MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm3 Structured version   Visualization version   GIF version

Theorem isprm3 16019
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 with no divisors strictly between 1 and itself. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
isprm3 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧𝑃))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm3
StepHypRef Expression
1 isprm2 16018 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
2 iman 404 . . . . . . 7 ((𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ (𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))
3 eluz2nn 12276 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
4 nnz 11996 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℕ → 𝑧 ∈ ℤ)
5 dvdsle 15652 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑧𝑃𝑧𝑃))
64, 5sylan 582 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑧𝑃𝑧𝑃))
7 nnge1 11657 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℕ → 1 ≤ 𝑧)
87adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ) → 1 ≤ 𝑧)
96, 8jctild 528 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑧𝑃 → (1 ≤ 𝑧𝑧𝑃)))
103, 9sylan2 594 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) → (𝑧𝑃 → (1 ≤ 𝑧𝑧𝑃)))
11 zre 11977 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
12 nnre 11637 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
13 1re 10633 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℝ
14 leltne 10722 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 1 ≤ 𝑧) → (1 < 𝑧𝑧 ≠ 1))
1513, 14mp3an1 1441 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ ∧ 1 ≤ 𝑧) → (1 < 𝑧𝑧 ≠ 1))
16153adant2 1125 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 1 ≤ 𝑧) → (1 < 𝑧𝑧 ≠ 1))
17163expia 1115 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (1 ≤ 𝑧 → (1 < 𝑧𝑧 ≠ 1)))
18 leltne 10722 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 𝑧𝑃) → (𝑧 < 𝑃𝑃𝑧))
19183expia 1115 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (𝑧𝑃 → (𝑧 < 𝑃𝑃𝑧)))
2017, 19anim12d 610 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ) → ((1 ≤ 𝑧𝑧𝑃) → ((1 < 𝑧𝑧 ≠ 1) ∧ (𝑧 < 𝑃𝑃𝑧))))
2111, 12, 20syl2an 597 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((1 ≤ 𝑧𝑧𝑃) → ((1 < 𝑧𝑧 ≠ 1) ∧ (𝑧 < 𝑃𝑃𝑧))))
22 pm4.38 636 . . . . . . . . . . . . . . . . . 18 (((1 < 𝑧𝑧 ≠ 1) ∧ (𝑧 < 𝑃𝑃𝑧)) → ((1 < 𝑧𝑧 < 𝑃) ↔ (𝑧 ≠ 1 ∧ 𝑃𝑧)))
23 df-ne 3015 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ≠ 1 ↔ ¬ 𝑧 = 1)
24 nesym 3070 . . . . . . . . . . . . . . . . . . . 20 (𝑃𝑧 ↔ ¬ 𝑧 = 𝑃)
2523, 24anbi12i 628 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ≠ 1 ∧ 𝑃𝑧) ↔ (¬ 𝑧 = 1 ∧ ¬ 𝑧 = 𝑃))
26 ioran 979 . . . . . . . . . . . . . . . . . . 19 (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ (¬ 𝑧 = 1 ∧ ¬ 𝑧 = 𝑃))
2725, 26bitr4i 280 . . . . . . . . . . . . . . . . . 18 ((𝑧 ≠ 1 ∧ 𝑃𝑧) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))
2822, 27syl6bb 289 . . . . . . . . . . . . . . . . 17 (((1 < 𝑧𝑧 ≠ 1) ∧ (𝑧 < 𝑃𝑃𝑧)) → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))
2921, 28syl6 35 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((1 ≤ 𝑧𝑧𝑃) → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))))
304, 3, 29syl2an 597 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) → ((1 ≤ 𝑧𝑧𝑃) → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))))
3110, 30syld 47 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) → (𝑧𝑃 → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))))
3231imp 409 . . . . . . . . . . . . 13 (((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) ∧ 𝑧𝑃) → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))
33 eluzelz 12245 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℤ)
34 1z 12004 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℤ
35 zltp1le 12024 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (1 < 𝑧 ↔ (1 + 1) ≤ 𝑧))
3634, 35mpan 688 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℤ → (1 < 𝑧 ↔ (1 + 1) ≤ 𝑧))
37 df-2 11692 . . . . . . . . . . . . . . . . . . . 20 2 = (1 + 1)
3837breq1i 5064 . . . . . . . . . . . . . . . . . . 19 (2 ≤ 𝑧 ↔ (1 + 1) ≤ 𝑧)
3936, 38syl6bbr 291 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℤ → (1 < 𝑧 ↔ 2 ≤ 𝑧))
4039adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (1 < 𝑧 ↔ 2 ≤ 𝑧))
