| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bi2anan9 | Structured version Visualization version GIF version | ||
| Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
| Ref | Expression |
|---|---|
| bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2an9.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bi2an9.2 | . 2 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
| 3 | pm4.38 637 | . 2 ⊢ (((𝜓 ↔ 𝜒) ∧ (𝜏 ↔ 𝜂)) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bi2anan9r 639 rspc2gv 3582 2reu5 3712 ralprgf 4644 ralprg 4646 raltpg 4648 prssg 4768 prsspwg 4772 ssprss 4773 intprg 4929 opelopab2a 5473 opelxp 5650 eqrel 5723 eqrelrel 5736 brcog 5805 tpres 7135 dff13 7188 cbvmpov 7441 resoprab2 7465 ovig 7492 dfoprab4f 7988 f1o2ndf1 8052 om00el 8491 oeoe 8514 eroveu 8736 endisj 8977 infxpen 9905 dfac5lem4OLD 10019 sornom 10168 ltsrpr 10968 axcnre 11055 axmulgt0 11187 wloglei 11649 mulge0b 11992 addltmul 12357 ltxr 13014 fzadd2 13459 sumsqeq0 14086 ccat0 14483 rlim 15402 cpnnen 16138 dvds2lem 16179 opoe 16274 omoe 16275 opeo 16276 omeo 16277 gcddvds 16414 dfgcd2 16457 pcqmul 16765 xpsfrnel2 17468 eqgval 19089 frgpuplem 19684 mpfind 22042 2ndcctbss 23370 txbasval 23521 cnmpt12 23582 cnmpt22 23589 prdsxmslem2 24444 ishtpy 24898 bcthlem1 25251 bcth 25256 volun 25473 vitali 25541 itg1addlem3 25626 rolle 25921 mumullem2 27117 lgsquadlem3 27320 lgsquad 27321 2sqlem7 27362 scutval 27741 slerec 27760 remulscllem2 28403 axpasch 28919 wlkson 29633 iswwlksnon 29831 wpthswwlks2on 29942 eulplig 30465 hlimi 31168 leopadd 32112 tpssg 32517 brab2d 32588 eqrelrd2 32599 cntzun 33048 isinftm 33150 finexttrb 33678 metidv 33905 satfv1 35407 satfbrsuc 35410 gonarlem 35438 satfv0fvfmla0 35457 satfv1fvfmla1 35467 altopthg 36011 altopthbg 36012 brsegle 36152 bj-imdirvallem 37224 finxpreclem3 37437 itg2addnclem3 37723 exan3 38342 exanres 38343 exanres3 38344 eqrel2 38347 sucmapleftuniq 38512 brcoss 38543 brcoss3 38545 brcoels 38547 br1cossxrnres 38560 brcosscnv 38584 prtlem13 38977 dib1dim 41274 f1o2d2 42336 pellex 42938 tfsconcatb0 43447 tfsconcat00 43450 prsprel 47597 uspgrsprf1 48257 uspgrsprfo 48258 brab2ddw2 48940 |
| Copyright terms: Public domain | W3C validator |