Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ichan Structured version   Visualization version   GIF version

Theorem ichan 43704
Description: If two setvar variables are interchangeable in two wffs, then they are interchangeable in the conjunction of these two wffs. Notice that the reverse implication is not necessarily true. Corresponding theorems will hold for other commutative operations, too. (Contributed by AV, 31-Jul-2023.)
Assertion
Ref Expression
ichan (([𝑎𝑏]𝜑 ∧ [𝑎𝑏]𝜓) → [𝑎𝑏](𝜑𝜓))
Distinct variable group:   𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝜓(𝑎,𝑏)

Proof of Theorem ichan
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.26-2 1871 . . . 4 (∀𝑥𝑦(([𝑥 / 𝑎][𝑦 / 𝑏]𝜑 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜑) ∧ ([𝑥 / 𝑎][𝑦 / 𝑏]𝜓 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜓)) ↔ (∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑏]𝜑 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜑) ∧ ∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑏]𝜓 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜓)))
2 pm4.38 636 . . . . . . . 8 ((([𝑥 / 𝑎][𝑦 / 𝑏]𝜑 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜑) ∧ ([𝑥 / 𝑎][𝑦 / 𝑏]𝜓 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜓)) → (([𝑥 / 𝑎][𝑦 / 𝑏]𝜑 ∧ [𝑥 / 𝑎][𝑦 / 𝑏]𝜓) ↔ ([𝑦 / 𝑎][𝑥 / 𝑏]𝜑 ∧ [𝑦 / 𝑎][𝑥 / 𝑏]𝜓)))
32biimpd 231 . . . . . . 7 ((([𝑥 / 𝑎][𝑦 / 𝑏]𝜑 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜑) ∧ ([𝑥 / 𝑎][𝑦 / 𝑏]𝜓 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜓)) → (([𝑥 / 𝑎][𝑦 / 𝑏]𝜑 ∧ [𝑥 / 𝑎][𝑦 / 𝑏]𝜓) → ([𝑦 / 𝑎][𝑥 / 𝑏]𝜑 ∧ [𝑦 / 𝑎][𝑥 / 𝑏]𝜓)))
4 sban 2085 . . . . . . . . 9 ([𝑦 / 𝑏](𝜑𝜓) ↔ ([𝑦 / 𝑏]𝜑 ∧ [𝑦 / 𝑏]𝜓))
54sbbii 2080 . . . . . . . 8 ([𝑥 / 𝑎][𝑦 / 𝑏](𝜑𝜓) ↔ [𝑥 / 𝑎]([𝑦 / 𝑏]𝜑 ∧ [𝑦 / 𝑏]𝜓))
6 sban 2085 . . . . . . . 8 ([𝑥 / 𝑎]([𝑦 / 𝑏]𝜑 ∧ [𝑦 / 𝑏]𝜓) ↔ ([𝑥 / 𝑎][𝑦 / 𝑏]𝜑 ∧ [𝑥 / 𝑎][𝑦 / 𝑏]𝜓))
75, 6bitri 277 . . . . . . 7 ([𝑥 / 𝑎][𝑦 / 𝑏](𝜑𝜓) ↔ ([𝑥 / 𝑎][𝑦 / 𝑏]𝜑 ∧ [𝑥 / 𝑎][𝑦 / 𝑏]𝜓))
8 sban 2085 . . . . . . . . 9 ([𝑥 / 𝑏](𝜑𝜓) ↔ ([𝑥 / 𝑏]𝜑 ∧ [𝑥 / 𝑏]𝜓))
98sbbii 2080 . . . . . . . 8 ([𝑦 / 𝑎][𝑥 / 𝑏](𝜑𝜓) ↔ [𝑦 / 𝑎]([𝑥 / 𝑏]𝜑 ∧ [𝑥 / 𝑏]𝜓))
10 sban 2085 . . . . . . . 8 ([𝑦 / 𝑎]([𝑥 / 𝑏]𝜑 ∧ [𝑥 / 𝑏]𝜓) ↔ ([𝑦 / 𝑎][𝑥 / 𝑏]𝜑 ∧ [𝑦 / 𝑎][𝑥 / 𝑏]𝜓))
119, 10bitri 277 . . . . . . 7 ([𝑦 / 𝑎][𝑥 / 𝑏](𝜑𝜓) ↔ ([𝑦 / 𝑎][𝑥 / 𝑏]𝜑 ∧ [𝑦 / 𝑎][𝑥 / 𝑏]𝜓))
123, 7, 113imtr4g 298 . . . . . 6 ((([𝑥 / 𝑎][𝑦 / 𝑏]𝜑 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜑) ∧ ([𝑥 / 𝑎][𝑦 / 𝑏]𝜓 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜓)) → ([𝑥 / 𝑎][𝑦 / 𝑏](𝜑𝜓) → [𝑦 / 𝑎][𝑥 / 𝑏](𝜑𝜓)))
13122alimi 1812 . . . . 5 (∀𝑥𝑦(([𝑥 / 𝑎][𝑦 / 𝑏]𝜑 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜑) ∧ ([𝑥 / 𝑎][𝑦 / 𝑏]𝜓 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜓)) → ∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑏](𝜑𝜓) → [𝑦 / 𝑎][𝑥 / 𝑏](𝜑𝜓)))
14 bicom1 223 . . . . . . . . 9 (([𝑥 / 𝑎][𝑦 / 𝑏]𝜑 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜑) → ([𝑦 / 𝑎][𝑥 / 𝑏]𝜑 ↔ [𝑥 / 𝑎][𝑦 / 𝑏]𝜑))
15 bicom1 223 . . . . . . . . 9 (([𝑥 / 𝑎][𝑦 / 𝑏]𝜓 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜓) → ([𝑦 / 𝑎][𝑥 / 𝑏]𝜓 ↔ [𝑥 / 𝑎][𝑦 / 𝑏]𝜓))
