| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bi2anan9 | Structured version Visualization version GIF version | ||
| Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
| Ref | Expression |
|---|---|
| bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2an9.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bi2an9.2 | . 2 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
| 3 | pm4.38 637 | . 2 ⊢ (((𝜓 ↔ 𝜒) ∧ (𝜏 ↔ 𝜂)) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bi2anan9r 639 rspc2gv 3587 2reu5 3718 ralprgf 4646 ralprg 4648 raltpg 4650 prssg 4770 prsspwg 4774 ssprss 4775 intprg 4931 opelopab2a 5478 opelxp 5655 eqrel 5727 eqrelrel 5740 brcog 5809 tpres 7137 dff13 7191 cbvmpov 7444 resoprab2 7468 ovig 7495 dfoprab4f 7991 f1o2ndf1 8055 om00el 8494 oeoe 8517 eroveu 8739 endisj 8981 infxpen 9908 dfac5lem4OLD 10022 sornom 10171 ltsrpr 10971 axcnre 11058 axmulgt0 11190 wloglei 11652 mulge0b 11995 addltmul 12360 ltxr 13017 fzadd2 13462 sumsqeq0 14086 ccat0 14483 rlim 15402 cpnnen 16138 dvds2lem 16179 opoe 16274 omoe 16275 opeo 16276 omeo 16277 gcddvds 16414 dfgcd2 16457 pcqmul 16765 xpsfrnel2 17468 eqgval 19056 frgpuplem 19651 mpfind 22012 2ndcctbss 23340 txbasval 23491 cnmpt12 23552 cnmpt22 23559 prdsxmslem2 24415 ishtpy 24869 bcthlem1 25222 bcth 25227 volun 25444 vitali 25512 itg1addlem3 25597 rolle 25892 mumullem2 27088 lgsquadlem3 27291 lgsquad 27292 2sqlem7 27333 scutval 27711 slerec 27730 remulscllem2 28370 axpasch 28886 wlkson 29600 iswwlksnon 29798 wpthswwlks2on 29906 eulplig 30429 hlimi 31132 leopadd 32076 tpssg 32481 brab2d 32552 eqrelrd2 32561 cntzun 33022 isinftm 33124 finexttrb 33638 metidv 33865 satfv1 35346 satfbrsuc 35349 gonarlem 35377 satfv0fvfmla0 35396 satfv1fvfmla1 35406 altopthg 35951 altopthbg 35952 brsegle 36092 bj-imdirvallem 37164 finxpreclem3 37377 itg2addnclem3 37663 exan3 38278 exanres 38279 exanres3 38280 eqrel2 38283 brcoss 38418 brcoss3 38420 brcoels 38422 br1cossxrnres 38435 brcosscnv 38459 prtlem13 38857 dib1dim 41154 f1o2d2 42216 pellex 42818 tfsconcatb0 43327 tfsconcat00 43330 prsprel 47481 uspgrsprf1 48141 uspgrsprfo 48142 brab2ddw2 48824 |
| Copyright terms: Public domain | W3C validator |