Step | Hyp | Ref
| Expression |
1 | | xp1st 7863 |
. . . . . 6
⊢ (𝑢 ∈ (𝐴 × 𝐶) → (1st ‘𝑢) ∈ 𝐴) |
2 | 1 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴 × 𝐶)) → (1st ‘𝑢) ∈ 𝐴) |
3 | | xpf1o.1 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑋):𝐴–1-1-onto→𝐵) |
4 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 ↦ 𝑋) = (𝑥 ∈ 𝐴 ↦ 𝑋) |
5 | 4 | f1ompt 6985 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ↦ 𝑋):𝐴–1-1-onto→𝐵 ↔ (∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ∃!𝑥 ∈ 𝐴 𝑧 = 𝑋)) |
6 | 3, 5 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ∃!𝑥 ∈ 𝐴 𝑧 = 𝑋)) |
7 | 6 | simpld 495 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵) |
8 | 7 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴 × 𝐶)) → ∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵) |
9 | | nfcsb1v 3857 |
. . . . . . 7
⊢
Ⅎ𝑥⦋(1st ‘𝑢) / 𝑥⦌𝑋 |
10 | 9 | nfel1 2923 |
. . . . . 6
⊢
Ⅎ𝑥⦋(1st ‘𝑢) / 𝑥⦌𝑋 ∈ 𝐵 |
11 | | csbeq1a 3846 |
. . . . . . 7
⊢ (𝑥 = (1st ‘𝑢) → 𝑋 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋) |
12 | 11 | eleq1d 2823 |
. . . . . 6
⊢ (𝑥 = (1st ‘𝑢) → (𝑋 ∈ 𝐵 ↔ ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∈ 𝐵)) |
13 | 10, 12 | rspc 3549 |
. . . . 5
⊢
((1st ‘𝑢) ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 → ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∈ 𝐵)) |
14 | 2, 8, 13 | sylc 65 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴 × 𝐶)) → ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∈ 𝐵) |
15 | | xp2nd 7864 |
. . . . . 6
⊢ (𝑢 ∈ (𝐴 × 𝐶) → (2nd ‘𝑢) ∈ 𝐶) |
16 | 15 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴 × 𝐶)) → (2nd ‘𝑢) ∈ 𝐶) |
17 | | xpf1o.2 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ 𝐶 ↦ 𝑌):𝐶–1-1-onto→𝐷) |
18 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐶 ↦ 𝑌) = (𝑦 ∈ 𝐶 ↦ 𝑌) |
19 | 18 | f1ompt 6985 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐶 ↦ 𝑌):𝐶–1-1-onto→𝐷 ↔ (∀𝑦 ∈ 𝐶 𝑌 ∈ 𝐷 ∧ ∀𝑤 ∈ 𝐷 ∃!𝑦 ∈ 𝐶 𝑤 = 𝑌)) |
20 | 17, 19 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → (∀𝑦 ∈ 𝐶 𝑌 ∈ 𝐷 ∧ ∀𝑤 ∈ 𝐷 ∃!𝑦 ∈ 𝐶 𝑤 = 𝑌)) |
21 | 20 | simpld 495 |
. . . . . 6
⊢ (𝜑 → ∀𝑦 ∈ 𝐶 𝑌 ∈ 𝐷) |
22 | 21 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴 × 𝐶)) → ∀𝑦 ∈ 𝐶 𝑌 ∈ 𝐷) |
23 | | nfcsb1v 3857 |
. . . . . . 7
⊢
Ⅎ𝑦⦋(2nd ‘𝑢) / 𝑦⦌𝑌 |
24 | 23 | nfel1 2923 |
. . . . . 6
⊢
Ⅎ𝑦⦋(2nd ‘𝑢) / 𝑦⦌𝑌 ∈ 𝐷 |
25 | | csbeq1a 3846 |
. . . . . . 7
⊢ (𝑦 = (2nd ‘𝑢) → 𝑌 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌) |
26 | 25 | eleq1d 2823 |
. . . . . 6
⊢ (𝑦 = (2nd ‘𝑢) → (𝑌 ∈ 𝐷 ↔ ⦋(2nd
‘𝑢) / 𝑦⦌𝑌 ∈ 𝐷)) |
27 | 24, 26 | rspc 3549 |
. . . . 5
⊢
((2nd ‘𝑢) ∈ 𝐶 → (∀𝑦 ∈ 𝐶 𝑌 ∈ 𝐷 → ⦋(2nd
‘𝑢) / 𝑦⦌𝑌 ∈ 𝐷)) |
28 | 16, 22, 27 | sylc 65 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴 × 𝐶)) → ⦋(2nd
‘𝑢) / 𝑦⦌𝑌 ∈ 𝐷) |
29 | 14, 28 | opelxpd 5627 |
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴 × 𝐶)) →
〈⦋(1st ‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉 ∈ (𝐵 × 𝐷)) |
30 | 29 | ralrimiva 3103 |
. 2
⊢ (𝜑 → ∀𝑢 ∈ (𝐴 × 𝐶)〈⦋(1st
‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉 ∈ (𝐵 × 𝐷)) |
