑡 / 𝑦𝑌) ↔ ⟨𝑠, 𝑡⟩ = 𝑣))
9562, 94bitr4i 277 . . . . . . . 8 (∀𝑢 ∈ (𝐴 × 𝐶)((𝑧 = (1st𝑢) / 𝑥𝑋𝑤 = (2nd𝑢) / 𝑦𝑌) ↔ 𝑢 = 𝑣) ↔ ∀𝑥𝐴𝑦𝐶 ((𝑧 = 𝑋𝑤 = 𝑌) ↔ ⟨𝑥, 𝑦⟩ = 𝑣))
96 eqeq2 2749 . . . . . . . . . . 11 (𝑣 = ⟨𝑠, 𝑡⟩ → (⟨𝑥, 𝑦⟩ = 𝑣 ↔ ⟨𝑥, 𝑦⟩ = ⟨𝑠, 𝑡⟩))
97 vex 3445 . . . . . . . . . . . 12 𝑥 ∈ V
98 vex 3445 . . . . . . . . . . . 12 𝑦 ∈ V
9997, 98opth 5410 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ = ⟨𝑠, 𝑡⟩ ↔ (𝑥 = 𝑠𝑦 = 𝑡))
10096, 99bitrdi 286 . . . . . . . . . 10 (𝑣 = ⟨𝑠, 𝑡⟩ → (⟨𝑥, 𝑦⟩ = 𝑣 ↔ (𝑥 = 𝑠𝑦 = 𝑡)))
101100bibi2d 342 . . . . . . . . 9 (𝑣 = ⟨𝑠, 𝑡⟩ → (((𝑧 = 𝑋𝑤 = 𝑌) ↔ ⟨𝑥, 𝑦⟩ = 𝑣) ↔ ((𝑧 = 𝑋𝑤 = 𝑌) ↔ (𝑥 = 𝑠𝑦 = 𝑡))))
1021012ralbidv 3209 . . . . . . . 8 (𝑣 = ⟨𝑠, 𝑡⟩ → (∀𝑥𝐴𝑦𝐶 ((𝑧 = 𝑋𝑤 = 𝑌) ↔ ⟨𝑥, 𝑦⟩ = 𝑣) ↔ ∀𝑥𝐴𝑦𝐶 ((𝑧 = 𝑋𝑤 = 𝑌) ↔ (𝑥 = 𝑠𝑦 = 𝑡))))
10395, 102bitrid 282 . . . . . . 7 (𝑣 = ⟨𝑠, 𝑡⟩ → (∀𝑢 ∈ (𝐴 × 𝐶)((𝑧 = (1st𝑢) / 𝑥𝑋𝑤 = (2nd𝑢) / 𝑦𝑌) ↔ 𝑢 = 𝑣) ↔ ∀𝑥𝐴𝑦𝐶 ((𝑧 = 𝑋𝑤 = 𝑌) ↔ (𝑥 = 𝑠𝑦 = 𝑡))))
104103rexxp 5772 . . . . . 6 (∃𝑣 ∈ (𝐴 × 𝐶)∀𝑢 ∈ (𝐴 × 𝐶)((𝑧 = (1st𝑢) / 𝑥𝑋𝑤 = (2nd𝑢) / 𝑦𝑌) ↔ 𝑢 = 𝑣) ↔ ∃𝑠𝐴𝑡𝐶𝑥𝐴𝑦𝐶 ((𝑧 = 𝑋𝑤 = 𝑌) ↔ (𝑥 = 𝑠𝑦 = 𝑡)))
10550, 104sylibr 233 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐷)) → ∃𝑣 ∈ (𝐴 × 𝐶)∀𝑢 ∈ (𝐴 × 𝐶)((𝑧 = (1st𝑢) / 𝑥𝑋𝑤 = (2nd𝑢) / 𝑦𝑌) ↔ 𝑢 = 𝑣))
106 reu6 3671 . . . . 5 (∃!𝑢 ∈ (𝐴 × 𝐶)(𝑧 = (1st𝑢) / 𝑥𝑋𝑤 = (2nd𝑢) / 𝑦𝑌) ↔ ∃𝑣 ∈ (𝐴 × 𝐶)∀𝑢 ∈ (𝐴 × 𝐶)((𝑧 = (1st𝑢) / 𝑥𝑋𝑤 = (2nd𝑢) / 𝑦𝑌) ↔ 𝑢 = 𝑣))
107105, 106sylibr 233 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑤𝐷)) → ∃!𝑢 ∈ (𝐴 × 𝐶)(𝑧 = (1st𝑢) / 𝑥𝑋𝑤 = (2nd𝑢) / 𝑦𝑌))
