Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ichan Structured version   Visualization version   GIF version

Theorem ichan 47565
Description: If two setvar variables are interchangeable in two wffs, then they are interchangeable in the conjunction of these two wffs. Notice that the reverse implication is not necessarily true. Corresponding theorems will hold for other commutative operations, too. (Contributed by AV, 31-Jul-2023.) Use df-ich 47556 instead of dfich2 47568 to reduce axioms. (Revised by SN, 4-May-2024.)
Assertion
Ref Expression
ichan (([𝑎𝑏]𝜑 ∧ [𝑎𝑏]𝜓) → [𝑎𝑏](𝜑𝜓))

Proof of Theorem ichan
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sban 2083 . . . . . . . 8 ([𝑥 / 𝑏](𝜑𝜓) ↔ ([𝑥 / 𝑏]𝜑 ∧ [𝑥 / 𝑏]𝜓))
21sbbii 2079 . . . . . . 7 ([𝑏 / 𝑎][𝑥 / 𝑏](𝜑𝜓) ↔ [𝑏 / 𝑎]([𝑥 / 𝑏]𝜑 ∧ [𝑥 / 𝑏]𝜓))
32sbbii 2079 . . . . . 6 ([𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏](𝜑𝜓) ↔ [𝑎 / 𝑥][𝑏 / 𝑎]([𝑥 / 𝑏]𝜑 ∧ [𝑥 / 𝑏]𝜓))
4 sban 2083 . . . . . . 7 ([𝑏 / 𝑎]([𝑥 / 𝑏]𝜑 ∧ [𝑥 / 𝑏]𝜓) ↔ ([𝑏 / 𝑎][𝑥 / 𝑏]𝜑 ∧ [𝑏 / 𝑎][𝑥 / 𝑏]𝜓))
54sbbii 2079 . . . . . 6 ([𝑎 / 𝑥][𝑏 / 𝑎]([𝑥 / 𝑏]𝜑 ∧ [𝑥 / 𝑏]𝜓) ↔ [𝑎 / 𝑥]([𝑏 / 𝑎][𝑥 / 𝑏]𝜑 ∧ [𝑏 / 𝑎][𝑥 / 𝑏]𝜓))
6 sban 2083 . . . . . 6 ([𝑎 / 𝑥]([𝑏 / 𝑎][𝑥 / 𝑏]𝜑 ∧ [𝑏 / 𝑎][𝑥 / 𝑏]𝜓) ↔ ([𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏]