MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm3 Structured version   Visualization version   GIF version

Theorem isprm3 16021
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 with no divisors strictly between 1 and itself. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
isprm3 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧𝑃))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm3
StepHypRef Expression
1 isprm2 16020 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
2 iman 404 . . . . . . 7 ((𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ (𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))
3 eluz2nn 12278 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
4 nnz 11998 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℕ → 𝑧 ∈ ℤ)
5 dvdsle 15654 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑧𝑃𝑧𝑃))
64, 5sylan 582 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑧𝑃𝑧𝑃))
7 nnge1 11659 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℕ → 1 ≤ 𝑧)
87adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ) → 1 ≤ 𝑧)
96, 8jctild 528 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑧𝑃 → (1 ≤ 𝑧𝑧𝑃)))
103, 9sylan2 594 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) → (𝑧𝑃 → (1 ≤ 𝑧𝑧𝑃)))
11 zre 11979 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
12 nnre 11639 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
13 1re 10635 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℝ
14 leltne 10724 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 1 ≤ 𝑧) → (1 < 𝑧𝑧 ≠ 1))
1513, 14mp3an1 1444 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ ∧ 1 ≤ 𝑧) → (1 < 𝑧𝑧 ≠ 1))
16153adant2 1127 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 1 ≤ 𝑧) → (1 < 𝑧𝑧 ≠ 1))
17163expia 1117 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (1 ≤ 𝑧 → (1 < 𝑧𝑧 ≠ 1)))
18 leltne 10724 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 𝑧𝑃) → (𝑧 < 𝑃𝑃𝑧))
19183expia 1117 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (𝑧𝑃 → (𝑧 < 𝑃𝑃𝑧)))
2017, 19anim12d 610 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ) → ((1 ≤ 𝑧𝑧𝑃) → ((1 < 𝑧𝑧 ≠ 1) ∧ (𝑧 < 𝑃𝑃𝑧))))
2111, 12, 20syl2an 597 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((1 ≤ 𝑧𝑧𝑃) → ((1 < 𝑧𝑧 ≠ 1) ∧ (𝑧 < 𝑃𝑃𝑧))))
22 pm4.38 636 . . . . . . . . . . . . . . . . . 18 (((1 < 𝑧𝑧 ≠ 1) ∧ (𝑧 < 𝑃𝑃𝑧)) → ((1 < 𝑧𝑧 < 𝑃) ↔ (𝑧 ≠ 1 ∧ 𝑃𝑧)))
23 df-ne 3017 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ≠ 1 ↔ ¬ 𝑧 = 1)
24 nesym 3072 . . . . . . . . . . . . . . . . . . . 20 (𝑃𝑧 ↔ ¬ 𝑧 = 𝑃)
2523, 24anbi12i 628 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ≠ 1 ∧ 𝑃𝑧) ↔ (¬ 𝑧 = 1 ∧ ¬ 𝑧 = 𝑃))
26 ioran 980 . . . . . . . . . . . . . . . . . . 19 (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ (¬ 𝑧 = 1 ∧ ¬ 𝑧 = 𝑃))
2725, 26bitr4i 280 . . . . . . . . . . . . . . . . . 18 ((𝑧 ≠ 1 ∧ 𝑃𝑧) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))
2822, 27syl6bb 289 . . . . . . . . . . . . . . . . 17 (((1 < 𝑧𝑧 ≠ 1) ∧ (𝑧 < 𝑃𝑃𝑧)) → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))
2921, 28syl6 35 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((1 ≤ 𝑧𝑧𝑃) → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))))
304, 3, 29syl2an 597 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) → ((1 ≤ 𝑧𝑧𝑃) → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))))
3110, 30syld 47 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) → (𝑧𝑃 → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))))
3231imp 409 . . . . . . . . . . . . 13 (((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) ∧ 𝑧𝑃) → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))
33 eluzelz 12247 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℤ)
34 1z 12006 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℤ
35 zltp1le 12026 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (1 < 𝑧 ↔ (1 + 1) ≤ 𝑧))
3634, 35mpan 688 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℤ → (1 < 𝑧 ↔ (1 + 1) ≤ 𝑧))
37 df-2 11694 . . . . . . . . . . . . . . . . . . . 20 2 = (1 + 1)
3837breq1i 5066 . . . . . . . . . . . . . . . . . . 19 (2 ≤ 𝑧 ↔ (1 + 1) ≤ 𝑧)
3936, 38syl6bbr 291 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℤ → (1 < 𝑧 ↔ 2 ≤ 𝑧))