31 | 6 | simprd 496 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃!𝑥 ∈ 𝐴 𝑧 = 𝑋) |
32 | 31 | r19.21bi 3134 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 𝑧 = 𝑋) |
33 | | reu6 3661 |
. . . . . . . . 9
⊢
(∃!𝑥 ∈
𝐴 𝑧 = 𝑋 ↔ ∃𝑠 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑧 = 𝑋 ↔ 𝑥 = 𝑠)) |
34 | 32, 33 | sylib 217 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → ∃𝑠 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑧 = 𝑋 ↔ 𝑥 = 𝑠)) |
35 | 20 | simprd 496 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑤 ∈ 𝐷 ∃!𝑦 ∈ 𝐶 𝑤 = 𝑌) |
36 | 35 | r19.21bi 3134 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐷) → ∃!𝑦 ∈ 𝐶 𝑤 = 𝑌) |
37 | | reu6 3661 |
. . . . . . . . 9
⊢
(∃!𝑦 ∈
𝐶 𝑤 = 𝑌 ↔ ∃𝑡 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡)) |
38 | 36, 37 | sylib 217 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐷) → ∃𝑡 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡)) |
39 | 34, 38 | anim12dan 619 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷)) → (∃𝑠 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑧 = 𝑋 ↔ 𝑥 = 𝑠) ∧ ∃𝑡 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡))) |
40 | | reeanv 3294 |
. . . . . . . 8
⊢
(∃𝑠 ∈
𝐴 ∃𝑡 ∈ 𝐶 (∀𝑥 ∈ 𝐴 (𝑧 = 𝑋 ↔ 𝑥 = 𝑠) ∧ ∀𝑦 ∈ 𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡)) ↔ (∃𝑠 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑧 = 𝑋 ↔ 𝑥 = 𝑠) ∧ ∃𝑡 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡))) |
41 | | pm4.38 635 |
. . . . . . . . . . . . . . 15
⊢ (((𝑧 = 𝑋 ↔ 𝑥 = 𝑠) ∧ (𝑤 = 𝑌 ↔ 𝑦 = 𝑡)) → ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡))) |
42 | 41 | ex 413 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 = 𝑋 ↔ 𝑥 = 𝑠) → ((𝑤 = 𝑌 ↔ 𝑦 = 𝑡) → ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡)))) |
43 | 42 | ralimdv 3109 |
. . . . . . . . . . . . 13
⊢ ((𝑧 = 𝑋 ↔ 𝑥 = 𝑠) → (∀𝑦 ∈ 𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡) → ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡)))) |
44 | 43 | com12 32 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡) → ((𝑧 = 𝑋 ↔ 𝑥 = 𝑠) → ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡)))) |
45 | 44 | ralimdv 3109 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡) → (∀𝑥 ∈ 𝐴 (𝑧 = 𝑋 ↔ 𝑥 = 𝑠) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡)))) |
46 | 45 | impcom 408 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
𝐴 (𝑧 = 𝑋 ↔ 𝑥 = 𝑠) ∧ ∀𝑦 ∈ 𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡))) |
47 | 46 | reximi 3178 |
. . . . . . . . 9
⊢
(∃𝑡 ∈
𝐶 (∀𝑥 ∈ 𝐴 (𝑧 = 𝑋 ↔ 𝑥 = 𝑠) ∧ ∀𝑦 ∈ 𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡)) → ∃𝑡 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡))) |
48 | 47 | reximi 3178 |
. . . . . . . 8
⊢
(∃𝑠 ∈
𝐴 ∃𝑡 ∈ 𝐶 (∀𝑥 ∈ 𝐴 (𝑧 = 𝑋 ↔ 𝑥 = 𝑠) ∧ ∀𝑦 ∈ 𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡)) → ∃𝑠 ∈ 𝐴 ∃𝑡 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡))) |
49 | 40, 48 | sylbir 234 |
. . . . . . 7
⊢
((∃𝑠 ∈
