![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bi2anan9 | Structured version Visualization version GIF version |
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
Ref | Expression |
---|---|
bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2an9.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bi2an9.2 | . 2 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
3 | pm4.38 636 | . 2 ⊢ (((𝜓 ↔ 𝜒) ∧ (𝜏 ↔ 𝜂)) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: bi2anan9r 638 rspc2gv 3645 2reu5 3780 ralprgf 4717 ralprg 4719 raltpg 4723 prssg 4844 prsspwg 4848 ssprss 4849 intprg 5005 opelopab2a 5554 opelxp 5736 eqrel 5808 eqrelrel 5821 brcog 5891 tpres 7238 dff13 7292 cbvmpov 7545 resoprab2 7569 ovig 7596 dfoprab4f 8097 f1o2ndf1 8163 om00el 8632 oeoe 8655 eroveu 8870 endisj 9124 infxpen 10083 dfac5lem4OLD 10197 sornom 10346 ltsrpr 11146 axcnre 11233 axmulgt0 11364 wloglei 11822 mulge0b 12165 addltmul 12529 ltxr 13178 fzadd2 13619 sumsqeq0 14228 ccat0 14624 rlim 15541 cpnnen 16277 dvds2lem 16317 opoe 16411 omoe 16412 opeo 16413 omeo 16414 gcddvds 16549 dfgcd2 16593 pcqmul 16900 xpsfrnel2 17624 eqgval 19217 frgpuplem 19814 mpfind 22154 2ndcctbss 23484 txbasval 23635 cnmpt12 23696 cnmpt22 23703 prdsxmslem2 24563 ishtpy 25023 bcthlem1 25377 bcth 25382 volun 25599 vitali 25667 itg1addlem3 25752 rolle 26048 mumullem2 27241 lgsquadlem3 27444 lgsquad 27445 2sqlem7 27486 scutval 27863 slerec 27882 remulscllem2 28451 axpasch 28974 wlkson 29692 iswwlksnon 29886 wpthswwlks2on 29994 eulplig 30517 hlimi 31220 leopadd 32164 brab2d 32629 eqrelrd2 32638 cntzun 33044 isinftm 33161 finexttrb 33675 metidv 33838 satfv1 35331 satfbrsuc 35334 gonarlem 35362 satfv0fvfmla0 35381 satfv1fvfmla1 35391 altopthg 35931 altopthbg 35932 brsegle 36072 bj-imdirvallem 37146 finxpreclem3 37359 itg2addnclem3 37633 exan3 38250 exanres 38251 exanres3 38252 eqrel2 38255 brcoss 38387 brcoss3 38389 brcoels 38391 br1cossxrnres 38404 brcosscnv 38428 prtlem13 38824 dib1dim 41122 f1o2d2 42228 pellex 42791 tfsconcatb0 43306 tfsconcat00 43309 prsprel 47361 uspgrsprf1 47870 uspgrsprfo 47871 |
Copyright terms: Public domain | W3C validator |