![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bi2anan9 | Structured version Visualization version GIF version |
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
Ref | Expression |
---|---|
bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2an9.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bi2an9.2 | . 2 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
3 | pm4.38 634 | . 2 ⊢ (((𝜓 ↔ 𝜒) ∧ (𝜏 ↔ 𝜂)) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 |
This theorem is referenced by: bi2anan9r 636 rspc2gv 3566 2reu5 3678 ralprgf 4531 raltpg 4535 prssg 4653 prsspwg 4657 ssprss 4658 opelopab2a 5304 opelxp 5471 eqrel 5536 eqrelrel 5548 brcog 5615 tpres 6821 dff13 6869 resoprab2 7118 ovig 7143 dfoprab4f 7601 f1o2ndf1 7662 om00el 8043 oeoe 8066 eroveu 8233 endisj 8441 infxpen 9275 dfac5lem4 9387 sornom 9534 ltsrpr 10334 axcnre 10421 axmulgt0 10551 wloglei 11009 mulge0b 11347 addltmul 11710 ltxr 12349 fzadd2 12781 sumsqeq0 13380 ccat0 13762 rlim 14674 cpnnen 15403 dvds2lem 15443 opoe 15533 omoe 15534 opeo 15535 omeo 15536 gcddvds 15673 dfgcd2 15711 pcqmul 16007 xpsfrnel2 16654 eqgval 18070 frgpuplem 18613 mpfind 19991 2ndcctbss 21735 txbasval 21886 cnmpt12 21947 cnmpt22 21954 prdsxmslem2 22810 ishtpy 23247 bcthlem1 23598 bcth 23603 volun 23817 vitali 23885 itg1addlem3 23970 rolle 24258 mumullem2 25427 lgsquadlem3 25628 lgsquad 25629 2sqlem7 25670 axpasch 26398 wlkson 27108 iswwlksnon 27306 wpthswwlks2on 27415 eulplig 27941 hlimi 28644 leopadd 29588 eqrelrd2 30032 isinftm 30406 finexttrb 30611 metidv 30705 satfbrsuc 32175 gonarlem 32202 satfv0fvfmla0 32221 scutval 32819 slerec 32831 altopthg 32982 altopthbg 32983 brsegle 33123 finxpreclem3 34151 itg2addnclem3 34422 exan3 35031 exanres 35032 exanres3 35033 eqrel2 35037 brcoss 35157 brcoss3 35159 brcoels 35161 br1cossxrnres 35169 brcosscnv 35193 prtlem13 35485 dib1dim 37782 pellex 38868 ichan 43066 prsprel 43085 uspgrsprf1 43458 uspgrsprfo 43459 |
Copyright terms: Public domain | W3C validator |