𝐴 ∀𝑥 ∈ 𝐴 (𝑧 = 𝑋 ↔ 𝑥 = 𝑠) ∧ ∃𝑡 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡)) → ∃𝑠 ∈ 𝐴 ∃𝑡 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡))) |
50 | 39, 49 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷)) → ∃𝑠 ∈ 𝐴 ∃𝑡 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡))) |
51 | | vex 3436 |
. . . . . . . . . . . . . . 15
⊢ 𝑠 ∈ V |
52 | | vex 3436 |
. . . . . . . . . . . . . . 15
⊢ 𝑡 ∈ V |
53 | 51, 52 | op1std 7841 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 〈𝑠, 𝑡〉 → (1st ‘𝑢) = 𝑠) |
54 | 53 | csbeq1d 3836 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 〈𝑠, 𝑡〉 → ⦋(1st
‘𝑢) / 𝑥⦌𝑋 = ⦋𝑠 / 𝑥⦌𝑋) |
55 | 54 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑢 = 〈𝑠, 𝑡〉 → (𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ↔ 𝑧 = ⦋𝑠 / 𝑥⦌𝑋)) |
56 | 51, 52 | op2ndd 7842 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 〈𝑠, 𝑡〉 → (2nd ‘𝑢) = 𝑡) |
57 | 56 | csbeq1d 3836 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 〈𝑠, 𝑡〉 → ⦋(2nd
‘𝑢) / 𝑦⦌𝑌 = ⦋𝑡 / 𝑦⦌𝑌) |
58 | 57 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑢 = 〈𝑠, 𝑡〉 → (𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌 ↔ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌)) |
59 | 55, 58 | anbi12d 631 |
. . . . . . . . . . 11
⊢ (𝑢 = 〈𝑠, 𝑡〉 → ((𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌) ↔ (𝑧 = ⦋𝑠 / 𝑥⦌𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌))) |
60 | | eqeq1 2742 |
. . . . . . . . . . 11
⊢ (𝑢 = 〈𝑠, 𝑡〉 → (𝑢 = 𝑣 ↔ 〈𝑠, 𝑡〉 = 𝑣)) |
61 | 59, 60 | bibi12d 346 |
. . . . . . . . . 10
⊢ (𝑢 = 〈𝑠, 𝑡〉 → (((𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌) ↔ 𝑢 = 𝑣) ↔ ((𝑧 = ⦋𝑠 / 𝑥⦌𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑠, 𝑡〉 = 𝑣))) |
62 | 61 | ralxp 5750 |
. . . . . . . . 9
⊢
(∀𝑢 ∈
(𝐴 × 𝐶)((𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌) ↔ 𝑢 = 𝑣) ↔ ∀𝑠 ∈ 𝐴 ∀𝑡 ∈ 𝐶 ((𝑧 = ⦋𝑠 / 𝑥⦌𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑠, 𝑡〉 = 𝑣)) |
63 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑠∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ 〈𝑥, 𝑦〉 = 𝑣) |
64 | | nfcv 2907 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝐶 |
65 | | nfcsb1v 3857 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥⦋𝑠 / 𝑥⦌𝑋 |
66 | 65 | nfeq2 2924 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥 𝑧 = ⦋𝑠 / 𝑥⦌𝑋 |
67 | | nfv 1917 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥 𝑤 = ⦋𝑡 / 𝑦⦌𝑌 |
68 | 66, 67 | nfan 1902 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑧 = ⦋𝑠 / 𝑥⦌𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) |
69 | | nfv 1917 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥〈𝑠, 𝑡〉 = 𝑣 |
70 | 68, 69 | nfbi 1906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥((𝑧 = ⦋𝑠 / 𝑥⦌𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑠, 𝑡〉 = 𝑣) |
71 | 64, 70 | nfralw 3151 |
. . . . . . . . . 10
⊢
Ⅎ𝑥∀𝑡 ∈ 𝐶 ((𝑧 = ⦋𝑠 / 𝑥⦌𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑠, 𝑡〉 = 𝑣) |
72 | | nfv 1917 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ 〈𝑥, 𝑦〉 = 𝑣) |
73 | | nfv 1917 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦 𝑧 = 𝑋 |
74 | | nfcsb1v 3857 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦⦋𝑡 / 𝑦⦌𝑌 |
75 | 74 | nfeq2 2924 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦 𝑤 = ⦋𝑡 / 𝑦⦌𝑌 |
76 | 73, 75 | nfan 1902 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦(𝑧 = 𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) |
77 | | nfv 1917 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦〈𝑥, 𝑡〉 = 𝑣 |
78 | 76, 77 | nfbi 1906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦((𝑧 = 𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑥, 𝑡〉 = 𝑣) |
79 | | csbeq1a 3846 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑡 → 𝑌 = ⦋𝑡 / 𝑦⦌𝑌) |
80 | 79 | eqeq2d 2749 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑡 → (𝑤 = 𝑌 ↔ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌)) |
81 | 80 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑡 → ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑧 = 𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌))) |
82 | | opeq2 4805 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑡 → 〈𝑥, 𝑦〉 = 〈𝑥, 𝑡〉) |
83 | 82 | eqeq1d 2740 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑡 → (〈𝑥, 𝑦〉 = 𝑣 ↔ 〈𝑥, 𝑡〉 = 𝑣)) |
84 | 81, 83 | bibi12d 346 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑡 → (((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ 〈𝑥, 𝑦〉 = 𝑣) ↔ ((𝑧 = 𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑥, 𝑡〉 = 𝑣))) |
85 | 72, 78, 84 | cbvralw 3373 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ 〈𝑥, 𝑦〉 = 𝑣) ↔ ∀𝑡 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑥, 𝑡〉 = 𝑣)) |
86 | | csbeq1a 3846 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑠 → 𝑋 = ⦋𝑠 / 𝑥⦌𝑋) |
87 | 86 | eqeq2d 2749 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑠 → (𝑧 = 𝑋 ↔ 𝑧 = ⦋𝑠 / 𝑥⦌𝑋)) |
88 | 87 | anbi1d 630 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑠 → ((𝑧 = 𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ (𝑧 = ⦋𝑠 / 𝑥⦌𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌))) |
89 | | opeq1 4804 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑠 → 〈𝑥, 𝑡〉 = 〈𝑠, 𝑡〉) |
90 | 89 | eqeq1d 2740 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑠 → (〈𝑥, 𝑡〉 = 𝑣 ↔ 〈𝑠, 𝑡〉 = 𝑣)) |
91 | 88, 90 | bibi12d 346 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑠 → (((𝑧 = 𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑥, 𝑡〉 = 𝑣) ↔ ((𝑧 = ⦋𝑠 / 𝑥⦌𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑠, 𝑡〉 = 𝑣))) |
92 | 91 | ralbidv 3112 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑠 → (∀𝑡 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑥, 𝑡〉 = 𝑣) ↔ ∀𝑡 ∈ 𝐶 ((𝑧 = ⦋𝑠 / 𝑥⦌𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑠, 𝑡〉 = 𝑣))) |
93 | 85, 92 | bitrid 282 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑠 → (∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ 〈𝑥, 𝑦〉 = 𝑣) ↔ ∀𝑡 ∈ 𝐶 ((𝑧 = ⦋𝑠 / 𝑥⦌𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑠, 𝑡〉 = 𝑣))) |
94 | 63, 71, 93 | cbvralw 3373 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ 〈𝑥, 𝑦〉 = 𝑣) ↔ ∀𝑠 ∈ 𝐴 ∀𝑡 ∈ 𝐶 ((𝑧 = ⦋𝑠 / 𝑥⦌𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑠, 𝑡〉 = 𝑣)) |
95 | 62, 94 | bitr4i 277 |
. . . . . . . 8
⊢
(∀𝑢 ∈
(𝐴 × 𝐶)((𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌) ↔ 𝑢 = 𝑣) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ 〈𝑥, 𝑦〉 = 𝑣)) |
96 | | eqeq2 2750 |
. . . . . . . . . . 11
⊢ (𝑣 = 〈𝑠, 𝑡〉 → (〈𝑥, 𝑦〉 = 𝑣 ↔ 〈𝑥, 𝑦〉 = 〈𝑠, 𝑡〉)) |
97 | | vex 3436 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
98 | | vex 3436 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
99 | 97, 98 | opth 5391 |
. . . . . . . . . . 11
⊢
(〈𝑥, 𝑦〉 = 〈𝑠, 𝑡〉 ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡)) |
100 | 96, 99 | bitrdi 287 |
. . . . . . . . . 10
⊢ (𝑣 = 〈𝑠, 𝑡〉 → (〈𝑥, 𝑦〉 = 𝑣 ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡))) |
101 | 100 | bibi2d 343 |
. . . . . . . . 9
⊢ (𝑣 = 〈𝑠, 𝑡〉 → (((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ 〈𝑥, 𝑦〉 = 𝑣) ↔ ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡)))) |
102 | 101 | 2ralbidv 3129 |
. . . . . . . 8
⊢ (𝑣 = 〈𝑠, 𝑡〉 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ 〈𝑥, 𝑦〉 = 𝑣) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡)))) |
103 | 95, 102 | bitrid 282 |
. . . . . . 7
⊢ (𝑣 = 〈𝑠, 𝑡〉 → (∀𝑢 ∈ (𝐴 × 𝐶)((𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌) ↔ 𝑢 = 𝑣) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡)))) |
104 | 103 | rexxp 5751 |
. . . . . 6
⊢
(∃𝑣 ∈
(𝐴 × 𝐶)∀𝑢 ∈ (𝐴 × 𝐶)((𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌) ↔ 𝑢 = 𝑣) ↔ ∃𝑠 ∈ 𝐴 ∃𝑡 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡))) |
105 | 50, 104 | sylibr 233 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷)) → ∃𝑣 ∈ (𝐴 × 𝐶)∀𝑢 ∈ (𝐴 × 𝐶)((𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌) ↔ 𝑢 = 𝑣)) |
106 | | reu6 3661 |
. . . . 5
⊢
(∃!𝑢 ∈
(𝐴 × 𝐶)(𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌) ↔ ∃𝑣 ∈ (𝐴 × 𝐶)∀𝑢 ∈ (𝐴 × 𝐶)((𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌) ↔ 𝑢 = 𝑣)) |
107 | 105, 106 | sylibr 233 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷)) → ∃!𝑢 ∈ (𝐴 × 𝐶)(𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌)) |
108 | 107 | ralrimivva 3123 |
. . 3
⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐷 ∃!𝑢 ∈ (𝐴 × 𝐶)(𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌)) |
109 | | eqeq1 2742 |
. . . . . 6
⊢ (𝑣 = 〈𝑧, 𝑤〉 → (𝑣 = 〈⦋(1st
‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉 ↔ 〈𝑧, 𝑤〉 = 〈⦋(1st
‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉)) |
110 | | vex 3436 |
. . . . . . 7
⊢ 𝑧 ∈ V |
111 | | vex 3436 |
. . . . . . 7
⊢ 𝑤 ∈ V |
112 | 110, 111 | opth 5391 |
. . . . . 6
⊢
(〈𝑧, 𝑤〉 =
〈⦋(1st ‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉 ↔ (𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌)) |
113 | 109, 112 | bitrdi 287 |
. . . . 5
⊢ (𝑣 = 〈𝑧, 𝑤〉 → (𝑣 = 〈⦋(1st
‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉 ↔ (𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌))) |
114 | 113 | reubidv 3323 |
. . . 4
⊢ (𝑣 = 〈𝑧, 𝑤〉 → (∃!𝑢 ∈ (𝐴 × 𝐶)𝑣 = 〈⦋(1st
‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉 ↔ ∃!𝑢 ∈ (𝐴 × 𝐶)(𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌))) |
115 | 114 | ralxp 5750 |
. . 3
⊢
(∀𝑣 ∈
(𝐵 × 𝐷)∃!𝑢 ∈ (𝐴 × 𝐶)𝑣 = 〈⦋(1st
‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉 ↔ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐷 ∃!𝑢 ∈ (𝐴 × 𝐶)(𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌)) |
116 | 108, 115 | sylibr 233 |
. 2
⊢ (𝜑 → ∀𝑣 ∈ (𝐵 × 𝐷)∃!𝑢 ∈ (𝐴 × 𝐶)𝑣 = 〈⦋(1st
‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉) |
117 | | nfcv 2907 |
. . . . 5
⊢
Ⅎ𝑧〈𝑋, 𝑌〉 |
118 | | nfcv 2907 |
. . . . 5
⊢
Ⅎ𝑤〈𝑋, 𝑌〉 |
119 | | nfcsb1v 3857 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝑋 |
120 | | nfcv 2907 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑤 / 𝑦⦌𝑌 |
121 | 119, 120 | nfop 4820 |
. . . . 5
⊢
Ⅎ𝑥〈⦋𝑧 / 𝑥⦌𝑋, ⦋𝑤 / 𝑦⦌𝑌〉 |
122 | | nfcv 2907 |
. . . . . 6
⊢
Ⅎ𝑦⦋𝑧 / 𝑥⦌𝑋 |
123 | | nfcsb1v 3857 |
. . . . . 6
⊢
Ⅎ𝑦⦋𝑤 / 𝑦⦌𝑌 |
124 | 122, 123 | nfop 4820 |
. . . . 5
⊢
Ⅎ𝑦〈⦋𝑧 / 𝑥⦌𝑋, ⦋𝑤 / 𝑦⦌𝑌〉 |
125 | | csbeq1a 3846 |
. . . . . 6
⊢ (𝑥 = 𝑧 → 𝑋 = ⦋𝑧 / 𝑥⦌𝑋) |
126 | | csbeq1a 3846 |
. . . . . 6
⊢ (𝑦 = 𝑤 → 𝑌 = ⦋𝑤 / 𝑦⦌𝑌) |
127 | | opeq12 4806 |
. . . . . 6
⊢ ((𝑋 = ⦋𝑧 / 𝑥⦌𝑋 ∧ 𝑌 = ⦋𝑤 / 𝑦⦌𝑌) → 〈𝑋, 𝑌〉 = 〈⦋𝑧 / 𝑥⦌𝑋, ⦋𝑤 / 𝑦⦌𝑌〉) |
128 | 125, 126,
127 | syl2an 596 |
. . . . 5
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 〈𝑋, 𝑌〉 = 〈⦋𝑧 / 𝑥⦌𝑋, ⦋𝑤 / 𝑦⦌𝑌〉) |
129 | 117, 118,
121, 124, 128 | cbvmpo 7369 |
. . . 4
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 〈𝑋, 𝑌〉) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐶 ↦ 〈⦋𝑧 / 𝑥⦌𝑋, ⦋𝑤 / 𝑦⦌𝑌〉) |
130 | 110, 111 | op1std 7841 |
. . . . . . 7
⊢ (𝑢 = 〈𝑧, 𝑤〉 → (1st ‘𝑢) = 𝑧) |
131 | 130 | csbeq1d 3836 |
. . . . . 6
⊢ (𝑢 = 〈𝑧, 𝑤〉 → ⦋(1st
‘𝑢) / 𝑥⦌𝑋 = ⦋𝑧 / 𝑥⦌𝑋) |
132 | 110, 111 | op2ndd 7842 |
. . . . . . 7
⊢ (𝑢 = 〈𝑧, 𝑤〉 → (2nd ‘𝑢) = 𝑤) |
133 | 132 | csbeq1d 3836 |
. . . . . 6
⊢ (𝑢 = 〈𝑧, 𝑤〉 → ⦋(2nd
‘𝑢) / 𝑦⦌𝑌 = ⦋𝑤 / 𝑦⦌𝑌) |
134 | 131, 133 | opeq12d 4812 |
. . . . 5
⊢ (𝑢 = 〈𝑧, 𝑤〉 →
〈⦋(1st ‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉 = 〈⦋𝑧 / 𝑥⦌𝑋, ⦋𝑤 / 𝑦⦌𝑌〉) |
135 | 134 | mpompt 7388 |
. . . 4
⊢ (𝑢 ∈ (𝐴 × 𝐶) ↦
〈⦋(1st ‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐶 ↦ 〈⦋𝑧 / 𝑥⦌𝑋, ⦋𝑤 / 𝑦⦌𝑌〉) |
136 | 129, 135 | eqtr4i 2769 |
. . 3
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 〈𝑋, 𝑌〉) = (𝑢 ∈ (𝐴 × 𝐶) ↦
〈⦋(1st ‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉) |
137 | 136 | f1ompt 6985 |
. 2
⊢ ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 〈𝑋, 𝑌〉):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷) ↔ (∀𝑢 ∈ (𝐴 × 𝐶)〈⦋(1st
‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉 ∈ (𝐵 × 𝐷) ∧ ∀𝑣 ∈ (𝐵 × 𝐷)∃!𝑢 ∈ (𝐴 × 𝐶)𝑣 = 〈⦋(1st
‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉)) |
138 | 30, 116, 137 | sylanbrc 583 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 〈𝑋, 𝑌〉):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷)) |