Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbxpgVD Structured version   Visualization version   GIF version

Theorem csbxpgVD 41235
Description: Virtual deduction proof of csbxp 5652. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbxp 5652 is csbxpgVD 41235 without virtual deductions and was automatically derived from csbxpgVD 41235.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝐵 𝐴 / 𝑥𝑤𝐴 / 𝑥𝐵)   )
3:1: (   𝐴𝑉   ▶   𝐴 / 𝑥𝑤 = 𝑤   )
4:3: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑤𝐴 / 𝑥𝐵𝑤𝐴 / 𝑥𝐵)   )
5:2,4: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝐵𝑤 𝐴 / 𝑥𝐵)   )
6:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦𝐶 𝐴 / 𝑥𝑦𝐴 / 𝑥𝐶)   )
7:1: (   𝐴𝑉   ▶   𝐴 / 𝑥𝑦 = 𝑦   )
8:7: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐶)   )
9:6,8: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦𝐶𝑦 𝐴 / 𝑥𝐶)   )
10:5,9: (   𝐴𝑉   ▶   (([𝐴 / 𝑥]𝑤𝐵 [𝐴 / 𝑥]𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵 𝑦𝐴 / 𝑥𝐶))   )
11:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑤𝐵 𝑦𝐶) ↔ ([𝐴 / 𝑥]𝑤𝐵[𝐴 / 𝑥]𝑦𝐶))   )
12:10,11: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑤𝐵 𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))   )
13:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑧 = ⟨𝑤   ,    𝑦⟩ ↔ 𝑧 = ⟨𝑤, 𝑦⟩)   )
14:12,13: (   𝐴𝑉   ▶   (([𝐴 / 𝑥]𝑧 = ⟨𝑤    ,   𝑦⟩ ∧ [𝐴 / 𝑥](𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦 ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
15:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧 = ⟨𝑤    ,   𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦 [𝐴 / 𝑥](𝑤𝐵𝑦𝐶)))   )
16:14,15: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧 = ⟨𝑤    ,   𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
17:16: (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥](𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
18:17: (   𝐴𝑉   ▶   (∃𝑦[𝐴 / 𝑥](𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
19:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)))   )
20:18,19: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
21:20: (   𝐴𝑉   ▶   𝑤([𝐴 / 𝑥]𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
22:21: (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
23:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤[𝐴 / 𝑥]𝑦 (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)))   )
24:22,23: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
25:24: (   𝐴𝑉   ▶   𝑧([𝐴 / 𝑥]𝑤 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
26:25: (   𝐴𝑉   ▶   {𝑧[𝐴 / 𝑥]𝑤 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧 ∣ ∃𝑤𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}    )
27:1: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑤 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧[𝐴 / 𝑥] 𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}   )
28:26,27: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑤 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧 ∣ ∃𝑤𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}    )
29:: {⟨𝑤   ,   𝑦⟩ ∣ (𝑤𝐵𝑦𝐶)} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
30:: (𝐵 × 𝐶) = {⟨𝑤   ,   𝑦⟩ ∣ (𝑤𝐵 𝑦𝐶)}
31:29,30: (𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤 , 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
32:31: 𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
33:1,32: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 × 𝐶) = 𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵 𝑦𝐶))}   )
34:28,33: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵 𝑦𝐴 / 𝑥𝐶))}   )
35:: {⟨𝑤   ,   𝑦⟩ ∣ (𝑤𝐴 / 𝑥𝐵 𝑦𝐴 / 𝑥𝐶)} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}
36:: (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶) = { 𝑤, 𝑦⟩ ∣ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)}
37:35,36: (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵 𝑦𝐴 / 𝑥𝐶))}
38:34,37: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 × 𝐶) = (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶)   )
qed:38: (𝐴𝑉𝐴 / 𝑥(𝐵 × 𝐶) = ( 𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbxpgVD (𝐴𝑉𝐴 / 𝑥(𝐵 × 𝐶) = (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶))

Proof of Theorem csbxpgVD
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 40915 . . . . . . . . . . . . . . . . . . 19 (   𝐴𝑉   ▶   𝐴𝑉   )
2 sbcel12 4362 . . . . . . . . . . . . . . . . . . . 20 ([𝐴 / 𝑥]𝑤𝐵𝐴 / 𝑥𝑤𝐴 / 𝑥𝐵)
32a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤𝐵𝐴 / 𝑥𝑤𝐴 / 𝑥𝐵))
41, 3e1a 40968 . . . . . . . . . . . . . . . . . 18 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝐵𝐴 / 𝑥𝑤𝐴 / 𝑥𝐵)   )
5 csbconstg 3904 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝑉𝐴 / 𝑥𝑤 = 𝑤)
61, 5e1a 40968 . . . . . . . . . . . . . . . . . . 19 (   𝐴𝑉   ▶   𝐴 / 𝑥𝑤 = 𝑤   )
7 eleq1 2902 . . . . . . . . . . . . . . . . . . 19 (𝐴 / 𝑥𝑤 = 𝑤 → (𝐴 / 𝑥𝑤𝐴 / 𝑥𝐵𝑤𝐴 / 𝑥𝐵))
86, 7e1a 40968 . . . . . . . . . . . . . . . . . 18 (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑤𝐴 / 𝑥𝐵𝑤𝐴 / 𝑥𝐵)   )
9 bibi1 354 . . . . . . . . . . . . . . . . . . 19 (([𝐴 / 𝑥]𝑤𝐵𝐴 / 𝑥𝑤𝐴 / 𝑥𝐵) → (([𝐴 / 𝑥]𝑤𝐵𝑤𝐴 / 𝑥𝐵) ↔ (𝐴 / 𝑥𝑤𝐴 / 𝑥𝐵𝑤𝐴 / 𝑥𝐵)))
109biimprd 250 . . . . . . . . . . . . . . . . . 18 (([𝐴 / 𝑥]𝑤𝐵𝐴 / 𝑥𝑤𝐴 / 𝑥𝐵) → ((𝐴 / 𝑥𝑤𝐴 / 𝑥𝐵𝑤𝐴 / 𝑥𝐵) → ([𝐴 / 𝑥]𝑤𝐵𝑤𝐴 / 𝑥𝐵)))
114, 8, 10e11 41029 . . . . . . . . . . . . . . . . 17 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝐵𝑤𝐴 / 𝑥𝐵)   )
12 sbcel12 4362 . . . . . . . . . . . . . . . . . . . 20 ([𝐴 / 𝑥]𝑦𝐶𝐴 / 𝑥𝑦𝐴 / 𝑥𝐶)
1312a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐶𝐴 / 𝑥𝑦𝐴 / 𝑥𝐶))
141, 13e1a 40968 . . . . . . . . . . . . . . . . . 18 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦𝐶𝐴 / 𝑥𝑦𝐴 / 𝑥𝐶)   )
15 csbconstg 3904 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝑉𝐴 / 𝑥𝑦 = 𝑦)
161, 15e1a 40968 . . . . . . . . . . . . . . . . . . 19 (   𝐴𝑉   ▶   𝐴 / 𝑥𝑦 = 𝑦   )
17 eleq1 2902 . . . . . . . . . . . . . . . . . . 19 (𝐴 / 𝑥𝑦 = 𝑦 → (𝐴 / 𝑥𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐶))
1816, 17e1a 40968 . . . . . . . . . . . . . . . . . 18 (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐶)   )
19 bibi1 354 . . . . . . . . . . . . . . . . . . 19 (([𝐴 / 𝑥]𝑦𝐶𝐴 / 𝑥𝑦𝐴 / 𝑥𝐶) → (([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶) ↔ (𝐴 / 𝑥𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐶)))
2019biimprd 250 . . . . . . . . . . . . . . . . . 18 (([𝐴 / 𝑥]𝑦𝐶𝐴 / 𝑥𝑦𝐴 / 𝑥𝐶) → ((𝐴 / 𝑥𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐶) → ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶)))
2114, 18, 20e11 41029 . . . . . . . . . . . . . . . . 17 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶)   )
22 pm4.38 636 . . . . . . . . . . . . . . . . . 18 ((([𝐴 / 𝑥]𝑤𝐵𝑤𝐴 / 𝑥𝐵) ∧ ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶)) → (([𝐴 / 𝑥]𝑤𝐵[𝐴 / 𝑥]𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
2322ex 415 . . . . . . . . . . . . . . . . 17 (([𝐴 / 𝑥]𝑤𝐵𝑤𝐴 / 𝑥𝐵) → (([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶) → (([𝐴 / 𝑥]𝑤𝐵[𝐴 / 𝑥]𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))))
2411, 21, 23e11 41029 . . . . . . . . . . . . . . . 16 (   𝐴𝑉   ▶   (([𝐴 / 𝑥]𝑤𝐵[𝐴 / 𝑥]𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))   )
25 sbcan 3823 . . . . . . . . . . . . . . . . . 18 ([𝐴 / 𝑥](𝑤𝐵𝑦𝐶) ↔ ([𝐴 / 𝑥]𝑤𝐵[𝐴 / 𝑥]𝑦𝐶))
2625a1i 11 . . . . . . . . . . . . . . . . 17 (𝐴𝑉 → ([𝐴 / 𝑥](𝑤𝐵𝑦𝐶) ↔ ([𝐴 / 𝑥]𝑤𝐵[𝐴 / 𝑥]𝑦𝐶)))
271, 26e1a 40968 . . . . . . . . . . . . . . . 16 (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑤𝐵𝑦𝐶) ↔ ([𝐴 / 𝑥]𝑤𝐵[𝐴 / 𝑥]𝑦𝐶))   )
28 bibi1 354 . . . . . . . . . . . . . . . . 17 (([𝐴 / 𝑥](𝑤𝐵𝑦𝐶) ↔ ([𝐴 / 𝑥]𝑤𝐵[𝐴 / 𝑥]𝑦𝐶)) → (([𝐴 / 𝑥](𝑤𝐵𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)) ↔ (([𝐴 / 𝑥]𝑤𝐵[𝐴 / 𝑥]𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))))
2928biimprcd 252 . . . . . . . . . . . . . . . 16 ((([𝐴 / 𝑥]𝑤𝐵[𝐴 / 𝑥]𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)) → (([𝐴 / 𝑥](𝑤𝐵𝑦𝐶) ↔ ([𝐴 / 𝑥]𝑤𝐵[𝐴 / 𝑥]𝑦𝐶)) → ([𝐴 / 𝑥](𝑤𝐵𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))))
3024, 27, 29e11 41029 . . . . . . . . . . . . . . 15 (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑤𝐵𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))   )
31 sbcg 3849 . . . . . . . . . . . . . . . 16 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ↔ 𝑧 = ⟨𝑤, 𝑦⟩))
321, 31e1a 40968 . . . . . . . . . . . . . . 15 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ↔ 𝑧 = ⟨𝑤, 𝑦⟩)   )
33 pm4.38 636 . . . . . . . . . . . . . . . 16 ((([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ↔ 𝑧 = ⟨𝑤, 𝑦⟩) ∧ ([𝐴 / 𝑥](𝑤𝐵𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))) → (([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ∧ [𝐴 / 𝑥](𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))))
