![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bi2anan9 | Structured version Visualization version GIF version |
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
Ref | Expression |
---|---|
bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2an9.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bi2an9.2 | . 2 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
3 | pm4.38 637 | . 2 ⊢ (((𝜓 ↔ 𝜒) ∧ (𝜏 ↔ 𝜂)) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) | |
4 | 1, 2, 3 | syl2an 597 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: bi2anan9r 639 rspc2gv 3622 2reu5 3755 ralprgf 4697 ralprg 4699 raltpg 4703 prssg 4823 prsspwg 4827 ssprss 4828 intprg 4986 opelopab2a 5536 opelxp 5713 eqrel 5785 eqrelrel 5798 brcog 5867 tpres 7202 dff13 7254 resoprab2 7527 ovig 7554 dfoprab4f 8042 f1o2ndf1 8108 om00el 8576 oeoe 8599 eroveu 8806 endisj 9058 infxpen 10009 dfac5lem4 10121 sornom 10272 ltsrpr 11072 axcnre 11159 axmulgt0 11288 wloglei 11746 mulge0b 12084 addltmul 12448 ltxr 13095 fzadd2 13536 sumsqeq0 14143 ccat0 14526 rlim 15439 cpnnen 16172 dvds2lem 16212 opoe 16306 omoe 16307 opeo 16308 omeo 16309 gcddvds 16444 dfgcd2 16488 pcqmul 16786 xpsfrnel2 17510 eqgval 19057 frgpuplem 19640 mpfind 21670 2ndcctbss 22959 txbasval 23110 cnmpt12 23171 cnmpt22 23178 prdsxmslem2 24038 ishtpy 24488 bcthlem1 24841 bcth 24846 volun 25062 vitali 25130 itg1addlem3 25215 rolle 25507 mumullem2 26684 lgsquadlem3 26885 lgsquad 26886 2sqlem7 26927 scutval 27301 slerec 27320 axpasch 28199 wlkson 28913 iswwlksnon 29107 wpthswwlks2on 29215 eulplig 29738 hlimi 30441 leopadd 31385 eqrelrd2 31845 cntzun 32212 isinftm 32327 finexttrb 32741 metidv 32872 satfv1 34354 satfbrsuc 34357 gonarlem 34385 satfv0fvfmla0 34404 satfv1fvfmla1 34414 altopthg 34939 altopthbg 34940 brsegle 35080 bj-imdirvallem 36061 finxpreclem3 36274 itg2addnclem3 36541 exan3 37163 exanres 37164 exanres3 37165 eqrel2 37168 brcoss 37301 brcoss3 37303 brcoels 37305 br1cossxrnres 37318 brcosscnv 37342 prtlem13 37738 dib1dim 40036 f1o2d2 41055 pellex 41573 tfsconcatb0 42094 tfsconcat00 42097 prsprel 46155 uspgrsprf1 46525 uspgrsprfo 46526 |
Copyright terms: Public domain | W3C validator |