41 zltlem1 12027 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧 < 𝑃𝑧 ≤ (𝑃 − 1)))
4240, 41anbi12d 632 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((1 < 𝑧𝑧 < 𝑃) ↔ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
43 peano2zm 12017 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
44 2z 12006 . . . . . . . . . . . . . . . . . 18 2 ∈ ℤ
45 elfz 12890 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 2 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ) → (𝑧 ∈ (2...(𝑃 − 1)) ↔ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
4644, 45mp3an2 1442 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ) → (𝑧 ∈ (2...(𝑃 − 1)) ↔ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
4743, 46sylan2 594 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧 ∈ (2...(𝑃 − 1)) ↔ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
4842, 47bitr4d 284 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((1 < 𝑧𝑧 < 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
494, 33, 48syl2an 597 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) → ((1 < 𝑧𝑧 < 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
5049adantr 483 . . . . . . . . . . . . 13 (((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) ∧ 𝑧𝑃) → ((1 < 𝑧𝑧 < 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
5132, 50bitr3d 283 . . . . . . . . . . . 12 (((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) ∧ 𝑧𝑃) → (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
5251anasss 469 . . . . . . . . . . 11 ((𝑧 ∈ ℕ ∧ (𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃)) → (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
5352expcom 416 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → (𝑧 ∈ ℕ → (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1)))))
5453pm5.32d 579 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → ((𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∈ (2...(𝑃 − 1)))))
55 fzssuz 12940 . . . . . . . . . . . . 13 (2...(𝑃 − 1)) ⊆ (ℤ‘2)
56 2eluzge1 12286 . . . . . . . . . . . . . 14 2 ∈ (ℤ‘1)
57 uzss 12257 . . . . . . . . . . . . . 14 (2 ∈ (ℤ‘1) → (ℤ‘2) ⊆ (ℤ‘1))
5856, 57ax-mp 5 . . . . . . . . . . . . 13 (ℤ‘2) ⊆ (ℤ‘1)
5955, 58sstri 3974 . . . . . . . . . . . 12 (2...(𝑃 − 1)) ⊆ (ℤ‘1)
60 nnuz 12273 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
6159, 60sseqtrri 4002 . . . . . . . . . . 11 (2...(𝑃 − 1)) ⊆ ℕ
6261sseli 3961 . . . . . . . . . 10 (𝑧 ∈ (2...(𝑃 − 1)) → 𝑧 ∈ ℕ)
6362pm4.71ri 563 . . . . . . . . 9 (𝑧 ∈ (2...(𝑃 − 1)) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∈ (2...(𝑃 − 1))))
6454, 63syl6bbr 291 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → ((𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
6564notbid 320 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → (¬ (𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ 𝑧 ∈ (2...(𝑃 − 1))))
662, 65syl5bb 285 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → ((𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ 𝑧 ∈ (2...(𝑃 − 1))))
6766pm5.74da 802 . . . . 5 (𝑃 ∈ (ℤ‘2) → ((𝑧𝑃 → (𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑧𝑃 → ¬ 𝑧 ∈ (2...(𝑃 − 1)))))
68 bi2.04 391 . . . . 5 ((𝑧𝑃 → (𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
69 con2b 362 . . . . 5 ((𝑧𝑃 → ¬ 𝑧 ∈ (2...(𝑃 − 1))) ↔ (𝑧 ∈ (2...(𝑃 − 1)) → ¬ 𝑧𝑃))
7067, 68, 693bitr3g 315 . . . 4 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑧 ∈ (2...(𝑃 − 1)) → ¬ 𝑧𝑃)))
7170ralbidv2 3193 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧𝑃))
7271pm5.32i 577 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧𝑃))
731, 72bitri 277 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1530  wcel 2107  wne 3014  wral 3136  wss 3934   class class class wbr 5057  cfv 6348  (class class class)co 7148  cr 10528  1c1 10530   + caddc 10532   < clt 10667  cle 10668  cmin 10862  cn 11630  2c2 11684  cz 11973  cuz 12235  ...cfz 12884  cdvds 15599  cprime 16007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12885  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-prm 16008
This theorem is referenced by:  prmind2  16021  2prm  16028  3prm  16030  ncoprmlnprm  16060  wilth  25640  mersenne  25795  chtvalz  31888
  Copyright terms: Public domain W3C validator