3433expcom 416 . . . . . . . . . . . . . . 15 (([𝐴 / 𝑥](𝑤𝐵𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)) → (([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ↔ 𝑧 = ⟨𝑤, 𝑦⟩) → (([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ∧ [𝐴 / 𝑥](𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))))
3530, 32, 34e11 41029 . . . . . . . . . . . . . 14 (   𝐴𝑉   ▶   (([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ∧ [𝐴 / 𝑥](𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
36 sbcan 3823 . . . . . . . . . . . . . . . 16 ([𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ∧ [𝐴 / 𝑥](𝑤𝐵𝑦𝐶)))
3736a1i 11 . . . . . . . . . . . . . . 15 (𝐴𝑉 → ([𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ∧ [𝐴 / 𝑥](𝑤𝐵𝑦𝐶))))
381, 37e1a 40968 . . . . . . . . . . . . . 14 (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ∧ [𝐴 / 𝑥](𝑤𝐵𝑦𝐶)))   )
39 bibi1 354 . . . . . . . . . . . . . . 15 (([𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ∧ [𝐴 / 𝑥](𝑤𝐵𝑦𝐶))) → (([𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))) ↔ (([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ∧ [𝐴 / 𝑥](𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))))
4039biimprcd 252 . . . . . . . . . . . . . 14 ((([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ∧ [𝐴 / 𝑥](𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))) → (([𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ∧ [𝐴 / 𝑥](𝑤𝐵𝑦𝐶))) → ([𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))))
4135, 38, 40e11 41029 . . . . . . . . . . . . 13 (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
4241gen11 40957 . . . . . . . . . . . 12 (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
43 exbi 1847 . . . . . . . . . . . 12 (∀𝑦([𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))) → (∃𝑦[𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))))
4442, 43e1a 40968 . . . . . . . . . . 11 (   𝐴𝑉   ▶   (∃𝑦[𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
45 sbcex2 3836 . . . . . . . . . . . . 13 ([𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)))
4645a1i 11 . . . . . . . . . . . 12 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))))
471, 46e1a 40968 . . . . . . . . . . 11 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)))   )
48 bibi1 354 . . . . . . . . . . . 12 (([𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))) → (([𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))) ↔ (∃𝑦[𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))))
4948biimprcd 252 . . . . . . . . . . 11 ((∃𝑦[𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))) → (([𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))) → ([𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))))
5044, 47, 49e11 41029 . . . . . . . . . 10 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
5150gen11 40957 . . . . . . . . 9 (   𝐴𝑉   ▶   𝑤([𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
52 exbi 1847 . . . . . . . . 9 (∀𝑤([𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))) → (∃𝑤[𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))))
5351, 52e1a 40968 . . . . . . . 8 (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
54 sbcex2 3836 . . . . . . . . . 10 ([𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤[𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)))
5554a1i 11 . . . . . . . . 9 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤[𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))))
561, 55e1a 40968 . . . . . . . 8 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤[𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)))   )
57 bibi1 354 . . . . . . . . 9 (([𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤[𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))) → (([𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))) ↔ (∃𝑤[𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))))
5857biimprcd 252 . . . . . . . 8 ((∃𝑤[𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))) → (([𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤[𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))) → ([𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))))