1614, 15bi2anan9 637 . . . . . . . 8 ((([𝑥 / 𝑎][𝑦 / 𝑏]𝜑 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜑) ∧ ([𝑥 / 𝑎][𝑦 / 𝑏]𝜓 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜓)) → (([𝑦 / 𝑎][𝑥 / 𝑏]𝜑 ∧ [𝑦 / 𝑎][𝑥 / 𝑏]𝜓) ↔ ([𝑥 / 𝑎][𝑦 / 𝑏]𝜑 ∧ [𝑥 / 𝑎][𝑦 / 𝑏]𝜓)))
1716biimpd 231 . . . . . . 7 ((([𝑥 / 𝑎][𝑦 / 𝑏]𝜑 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜑) ∧ ([𝑥 / 𝑎][𝑦 / 𝑏]𝜓 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜓)) → (([𝑦 / 𝑎][𝑥 / 𝑏]𝜑 ∧ [𝑦 / 𝑎][𝑥 / 𝑏]𝜓) → ([𝑥 / 𝑎][𝑦 / 𝑏]𝜑 ∧ [𝑥 / 𝑎][𝑦 / 𝑏]𝜓)))
1817, 11, 73imtr4g 298 . . . . . 6 ((([𝑥 / 𝑎][𝑦 / 𝑏]𝜑 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜑) ∧ ([𝑥 / 𝑎][𝑦 / 𝑏]𝜓 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜓)) → ([𝑦 / 𝑎][𝑥 / 𝑏](𝜑𝜓) → [𝑥 / 𝑎][𝑦 / 𝑏](𝜑𝜓)))
19182alimi 1812 . . . . 5 (∀𝑥𝑦(([𝑥 / 𝑎][𝑦 / 𝑏]𝜑 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜑) ∧ ([𝑥 / 𝑎][𝑦 / 𝑏]𝜓 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜓)) → ∀𝑥𝑦([𝑦 / 𝑎][𝑥 / 𝑏](𝜑𝜓) → [𝑥 / 𝑎][𝑦 / 𝑏](𝜑𝜓)))
2013, 19jca 514 . . . 4 (∀𝑥𝑦(([𝑥 / 𝑎][𝑦 / 𝑏]𝜑 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜑) ∧ ([𝑥 / 𝑎][𝑦 / 𝑏]𝜓 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜓)) → (∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑏](𝜑𝜓) → [𝑦 / 𝑎][𝑥 / 𝑏](𝜑𝜓)) ∧ ∀𝑥𝑦([𝑦 / 𝑎][𝑥 / 𝑏](𝜑𝜓) → [𝑥 / 𝑎][𝑦 / 𝑏](𝜑𝜓))))
211, 20sylbir 237 . . 3 ((∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑏]𝜑 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜑) ∧ ∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑏]𝜓 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜓)) → (∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑏](𝜑𝜓) → [𝑦 / 𝑎][𝑥 / 𝑏](𝜑𝜓)) ∧ ∀𝑥𝑦([𝑦 / 𝑎][𝑥 / 𝑏](𝜑𝜓) → [𝑥 / 𝑎][𝑦 / 𝑏](𝜑𝜓))))
22 2albiim 1890 . . 3 (∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑏](𝜑𝜓) ↔ [𝑦 / 𝑎][𝑥 / 𝑏](𝜑𝜓)) ↔ (∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑏](𝜑𝜓) → [𝑦 / 𝑎][𝑥 / 𝑏](𝜑𝜓)) ∧ ∀𝑥𝑦([𝑦 / 𝑎][𝑥 / 𝑏](𝜑𝜓) → [𝑥 / 𝑎][𝑦 / 𝑏](𝜑𝜓))))
2321, 22sylibr 236 . 2 ((∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑏]𝜑 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜑) ∧ ∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑏]𝜓 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜓)) → ∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑏](𝜑𝜓) ↔ [𝑦 / 𝑎][𝑥 / 𝑏](𝜑𝜓)))
24 dfich2 43687 . . 3 ([𝑎𝑏]𝜑 ↔ ∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑏]𝜑 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜑))
25 dfich2 43687 . . 3 ([𝑎𝑏]𝜓 ↔ ∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑏]𝜓 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜓))
2624, 25anbi12i 628 . 2 (([𝑎𝑏]𝜑 ∧ [𝑎𝑏]𝜓) ↔ (∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑏]𝜑 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜑) ∧ ∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑏]𝜓 ↔ [𝑦 / 𝑎][𝑥 / 𝑏]𝜓)))
27 dfich2 43687 . 2 ([𝑎𝑏](𝜑𝜓) ↔ ∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑏](𝜑𝜓) ↔ [𝑦 / 𝑎][𝑥 / 𝑏](𝜑𝜓)))
2823, 26, 273imtr4i 294 1 (([𝑎𝑏]𝜑 ∧ [𝑎𝑏]𝜓) → [𝑎𝑏](𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1534  [wsb 2068  [wich 43679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-10 2144  ax-11 2160  ax-12 2176
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-ich 43680
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator