![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bi2anan9 | Structured version Visualization version GIF version |
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
Ref | Expression |
---|---|
bi2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2an9.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bi2an9.2 | . 2 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
3 | pm4.38 634 | . 2 ⊢ (((𝜓 ↔ 𝜒) ∧ (𝜏 ↔ 𝜂)) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) | |
4 | 1, 2, 3 | syl2an 594 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: bi2anan9r 636 rspc2gv 3620 2reu5 3753 ralprgf 4695 ralprg 4697 raltpg 4701 prssg 4821 prsspwg 4825 ssprss 4826 intprg 4984 opelopab2a 5534 opelxp 5711 eqrel 5783 eqrelrel 5796 brcog 5865 tpres 7203 dff13 7256 resoprab2 7529 ovig 7556 dfoprab4f 8044 f1o2ndf1 8110 om00el 8578 oeoe 8601 eroveu 8808 endisj 9060 infxpen 10011 dfac5lem4 10123 sornom 10274 ltsrpr 11074 axcnre 11161 axmulgt0 11292 wloglei 11750 mulge0b 12088 addltmul 12452 ltxr 13099 fzadd2 13540 sumsqeq0 14147 ccat0 14530 rlim 15443 cpnnen 16176 dvds2lem 16216 opoe 16310 omoe 16311 opeo 16312 omeo 16313 gcddvds 16448 dfgcd2 16492 pcqmul 16790 xpsfrnel2 17514 eqgval 19093 frgpuplem 19681 mpfind 21889 2ndcctbss 23179 txbasval 23330 cnmpt12 23391 cnmpt22 23398 prdsxmslem2 24258 ishtpy 24718 bcthlem1 25072 bcth 25077 volun 25294 vitali 25362 itg1addlem3 25447 rolle 25742 mumullem2 26920 lgsquadlem3 27121 lgsquad 27122 2sqlem7 27163 scutval 27538 slerec 27557 axpasch 28466 wlkson 29180 iswwlksnon 29374 wpthswwlks2on 29482 eulplig 30005 hlimi 30708 leopadd 31652 eqrelrd2 32112 cntzun 32482 isinftm 32597 finexttrb 33029 metidv 33170 satfv1 34652 satfbrsuc 34655 gonarlem 34683 satfv0fvfmla0 34702 satfv1fvfmla1 34712 altopthg 35243 altopthbg 35244 brsegle 35384 bj-imdirvallem 36364 finxpreclem3 36577 itg2addnclem3 36844 exan3 37466 exanres 37467 exanres3 37468 eqrel2 37471 brcoss 37604 brcoss3 37606 brcoels 37608 br1cossxrnres 37621 brcosscnv 37645 prtlem13 38041 dib1dim 40339 f1o2d2 41361 pellex 41875 tfsconcatb0 42396 tfsconcat00 42399 prsprel 46453 uspgrsprf1 46823 uspgrsprfo 46824 |
Copyright terms: Public domain | W3C validator |