Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bi2anan9 | Structured version Visualization version GIF version |
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
Ref | Expression |
---|---|
bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2an9.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bi2an9.2 | . 2 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
3 | pm4.38 638 | . 2 ⊢ (((𝜓 ↔ 𝜒) ∧ (𝜏 ↔ 𝜂)) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) | |
4 | 1, 2, 3 | syl2an 599 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: bi2anan9r 640 rspc2gv 3546 2reu5 3671 ralprgf 4608 ralprg 4610 raltpg 4614 prssg 4732 prsspwg 4736 ssprss 4737 intprg 4892 opelopab2a 5416 opelxp 5587 eqrel 5655 eqrelrel 5667 brcog 5735 tpres 7016 dff13 7067 resoprab2 7329 ovig 7355 dfoprab4f 7826 f1o2ndf1 7891 om00el 8304 oeoe 8327 eroveu 8494 endisj 8732 infxpen 9628 dfac5lem4 9740 sornom 9891 ltsrpr 10691 axcnre 10778 axmulgt0 10907 wloglei 11364 mulge0b 11702 addltmul 12066 ltxr 12707 fzadd2 13147 sumsqeq0 13748 ccat0 14132 rlim 15056 cpnnen 15790 dvds2lem 15830 opoe 15924 omoe 15925 opeo 15926 omeo 15927 gcddvds 16062 dfgcd2 16106 pcqmul 16406 xpsfrnel2 17069 eqgval 18593 frgpuplem 19162 mpfind 21067 2ndcctbss 22352 txbasval 22503 cnmpt12 22564 cnmpt22 22571 prdsxmslem2 23427 ishtpy 23869 bcthlem1 24221 bcth 24226 volun 24442 vitali 24510 itg1addlem3 24595 rolle 24887 mumullem2 26062 lgsquadlem3 26263 lgsquad 26264 2sqlem7 26305 axpasch 27032 wlkson 27744 iswwlksnon 27937 wpthswwlks2on 28045 eulplig 28566 hlimi 29269 leopadd 30213 eqrelrd2 30675 cntzun 31039 isinftm 31154 finexttrb 31451 metidv 31556 satfv1 33038 satfbrsuc 33041 gonarlem 33069 satfv0fvfmla0 33088 satfv1fvfmla1 33098 scutval 33731 slerec 33750 altopthg 34006 altopthbg 34007 brsegle 34147 bj-imdirvallem 35086 finxpreclem3 35301 itg2addnclem3 35567 exan3 36166 exanres 36167 exanres3 36168 eqrel2 36172 brcoss 36291 brcoss3 36293 brcoels 36295 br1cossxrnres 36303 brcosscnv 36327 prtlem13 36619 dib1dim 38916 pellex 40360 prsprel 44612 uspgrsprf1 44982 uspgrsprfo 44983 |
Copyright terms: Public domain | W3C validator |