108107ralrimivva 3194 . . 3 (𝜑 → ∀𝑧𝐵𝑤𝐷 ∃!𝑢 ∈ (𝐴 × 𝐶)(𝑧 = (1st𝑢) / 𝑥𝑋𝑤 = (2nd𝑢) / 𝑦𝑌))
109 eqeq1 2741 . . . . . 6 (𝑣 = ⟨𝑧, 𝑤⟩ → (𝑣 = ⟨(1st𝑢) / 𝑥𝑋, (2nd𝑢) / 𝑦𝑌⟩ ↔ ⟨𝑧, 𝑤⟩ = ⟨(1st𝑢) / 𝑥𝑋, (2nd𝑢) / 𝑦𝑌⟩))
110 vex 3445 . . . . . . 7 𝑧 ∈ V
111 vex 3445 . . . . . . 7 𝑤 ∈ V
112110, 111opth 5410 . . . . . 6 (⟨𝑧, 𝑤⟩ = ⟨(1st𝑢) / 𝑥𝑋, (2nd𝑢) / 𝑦𝑌⟩ ↔ (𝑧 = (1st𝑢) / 𝑥𝑋𝑤 = (2nd𝑢) / 𝑦𝑌))
113109, 112bitrdi 286 . . . . 5 (𝑣 = ⟨𝑧, 𝑤⟩ → (𝑣 = ⟨(1st𝑢) / 𝑥𝑋, (2nd𝑢) / 𝑦𝑌⟩ ↔ (𝑧 = (1st𝑢) / 𝑥𝑋𝑤 = (2nd𝑢) / 𝑦𝑌)))
114113reubidv 3368 . . . 4 (𝑣 = ⟨𝑧, 𝑤⟩ → (∃!𝑢 ∈ (𝐴 × 𝐶)𝑣 = ⟨(1st𝑢) / 𝑥𝑋, (2nd𝑢) / 𝑦𝑌⟩ ↔ ∃!𝑢 ∈ (𝐴 × 𝐶)(𝑧 = (1st𝑢) / 𝑥𝑋𝑤 = (2nd𝑢) / 𝑦𝑌)))
115114ralxp 5771 . . 3 (∀𝑣 ∈ (𝐵 × 𝐷)∃!𝑢 ∈ (𝐴 × 𝐶)𝑣 = ⟨(1st𝑢) / 𝑥𝑋, (2nd𝑢) / 𝑦𝑌⟩ ↔ ∀𝑧𝐵𝑤𝐷 ∃!𝑢 ∈ (𝐴 × 𝐶)(𝑧 = (1st𝑢) / 𝑥𝑋𝑤 = (2nd𝑢) / 𝑦𝑌))
116108, 115sylibr 233 . 2 (𝜑 → ∀𝑣 ∈ (𝐵 × 𝐷)∃!𝑢 ∈ (𝐴 × 𝐶)𝑣 = ⟨(1st𝑢) / 𝑥𝑋, (2nd𝑢) / 𝑦𝑌⟩)
117 nfcv 2905 . . . . 5 𝑧𝑋, 𝑌
118 nfcv 2905 . . . . 5 𝑤𝑋, 𝑌
119 nfcsb1v 3867 . . . . . 6 𝑥𝑧 / 𝑥𝑋
120 nfcv 2905 . . . . . 6 𝑥𝑤 / 𝑦𝑌
121119, 120nfop 4831 . . . . 5 𝑥𝑧 / 𝑥𝑋, 𝑤 / 𝑦𝑌
122 nfcv 2905 . . . . . 6 𝑦𝑧 / 𝑥𝑋
123 nfcsb1v 3867 . . . . . 6 𝑦𝑤 / 𝑦𝑌
124122, 123nfop 4831 . . . . 5 𝑦𝑧 / 𝑥𝑋, 𝑤 / 𝑦𝑌
125 csbeq1a 3856 . . . . . 6 (𝑥 = 𝑧𝑋 = 𝑧 / 𝑥𝑋)
126 csbeq1a 3856 . . . . . 6 (𝑦 = 𝑤𝑌 = 𝑤 / 𝑦𝑌)
127 opeq12 4817 . . . . . 6 ((𝑋 = 𝑧 / 𝑥𝑋𝑌 = 𝑤 / 𝑦𝑌) → ⟨𝑋, 𝑌⟩ = ⟨𝑧 / 𝑥𝑋, 𝑤 / 𝑦𝑌⟩)
128125, 126, 127syl2an 596 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → ⟨𝑋, 𝑌⟩ = ⟨𝑧 / 𝑥𝑋, 𝑤 / 𝑦𝑌⟩)
