| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bi2anan9 | Structured version Visualization version GIF version | ||
| Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
| Ref | Expression |
|---|---|
| bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2an9.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bi2an9.2 | . 2 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
| 3 | pm4.38 637 | . 2 ⊢ (((𝜓 ↔ 𝜒) ∧ (𝜏 ↔ 𝜂)) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bi2anan9r 639 rspc2gv 3595 2reu5 3726 ralprgf 4654 ralprg 4656 raltpg 4658 prssg 4779 prsspwg 4783 ssprss 4784 intprg 4941 opelopab2a 5490 opelxp 5667 eqrel 5738 eqrelrel 5751 brcog 5820 tpres 7157 dff13 7211 cbvmpov 7464 resoprab2 7488 ovig 7515 dfoprab4f 8014 f1o2ndf1 8078 om00el 8517 oeoe 8540 eroveu 8762 endisj 9005 infxpen 9943 dfac5lem4OLD 10057 sornom 10206 ltsrpr 11006 axcnre 11093 axmulgt0 11224 wloglei 11686 mulge0b 12029 addltmul 12394 ltxr 13051 fzadd2 13496 sumsqeq0 14120 ccat0 14517 rlim 15437 cpnnen 16173 dvds2lem 16214 opoe 16309 omoe 16310 opeo 16311 omeo 16312 gcddvds 16449 dfgcd2 16492 pcqmul 16800 xpsfrnel2 17503 eqgval 19091 frgpuplem 19686 mpfind 22047 2ndcctbss 23375 txbasval 23526 cnmpt12 23587 cnmpt22 23594 prdsxmslem2 24450 ishtpy 24904 bcthlem1 25257 bcth 25262 volun 25479 vitali 25547 itg1addlem3 25632 rolle 25927 mumullem2 27123 lgsquadlem3 27326 lgsquad 27327 2sqlem7 27368 scutval 27746 slerec 27765 remulscllem2 28405 axpasch 28921 wlkson 29635 iswwlksnon 29833 wpthswwlks2on 29941 eulplig 30464 hlimi 31167 leopadd 32111 tpssg 32516 brab2d 32585 eqrelrd2 32594 cntzun 33051 isinftm 33150 finexttrb 33653 metidv 33875 satfv1 35343 satfbrsuc 35346 gonarlem 35374 satfv0fvfmla0 35393 satfv1fvfmla1 35403 altopthg 35948 altopthbg 35949 brsegle 36089 bj-imdirvallem 37161 finxpreclem3 37374 itg2addnclem3 37660 exan3 38275 exanres 38276 exanres3 38277 eqrel2 38280 brcoss 38415 brcoss3 38417 brcoels 38419 br1cossxrnres 38432 brcosscnv 38456 prtlem13 38854 dib1dim 41152 f1o2d2 42214 pellex 42816 tfsconcatb0 43326 tfsconcat00 43329 prsprel 47481 uspgrsprf1 48128 uspgrsprfo 48129 brab2ddw2 48811 |
| Copyright terms: Public domain | W3C validator |