Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bi2anan9 | Structured version Visualization version GIF version |
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
Ref | Expression |
---|---|
bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2an9.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bi2an9.2 | . 2 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
3 | pm4.38 635 | . 2 ⊢ (((𝜓 ↔ 𝜒) ∧ (𝜏 ↔ 𝜂)) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) | |
4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: bi2anan9r 637 rspc2gv 3569 2reu5 3693 ralprgf 4628 ralprg 4630 raltpg 4634 prssg 4752 prsspwg 4756 ssprss 4757 intprg 4912 opelopab2a 5448 opelxp 5625 eqrel 5695 eqrelrel 5707 brcog 5775 tpres 7076 dff13 7128 resoprab2 7393 ovig 7419 dfoprab4f 7896 f1o2ndf1 7963 om00el 8407 oeoe 8430 eroveu 8601 endisj 8845 infxpen 9770 dfac5lem4 9882 sornom 10033 ltsrpr 10833 axcnre 10920 axmulgt0 11049 wloglei 11507 mulge0b 11845 addltmul 12209 ltxr 12851 fzadd2 13291 sumsqeq0 13896 ccat0 14280 rlim 15204 cpnnen 15938 dvds2lem 15978 opoe 16072 omoe 16073 opeo 16074 omeo 16075 gcddvds 16210 dfgcd2 16254 pcqmul 16554 xpsfrnel2 17275 eqgval 18805 frgpuplem 19378 mpfind 21317 2ndcctbss 22606 txbasval 22757 cnmpt12 22818 cnmpt22 22825 prdsxmslem2 23685 ishtpy 24135 bcthlem1 24488 bcth 24493 volun 24709 vitali 24777 itg1addlem3 24862 rolle 25154 mumullem2 26329 lgsquadlem3 26530 lgsquad 26531 2sqlem7 26572 axpasch 27309 wlkson 28024 iswwlksnon 28218 wpthswwlks2on 28326 eulplig 28847 hlimi 29550 leopadd 30494 eqrelrd2 30956 cntzun 31320 isinftm 31435 finexttrb 31737 metidv 31842 satfv1 33325 satfbrsuc 33328 gonarlem 33356 satfv0fvfmla0 33375 satfv1fvfmla1 33385 scutval 33994 slerec 34013 altopthg 34269 altopthbg 34270 brsegle 34410 bj-imdirvallem 35351 finxpreclem3 35564 itg2addnclem3 35830 exan3 36429 exanres 36430 exanres3 36431 eqrel2 36435 brcoss 36554 brcoss3 36556 brcoels 36558 br1cossxrnres 36566 brcosscnv 36590 prtlem13 36882 dib1dim 39179 pellex 40657 prsprel 44939 uspgrsprf1 45309 uspgrsprfo 45310 |
Copyright terms: Public domain | W3C validator |