4039adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (1 < 𝑧 ↔ 2 ≤ 𝑧))
41 zltlem1 12029 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧 < 𝑃𝑧 ≤ (𝑃 − 1)))
4240, 41anbi12d 632 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((1 < 𝑧𝑧 < 𝑃) ↔ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
43 peano2zm 12019 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
44 2z 12008 . . . . . . . . . . . . . . . . . 18 2 ∈ ℤ
45 elfz 12892 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 2 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ) → (𝑧 ∈ (2...(𝑃 − 1)) ↔ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
4644, 45mp3an2 1445 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ) → (𝑧 ∈ (2...(𝑃 − 1)) ↔ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
4743, 46sylan2 594 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧 ∈ (2...(𝑃 − 1)) ↔ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
4842, 47bitr4d 284 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((1 < 𝑧𝑧 < 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
494, 33, 48syl2an 597 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) → ((1 < 𝑧𝑧 < 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
5049adantr 483 . . . . . . . . . . . . 13 (((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) ∧ 𝑧𝑃) → ((1 < 𝑧𝑧 < 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
5132, 50bitr3d 283 . . . . . . . . . . . 12 (((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) ∧ 𝑧𝑃) → (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
5251anasss 469 . . . . . . . . . . 11 ((𝑧 ∈ ℕ ∧ (𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃)) → (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
5352expcom 416 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → (𝑧 ∈ ℕ → (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1)))))
5453pm5.32d 579 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → ((𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∈ (2...(𝑃 − 1)))))
55 fzssuz 12942 . . . . . . . . . . . . 13 (2...(𝑃 − 1)) ⊆ (ℤ‘2)
56 2eluzge1 12288 . . . . . . . . . . . . . 14 2 ∈ (ℤ‘1)
57 uzss 12259 . . . . . . . . . . . . . 14 (2 ∈ (ℤ‘1) → (ℤ‘2) ⊆ (ℤ‘1))
5856, 57ax-mp 5 . . . . . . . . . . . . 13 (ℤ‘2) ⊆ (ℤ‘1)
5955, 58sstri 3976 . . . . . . . . . . . 12 (2...(𝑃 − 1)) ⊆ (ℤ‘1)
60 nnuz 12275 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
6159, 60sseqtrri 4004 . . . . . . . . . . 11 (2...(𝑃 − 1)) ⊆ ℕ
6261sseli 3963 . . . . . . . . . 10 (𝑧 ∈ (2...(𝑃 − 1)) → 𝑧 ∈ ℕ)
6362pm4.71ri 563 . . . . . . . . 9 (𝑧 ∈ (2...(𝑃 − 1)) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∈ (2...(𝑃 − 1))))
6454, 63syl6bbr 291 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → ((𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
6564notbid 320 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → (¬ (𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ 𝑧 ∈ (2...(𝑃 − 1))))
662, 65syl5bb 285 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → ((𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ 𝑧 ∈ (2...(𝑃 − 1))))
6766pm5.74da 802 . . . . 5 (𝑃 ∈ (ℤ‘2) → ((𝑧𝑃 → (𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑧𝑃 → ¬ 𝑧 ∈ (2...(𝑃 − 1)))))
68 bi2.04 391 . . . . 5 ((𝑧𝑃 → (𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
69 con2b 362 . . . . 5 ((𝑧𝑃 → ¬ 𝑧 ∈ (2...(𝑃 − 1))) ↔ (𝑧 ∈ (2...(𝑃 − 1)) → ¬ 𝑧𝑃))
7067, 68, 693bitr3g 315 . . . 4 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑧 ∈ (2...(𝑃 − 1)) → ¬ 𝑧𝑃)))
7170ralbidv2 3195 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧𝑃))
7271pm5.32i 577 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧𝑃))
731, 72bitri 277 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  wral 3138  wss 3936   class class class wbr 5059  cfv 6350  (class class class)co 7150  cr 10530  1c1 10532   + caddc 10534   < clt 10669  cle 10670  cmin 10864  cn 11632  2c2 11686  cz 11975  cuz 12237  ...cfz 12886  cdvds 15601  cprime 16009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-dvds 15602  df-prm 16010
This theorem is referenced by:  prmind2  16023  2prm  16030  3prm  16032  ncoprmlnprm  16062  wilth  25642  mersenne  25797  chtvalz  31895
  Copyright terms: Public domain W3C validator