| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | idn1 44594 | . . . . . . . . . . . . . . . . . . 19
⊢ (   𝐴 ∈ 𝑉   ▶   𝐴 ∈ 𝑉   ) | 
| 2 |  | sbcel12 4411 | . . . . . . . . . . . . . . . . . . . 20
⊢
([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵) | 
| 3 | 2 | a1i 11 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵)) | 
| 4 | 1, 3 | e1a 44647 | . . . . . . . . . . . . . . . . . 18
⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) | 
| 5 |  | csbconstg 3918 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑤 = 𝑤) | 
| 6 | 1, 5 | e1a 44647 | . . . . . . . . . . . . . . . . . . 19
⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌𝑤 = 𝑤   ) | 
| 7 |  | eleq1 2829 | . . . . . . . . . . . . . . . . . . 19
⊢
(⦋𝐴 /
𝑥⦌𝑤 = 𝑤 → (⦋𝐴 / 𝑥⦌𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ↔ 𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵)) | 
| 8 | 6, 7 | e1a 44647 | . . . . . . . . . . . . . . . . . 18
⊢ (   𝐴 ∈ 𝑉   ▶   (⦋𝐴 / 𝑥⦌𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ↔ 𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) | 
| 9 |  | bibi1 351 | . . . . . . . . . . . . . . . . . . 19
⊢
(([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵) → (([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔ 𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵) ↔ (⦋𝐴 / 𝑥⦌𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ↔ 𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵))) | 
| 10 | 9 | biimprd 248 | . . . . . . . . . . . . . . . . . 18
⊢
(([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵) → ((⦋𝐴 / 𝑥⦌𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ↔ 𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵) → ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔ 𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵))) | 
| 11 | 4, 8, 10 | e11 44708 | . . . . . . . . . . . . . . . . 17
⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔ 𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) | 
| 12 |  | sbcel12 4411 | . . . . . . . . . . . . . . . . . . . 20
⊢
([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶) | 
| 13 | 12 | a1i 11 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)) | 
| 14 | 1, 13 | e1a 44647 | . . . . . . . . . . . . . . . . . 18
⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)   ) | 
| 15 |  | csbconstg 3918 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑦 = 𝑦) | 
| 16 | 1, 15 | e1a 44647 | . . . . . . . . . . . . . . . . . . 19
⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌𝑦 = 𝑦   ) | 
| 17 |  | eleq1 2829 | . . . . . . . . . . . . . . . . . . 19
⊢
(⦋𝐴 /
𝑥⦌𝑦 = 𝑦 → (⦋𝐴 / 𝑥⦌𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)) | 
| 18 | 16, 17 | e1a 44647 | . . . . . . . . . . . . . . . . . 18
⊢ (   𝐴 ∈ 𝑉   ▶   (⦋𝐴 / 𝑥⦌𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)   ) | 
| 19 |  | bibi1 351 | . . . . . . . . . . . . . . . . . . 19
⊢
(([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶) → (([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶) ↔ (⦋𝐴 / 𝑥⦌𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) | 
| 20 | 19 | biimprd 248 | . . . . . . . . . . . . . . . . . 18
⊢
(([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶) → ((⦋𝐴 / 𝑥⦌𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶) → ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) | 
| 21 | 14, 18, 20 | e11 44708 | . . . . . . . . . . . . . . . . 17
⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)   ) | 
| 22 |  | pm4.38 637 | . . . . . . . . . . . . . . . . . 18
⊢
((([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔ 𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵) ∧ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)) → (([𝐴 / 𝑥]𝑤 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐶) ↔ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) | 
| 23 | 22 | ex 412 | . . . . . . . . . . . . . . . . 17
⊢
(([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔ 𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵) → (([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶) → (([𝐴 / 𝑥]𝑤 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐶) ↔ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))) | 
| 24 | 11, 21, 23 | e11 44708 | . . . . . . . . . . . . . . . 16
⊢ (   𝐴 ∈ 𝑉   ▶   (([𝐴 / 𝑥]𝑤 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐶) ↔ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))   ) | 
| 25 |  | sbcan 3838 | . . . . . . . . . . . . . . . . . 18
⊢
([𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) | 
| 26 | 25 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐶))) | 
| 27 | 1, 26 | e1a 44647 | . . . . . . . . . . . . . . . 16
⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐶))   ) | 
| 28 |  | bibi1 351 | . . . . . . . . . . . . . . . . 17
⊢
(([𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) → (([𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)) ↔ (([𝐴 / 𝑥]𝑤 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐶) ↔ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))) | 
