| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bi2anan9 | Structured version Visualization version GIF version | ||
| Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
| Ref | Expression |
|---|---|
| bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2an9.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bi2an9.2 | . 2 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
| 3 | pm4.38 637 | . 2 ⊢ (((𝜓 ↔ 𝜒) ∧ (𝜏 ↔ 𝜂)) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bi2anan9r 639 rspc2gv 3631 2reu5 3763 ralprgf 4693 ralprg 4695 raltpg 4697 prssg 4818 prsspwg 4822 ssprss 4823 intprg 4980 opelopab2a 5539 opelxp 5720 eqrel 5793 eqrelrel 5806 brcog 5876 tpres 7222 dff13 7276 cbvmpov 7529 resoprab2 7553 ovig 7580 dfoprab4f 8082 f1o2ndf1 8148 om00el 8615 oeoe 8638 eroveu 8853 endisj 9099 infxpen 10055 dfac5lem4OLD 10169 sornom 10318 ltsrpr 11118 axcnre 11205 axmulgt0 11336 wloglei 11796 mulge0b 12139 addltmul 12504 ltxr 13158 fzadd2 13600 sumsqeq0 14219 ccat0 14615 rlim 15532 cpnnen 16266 dvds2lem 16307 opoe 16401 omoe 16402 opeo 16403 omeo 16404 gcddvds 16541 dfgcd2 16584 pcqmul 16892 xpsfrnel2 17610 eqgval 19196 frgpuplem 19791 mpfind 22132 2ndcctbss 23464 txbasval 23615 cnmpt12 23676 cnmpt22 23683 prdsxmslem2 24543 ishtpy 25005 bcthlem1 25359 bcth 25364 volun 25581 vitali 25649 itg1addlem3 25734 rolle 26029 mumullem2 27224 lgsquadlem3 27427 lgsquad 27428 2sqlem7 27469 scutval 27846 slerec 27865 remulscllem2 28434 axpasch 28957 wlkson 29675 iswwlksnon 29874 wpthswwlks2on 29982 eulplig 30505 hlimi 31208 leopadd 32152 brab2d 32620 eqrelrd2 32629 cntzun 33072 isinftm 33189 finexttrb 33716 metidv 33892 satfv1 35369 satfbrsuc 35372 gonarlem 35400 satfv0fvfmla0 35419 satfv1fvfmla1 35429 altopthg 35969 altopthbg 35970 brsegle 36110 bj-imdirvallem 37182 finxpreclem3 37395 itg2addnclem3 37681 exan3 38296 exanres 38297 exanres3 38298 eqrel2 38301 brcoss 38433 brcoss3 38435 brcoels 38437 br1cossxrnres 38450 brcosscnv 38474 prtlem13 38870 dib1dim 41168 f1o2d2 42274 pellex 42851 tfsconcatb0 43362 tfsconcat00 43365 prsprel 47479 uspgrsprf1 48068 uspgrsprfo 48069 brab2ddw2 48748 |
| Copyright terms: Public domain | W3C validator |