Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bi2anan9 | Structured version Visualization version GIF version |
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
Ref | Expression |
---|---|
bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2an9.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bi2an9.2 | . 2 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
3 | pm4.38 634 | . 2 ⊢ (((𝜓 ↔ 𝜒) ∧ (𝜏 ↔ 𝜂)) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: bi2anan9r 636 rspc2gv 3561 2reu5 3688 ralprgf 4625 ralprg 4627 raltpg 4631 prssg 4749 prsspwg 4753 ssprss 4754 intprg 4909 opelopab2a 5441 opelxp 5616 eqrel 5684 eqrelrel 5696 brcog 5764 tpres 7058 dff13 7109 resoprab2 7371 ovig 7397 dfoprab4f 7869 f1o2ndf1 7934 om00el 8369 oeoe 8392 eroveu 8559 endisj 8799 infxpen 9701 dfac5lem4 9813 sornom 9964 ltsrpr 10764 axcnre 10851 axmulgt0 10980 wloglei 11437 mulge0b 11775 addltmul 12139 ltxr 12780 fzadd2 13220 sumsqeq0 13824 ccat0 14208 rlim 15132 cpnnen 15866 dvds2lem 15906 opoe 16000 omoe 16001 opeo 16002 omeo 16003 gcddvds 16138 dfgcd2 16182 pcqmul 16482 xpsfrnel2 17192 eqgval 18720 frgpuplem 19293 mpfind 21227 2ndcctbss 22514 txbasval 22665 cnmpt12 22726 cnmpt22 22733 prdsxmslem2 23591 ishtpy 24041 bcthlem1 24393 bcth 24398 volun 24614 vitali 24682 itg1addlem3 24767 rolle 25059 mumullem2 26234 lgsquadlem3 26435 lgsquad 26436 2sqlem7 26477 axpasch 27212 wlkson 27926 iswwlksnon 28119 wpthswwlks2on 28227 eulplig 28748 hlimi 29451 leopadd 30395 eqrelrd2 30857 cntzun 31222 isinftm 31337 finexttrb 31639 metidv 31744 satfv1 33225 satfbrsuc 33228 gonarlem 33256 satfv0fvfmla0 33275 satfv1fvfmla1 33285 scutval 33921 slerec 33940 altopthg 34196 altopthbg 34197 brsegle 34337 bj-imdirvallem 35278 finxpreclem3 35491 itg2addnclem3 35757 exan3 36356 exanres 36357 exanres3 36358 eqrel2 36362 brcoss 36481 brcoss3 36483 brcoels 36485 br1cossxrnres 36493 brcosscnv 36517 prtlem13 36809 dib1dim 39106 pellex 40573 prsprel 44827 uspgrsprf1 45197 uspgrsprfo 45198 |
Copyright terms: Public domain | W3C validator |