| 29 | 28 | biimprcd 250 | . . . . . . . . . . . . . . . 16
⊢
((([𝐴 / 𝑥]𝑤 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐶) ↔ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)) → (([𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) → ([𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))) | 
| 30 | 24, 27, 29 | e11 44708 | . . . . . . . . . . . . . . 15
⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))   ) | 
| 31 |  | sbcg 3863 | . . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑧 = 〈𝑤, 𝑦〉 ↔ 𝑧 = 〈𝑤, 𝑦〉)) | 
| 32 | 1, 31 | e1a 44647 | . . . . . . . . . . . . . . 15
⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑧 = 〈𝑤, 𝑦〉 ↔ 𝑧 = 〈𝑤, 𝑦〉)   ) | 
| 33 |  | pm4.38 637 | . . . . . . . . . . . . . . . 16
⊢
((([𝐴 / 𝑥]𝑧 = 〈𝑤, 𝑦〉 ↔ 𝑧 = 〈𝑤, 𝑦〉) ∧ ([𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) → (([𝐴 / 𝑥]𝑧 = 〈𝑤, 𝑦〉 ∧ [𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))) | 
| 34 | 33 | expcom 413 | . . . . . . . . . . . . . . 15
⊢
(([𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)) → (([𝐴 / 𝑥]𝑧 = 〈𝑤, 𝑦〉 ↔ 𝑧 = 〈𝑤, 𝑦〉) → (([𝐴 / 𝑥]𝑧 = 〈𝑤, 𝑦〉 ∧ [𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))))) | 
| 35 | 30, 32, 34 | e11 44708 | . . . . . . . . . . . . . 14
⊢ (   𝐴 ∈ 𝑉   ▶   (([𝐴 / 𝑥]𝑧 = 〈𝑤, 𝑦〉 ∧ [𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) | 
| 36 |  | sbcan 3838 | . . . . . . . . . . . . . . . 16
⊢
([𝐴 / 𝑥](𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ([𝐴 / 𝑥]𝑧 = 〈𝑤, 𝑦〉 ∧ [𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | 
| 37 | 36 | a1i 11 | . . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ([𝐴 / 𝑥]𝑧 = 〈𝑤, 𝑦〉 ∧ [𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))) | 
| 38 | 1, 37 | e1a 44647 | . . . . . . . . . . . . . 14
⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥](𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ([𝐴 / 𝑥]𝑧 = 〈𝑤, 𝑦〉 ∧ [𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))   ) | 
| 39 |  | bibi1 351 | . . . . . . . . . . . . . . 15
⊢
(([𝐴 / 𝑥](𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ([𝐴 / 𝑥]𝑧 = 〈𝑤, 𝑦〉 ∧ [𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) → (([𝐴 / 𝑥](𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) ↔ (([𝐴 / 𝑥]𝑧 = 〈𝑤, 𝑦〉 ∧ [𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))))) | 
| 40 | 39 | biimprcd 250 | . . . . . . . . . . . . . 14
⊢
((([𝐴 / 𝑥]𝑧 = 〈𝑤, 𝑦〉 ∧ [𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) → (([𝐴 / 𝑥](𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ([𝐴 / 𝑥]𝑧 = 〈𝑤, 𝑦〉 ∧ [𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) → ([𝐴 / 𝑥](𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))))) | 
| 41 | 35, 38, 40 | e11 44708 | . . . . . . . . . . . . 13
⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥](𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) | 
| 42 | 41 | gen11 44636 | . . . . . . . . . . . 12
⊢ (   𝐴 ∈ 𝑉   ▶   ∀𝑦([𝐴 / 𝑥](𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) | 
| 43 |  | exbi 1847 | . . . . . . . . . . . 12
⊢
(∀𝑦([𝐴 / 𝑥](𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) → (∃𝑦[𝐴 / 𝑥](𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))) | 
| 44 | 42, 43 | e1a 44647 | . . . . . . . . . . 11
⊢ (   𝐴 ∈ 𝑉   ▶   (∃𝑦[𝐴 / 𝑥](𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) | 
| 45 |  | sbcex2 3850 | . . . . . . . . . . . . 13
⊢
([𝐴 / 𝑥]∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | 
| 46 | 45 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))) | 
| 47 | 1, 46 | e1a 44647 | . . . . . . . . . . 11
⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))   ) | 
| 48 |  | bibi1 351 | . . . . . . . . . . . 12
⊢
(([𝐴 / 𝑥]∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) → (([𝐴 / 𝑥]∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) ↔ (∃𝑦[𝐴 / 𝑥](𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))))) | 
| 49 | 48 | biimprcd 250 | . . . . . . . . . . 11
⊢
((∃𝑦[𝐴 / 𝑥](𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) → (([𝐴 / 𝑥]∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) → ([𝐴 / 𝑥]∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))))) | 
| 50 | 44, 47, 49 | e11 44708 | . . . . . . . . . 10
⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) | 
| 51 | 50 | gen11 44636 | . . . . . . . . 9
⊢ (   𝐴 ∈ 𝑉   ▶   ∀𝑤([𝐴 / 𝑥]∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) | 
| 52 |  | exbi 1847 | . . . . . . . . 9
⊢
(∀𝑤([𝐴 / 𝑥]∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) → (∃𝑤[𝐴 / 𝑥]∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))) | 
| 53 | 51, 52 | e1a 44647 | . . . . . . . 8
⊢ (   𝐴 ∈ 𝑉   ▶   (∃𝑤[𝐴 / 𝑥]∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) | 
| 54 |  | sbcex2 3850 | . . . . . . . . . 10
⊢
([𝐴 / 𝑥]∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤[𝐴 / 𝑥]∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | 
| 55 | 54 | a1i 11 | . . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤[𝐴 / 𝑥]∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))) | 
| 56 | 1, 55 | e1a 44647 | . . . . . . . 8
⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤[𝐴 / 𝑥]∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))   ) | 
| 57 |  | bibi1 351 | . . . . . . . . 9
⊢
(([𝐴 / 𝑥]∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤[𝐴 / 𝑥]∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) → (([𝐴 / 𝑥]∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) ↔ (∃𝑤[𝐴 / 𝑥]∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))))) | 
| 58 | 57 | biimprcd 250 | . . . . . . . 8
⊢
((∃𝑤[𝐴 / 𝑥]∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) → (([𝐴 / 𝑥]∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤[𝐴 / 𝑥]∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) → ([𝐴 / 𝑥]∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))))) | 
| 59 | 53, 56, 58 | e11 44708 | . . . . . . 7
⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) | 
| 60 | 59 | gen11 44636 | . . . . . 6
⊢ (   𝐴 ∈ 𝑉   ▶   ∀𝑧([𝐴 / 𝑥]∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) | 
| 61 |  | abbib 2811 | . . . . . . 7
⊢ ({𝑧 ∣ [𝐴 / 𝑥]∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))} ↔ ∀𝑧([𝐴 / 𝑥]∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))) | 
| 62 | 61 | biimpri 228 | . . . . . 6
⊢
(∀𝑧([𝐴 / 𝑥]∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) → {𝑧 ∣ [𝐴 / 𝑥]∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}) | 
| 63 | 60, 62 | e1a 44647 | . . . . 5
⊢ (   𝐴 ∈ 𝑉   ▶   {𝑧 ∣ [𝐴 / 𝑥]∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}   ) | 
| 64 |  | csbab 4440 | . . . . . . 7
⊢
⦋𝐴 /
𝑥⦌{𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ [𝐴 / 𝑥]∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} | 
| 65 | 64 | a1i 11 | . . . . . 6
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ [𝐴 / 𝑥]∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))}) | 
| 66 | 1, 65 | e1a 44647 | . . . . 5
⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ [𝐴 / 𝑥]∃𝑤∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))}   ) | 
| 67 |  | eqeq2 2749 | . . . . . 6
⊢ ({𝑧 ∣ [𝐴 / 𝑥]∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))} → (⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ [𝐴 / 𝑥]∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} ↔ ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))})) | 
| 68 | 67 | biimpd 229 | . . . . 5
⊢ ({𝑧 ∣ [𝐴 / 𝑥]∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))} → (⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ [𝐴 / 𝑥]∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} → ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))})) | 
| 69 | 63, 66, 68 | e11 44708 | . . . 4
⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}   ) | 
| 70 |  | df-xp 5691 | . . . . . . 7
⊢ (𝐵 × 𝐶) = {〈𝑤, 𝑦〉 ∣ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | 
| 71 |  | df-opab 5206 | . . . . . . 7
⊢
{〈𝑤, 𝑦〉 ∣ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} | 
| 72 | 70, 71 | eqtri 2765 | . . . . . 6
⊢ (𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} | 
| 73 | 72 | ax-gen 1795 | . . . . 5
⊢
∀𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} | 
| 74 |  | csbeq2 3904 | . . . . . 6
⊢
(∀𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} → ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))}) | 
| 75 | 74 | a1i 11 | . . . . 5
⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} → ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))})) | 
| 76 | 1, 73, 75 | e10 44714 | . . . 4
⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))}   ) | 
| 77 |  | eqeq2 2749 | . . . . 5
⊢
(⦋𝐴 /
𝑥⦌{𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))} → (⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} ↔ ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))})) | 
| 78 | 77 | biimpd 229 | . . . 4
⊢
(⦋𝐴 /
𝑥⦌{𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))} → (⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} → ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))})) | 
| 79 | 69, 76, 78 | e11 44708 | . . 3
⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}   ) | 
| 80 |  | df-xp 5691 | . . . 4
⊢
(⦋𝐴 /
𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶) = {〈𝑤, 𝑦〉 ∣ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)} | 
| 81 |  | df-opab 5206 | . . . 4
⊢
{〈𝑤, 𝑦〉 ∣ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)} = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))} | 
| 82 | 80, 81 | eqtri 2765 | . . 3
⊢
(⦋𝐴 /
𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))} | 
| 83 |  | eqeq2 2749 | . . . 4
⊢
((⦋𝐴 /
𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))} → (⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶) ↔ ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))})) | 
| 84 | 83 | biimprcd 250 | . . 3
⊢
(⦋𝐴 /
𝑥⦌(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))} → ((⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))} → ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶))) | 
| 85 | 79, 82, 84 | e10 44714 | . 2
⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶)   ) | 
| 86 | 85 | in1 44591 | 1
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶)) |