129117, 118, 121, 124, 128cbvmpo 7411 . . . 4 (𝑥𝐴, 𝑦𝐶 ↦ ⟨𝑋, 𝑌⟩) = (𝑧𝐴, 𝑤𝐶 ↦ ⟨𝑧 / 𝑥𝑋, 𝑤 / 𝑦𝑌⟩)
130110, 111op1std 7888 . . . . . . 7 (𝑢 = ⟨𝑧, 𝑤⟩ → (1st𝑢) = 𝑧)
131130csbeq1d 3846 . . . . . 6 (𝑢 = ⟨𝑧, 𝑤⟩ → (1st𝑢) / 𝑥𝑋 = 𝑧 / 𝑥𝑋)
132110, 111op2ndd 7889 . . . . . . 7 (𝑢 = ⟨𝑧, 𝑤⟩ → (2nd𝑢) = 𝑤)
133132csbeq1d 3846 . . . . . 6 (𝑢 = ⟨𝑧, 𝑤⟩ → (2nd𝑢) / 𝑦𝑌 = 𝑤 / 𝑦𝑌)
134131, 133opeq12d 4823 . . . . 5 (𝑢 = ⟨𝑧, 𝑤⟩ → ⟨(1st𝑢) / 𝑥𝑋, (2nd𝑢) / 𝑦𝑌⟩ = ⟨𝑧 / 𝑥𝑋, 𝑤 / 𝑦𝑌⟩)
135134mpompt 7430 . . . 4 (𝑢 ∈ (𝐴 × 𝐶) ↦ ⟨(1st𝑢) / 𝑥𝑋, (2nd𝑢) / 𝑦𝑌⟩) = (𝑧𝐴, 𝑤𝐶 ↦ ⟨𝑧 / 𝑥𝑋, 𝑤 / 𝑦𝑌⟩)
136129, 135eqtr4i 2768 . . 3 (𝑥𝐴, 𝑦𝐶 ↦ ⟨𝑋, 𝑌⟩) = (𝑢 ∈ (𝐴 × 𝐶) ↦ ⟨(1st𝑢) / 𝑥𝑋, (2nd𝑢) / 𝑦𝑌⟩)
137136f1ompt 7025 . 2 ((𝑥𝐴, 𝑦𝐶 ↦ ⟨𝑋, 𝑌⟩):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷) ↔ (∀𝑢 ∈ (𝐴 × 𝐶)⟨(1st𝑢) / 𝑥𝑋, (2nd𝑢) / 𝑦𝑌⟩ ∈ (𝐵 × 𝐷) ∧ ∀𝑣 ∈ (𝐵 × 𝐷)∃!𝑢 ∈ (𝐴 × 𝐶)𝑣 = ⟨(1st𝑢) / 𝑥𝑋, (2nd𝑢) / 𝑦𝑌⟩))
13830, 116, 137sylanbrc 583 1 (𝜑 → (𝑥𝐴, 𝑦𝐶 ↦ ⟨𝑋, 𝑌⟩):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wral 3062  wrex 3071  ∃!wreu 3348  csb 3842  cop 4577  cmpt 5170   × cxp 5606  1-1-ontowf1o 6465  cfv 6466  cmpo 7319  1st c1st 7876  2nd c2nd 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367  ax-un 7630
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-oprab 7321  df-mpo 7322  df-1st 7878  df-2nd 7879
This theorem is referenced by:  infxpenc  9854  pwfseqlem5  10499
  Copyright terms: Public domain W3C validator