| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bi2anan9 | Structured version Visualization version GIF version | ||
| Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
| Ref | Expression |
|---|---|
| bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2an9.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bi2an9.2 | . 2 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
| 3 | pm4.38 637 | . 2 ⊢ (((𝜓 ↔ 𝜒) ∧ (𝜏 ↔ 𝜂)) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bi2anan9r 639 rspc2gv 3616 2reu5 3746 ralprgf 4675 ralprg 4677 raltpg 4679 prssg 4800 prsspwg 4804 ssprss 4805 intprg 4962 opelopab2a 5515 opelxp 5695 eqrel 5768 eqrelrel 5781 brcog 5851 tpres 7198 dff13 7252 cbvmpov 7507 resoprab2 7531 ovig 7558 dfoprab4f 8060 f1o2ndf1 8126 om00el 8593 oeoe 8616 eroveu 8831 endisj 9077 infxpen 10033 dfac5lem4OLD 10147 sornom 10296 ltsrpr 11096 axcnre 11183 axmulgt0 11314 wloglei 11774 mulge0b 12117 addltmul 12482 ltxr 13136 fzadd2 13581 sumsqeq0 14202 ccat0 14599 rlim 15516 cpnnen 16252 dvds2lem 16293 opoe 16387 omoe 16388 opeo 16389 omeo 16390 gcddvds 16527 dfgcd2 16570 pcqmul 16878 xpsfrnel2 17583 eqgval 19165 frgpuplem 19758 mpfind 22070 2ndcctbss 23398 txbasval 23549 cnmpt12 23610 cnmpt22 23617 prdsxmslem2 24473 ishtpy 24927 bcthlem1 25281 bcth 25286 volun 25503 vitali 25571 itg1addlem3 25656 rolle 25951 mumullem2 27147 lgsquadlem3 27350 lgsquad 27351 2sqlem7 27392 scutval 27769 slerec 27788 remulscllem2 28409 axpasch 28925 wlkson 29641 iswwlksnon 29840 wpthswwlks2on 29948 eulplig 30471 hlimi 31174 leopadd 32118 tpssg 32523 brab2d 32592 eqrelrd2 32601 cntzun 33067 isinftm 33184 finexttrb 33711 metidv 33928 satfv1 35390 satfbrsuc 35393 gonarlem 35421 satfv0fvfmla0 35440 satfv1fvfmla1 35450 altopthg 35990 altopthbg 35991 brsegle 36131 bj-imdirvallem 37203 finxpreclem3 37416 itg2addnclem3 37702 exan3 38317 exanres 38318 exanres3 38319 eqrel2 38322 brcoss 38454 brcoss3 38456 brcoels 38458 br1cossxrnres 38471 brcosscnv 38495 prtlem13 38891 dib1dim 41189 f1o2d2 42251 pellex 42833 tfsconcatb0 43343 tfsconcat00 43346 prsprel 47481 uspgrsprf1 48102 uspgrsprfo 48103 brab2ddw2 48788 |
| Copyright terms: Public domain | W3C validator |