| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bi2anan9 | Structured version Visualization version GIF version | ||
| Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
| Ref | Expression |
|---|---|
| bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2an9.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bi2an9.2 | . 2 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
| 3 | pm4.38 637 | . 2 ⊢ (((𝜓 ↔ 𝜒) ∧ (𝜏 ↔ 𝜂)) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bi2anan9r 639 rspc2gv 3598 2reu5 3729 ralprgf 4658 ralprg 4660 raltpg 4662 prssg 4783 prsspwg 4787 ssprss 4788 intprg 4945 opelopab2a 5495 opelxp 5674 eqrel 5747 eqrelrel 5760 brcog 5830 tpres 7175 dff13 7229 cbvmpov 7484 resoprab2 7508 ovig 7535 dfoprab4f 8035 f1o2ndf1 8101 om00el 8540 oeoe 8563 eroveu 8785 endisj 9028 infxpen 9967 dfac5lem4OLD 10081 sornom 10230 ltsrpr 11030 axcnre 11117 axmulgt0 11248 wloglei 11710 mulge0b 12053 addltmul 12418 ltxr 13075 fzadd2 13520 sumsqeq0 14144 ccat0 14541 rlim 15461 cpnnen 16197 dvds2lem 16238 opoe 16333 omoe 16334 opeo 16335 omeo 16336 gcddvds 16473 dfgcd2 16516 pcqmul 16824 xpsfrnel2 17527 eqgval 19109 frgpuplem 19702 mpfind 22014 2ndcctbss 23342 txbasval 23493 cnmpt12 23554 cnmpt22 23561 prdsxmslem2 24417 ishtpy 24871 bcthlem1 25224 bcth 25229 volun 25446 vitali 25514 itg1addlem3 25599 rolle 25894 mumullem2 27090 lgsquadlem3 27293 lgsquad 27294 2sqlem7 27335 scutval 27712 slerec 27731 remulscllem2 28352 axpasch 28868 wlkson 29584 iswwlksnon 29783 wpthswwlks2on 29891 eulplig 30414 hlimi 31117 leopadd 32061 tpssg 32466 brab2d 32535 eqrelrd2 32544 cntzun 33008 isinftm 33135 finexttrb 33660 metidv 33882 satfv1 35350 satfbrsuc 35353 gonarlem 35381 satfv0fvfmla0 35400 satfv1fvfmla1 35410 altopthg 35955 altopthbg 35956 brsegle 36096 bj-imdirvallem 37168 finxpreclem3 37381 itg2addnclem3 37667 exan3 38282 exanres 38283 exanres3 38284 eqrel2 38287 brcoss 38422 brcoss3 38424 brcoels 38426 br1cossxrnres 38439 brcosscnv 38463 prtlem13 38861 dib1dim 41159 f1o2d2 42221 pellex 42823 tfsconcatb0 43333 tfsconcat00 43336 prsprel 47488 uspgrsprf1 48135 uspgrsprfo 48136 brab2ddw2 48818 |
| Copyright terms: Public domain | W3C validator |