![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bi2anan9 | Structured version Visualization version GIF version |
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
Ref | Expression |
---|---|
bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2an9.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bi2an9.2 | . 2 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
3 | pm4.38 637 | . 2 ⊢ (((𝜓 ↔ 𝜒) ∧ (𝜏 ↔ 𝜂)) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) | |
4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: bi2anan9r 639 rspc2gv 3632 2reu5 3767 ralprgf 4699 ralprg 4701 raltpg 4703 prssg 4824 prsspwg 4828 ssprss 4829 intprg 4986 opelopab2a 5545 opelxp 5725 eqrel 5797 eqrelrel 5810 brcog 5880 tpres 7221 dff13 7275 cbvmpov 7528 resoprab2 7552 ovig 7579 dfoprab4f 8080 f1o2ndf1 8146 om00el 8613 oeoe 8636 eroveu 8851 endisj 9097 infxpen 10052 dfac5lem4OLD 10166 sornom 10315 ltsrpr 11115 axcnre 11202 axmulgt0 11333 wloglei 11793 mulge0b 12136 addltmul 12500 ltxr 13155 fzadd2 13596 sumsqeq0 14215 ccat0 14611 rlim 15528 cpnnen 16262 dvds2lem 16303 opoe 16397 omoe 16398 opeo 16399 omeo 16400 gcddvds 16537 dfgcd2 16580 pcqmul 16887 xpsfrnel2 17611 eqgval 19208 frgpuplem 19805 mpfind 22149 2ndcctbss 23479 txbasval 23630 cnmpt12 23691 cnmpt22 23698 prdsxmslem2 24558 ishtpy 25018 bcthlem1 25372 bcth 25377 volun 25594 vitali 25662 itg1addlem3 25747 rolle 26043 mumullem2 27238 lgsquadlem3 27441 lgsquad 27442 2sqlem7 27483 scutval 27860 slerec 27879 remulscllem2 28448 axpasch 28971 wlkson 29689 iswwlksnon 29883 wpthswwlks2on 29991 eulplig 30514 hlimi 31217 leopadd 32161 brab2d 32627 eqrelrd2 32636 cntzun 33054 isinftm 33171 finexttrb 33690 metidv 33853 satfv1 35348 satfbrsuc 35351 gonarlem 35379 satfv0fvfmla0 35398 satfv1fvfmla1 35408 altopthg 35949 altopthbg 35950 brsegle 36090 bj-imdirvallem 37163 finxpreclem3 37376 itg2addnclem3 37660 exan3 38276 exanres 38277 exanres3 38278 eqrel2 38281 brcoss 38413 brcoss3 38415 brcoels 38417 br1cossxrnres 38430 brcosscnv 38454 prtlem13 38850 dib1dim 41148 f1o2d2 42253 pellex 42823 tfsconcatb0 43334 tfsconcat00 43337 prsprel 47412 uspgrsprf1 47991 uspgrsprfo 47992 |
Copyright terms: Public domain | W3C validator |