5953, 56, 58e11 41029 . . . . . . 7 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
6059gen11 40957 . . . . . 6 (   𝐴𝑉   ▶   𝑧([𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
61 abbi 2890 . . . . . . 7 (∀𝑧([𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))) ↔ {𝑧[𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))})
6261biimpi 218 . . . . . 6 (∀𝑧([𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))) → {𝑧[𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))})
6360, 62e1a 40968 . . . . 5 (   𝐴𝑉   ▶   {𝑧[𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}   )
64 csbab 4391 . . . . . . 7 𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧[𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
6564a1i 11 . . . . . 6 (𝐴𝑉𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧[𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))})
661, 65e1a 40968 . . . . 5 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧[𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}   )
67 eqeq2 2835 . . . . . 6 ({𝑧[𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))} → (𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧[𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} ↔ 𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}))
6867biimpd 231 . . . . 5 ({𝑧[𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))} → (𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧[𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} → 𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}))
6963, 66, 68e11 41029 . . . 4 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}   )
70 df-xp 5563 . . . . . . 7 (𝐵 × 𝐶) = {⟨𝑤, 𝑦⟩ ∣ (𝑤𝐵𝑦𝐶)}
71 df-opab 5131 . . . . . . 7 {⟨𝑤, 𝑦⟩ ∣ (𝑤𝐵𝑦𝐶)} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
7270, 71eqtri 2846 . . . . . 6 (𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
7372ax-gen 1796 . . . . 5 𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
74 csbeq2 3890 . . . . . 6 (∀𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} → 𝐴 / 𝑥(𝐵 × 𝐶) = 𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))})
7574a1i 11 . . . . 5 (𝐴𝑉 → (∀𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} → 𝐴 / 𝑥(𝐵 × 𝐶) = 𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}))
761, 73, 75e10 41035 . . . 4 (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 × 𝐶) = 𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}   )
77 eqeq2 2835 . . . . 5 (𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))} → (𝐴 / 𝑥(𝐵 × 𝐶) = 𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} ↔ 𝐴 / 𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}))
7877biimpd 231 . . . 4 (𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))} → (𝐴 / 𝑥(𝐵 × 𝐶) = 𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} → 𝐴 / 𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}))
7969, 76, 78e11 41029 . . 3 (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}   )
80 df-xp 5563 . . . 4 (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶) = {⟨𝑤, 𝑦⟩ ∣ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)}
81 df-opab 5131 . . . 4 {⟨𝑤, 𝑦⟩ ∣ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}
8280, 81eqtri 2846 . . 3 (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}
83 eqeq2 2835 . . . 4 ((𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))} → (𝐴 / 𝑥(𝐵 × 𝐶) = (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶) ↔ 𝐴 / 𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}))
8483biimprcd 252 . . 3 (𝐴 / 𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))} → ((𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))} → 𝐴 / 𝑥(𝐵 × 𝐶) = (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶)))
8579, 82, 84e10 41035 . 2 (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 × 𝐶) = (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶)   )
8685in1 40912 1 (𝐴𝑉𝐴 / 𝑥(𝐵 × 𝐶) = (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1535   = wceq 1537  wex 1780  wcel 2114  {cab 2801  [wsbc 3774  csb 3885  cop 4575  {copab 5130   × cxp 5555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-nul 4294  df-opab 5131  df-xp 5563  df-vd1 40911
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator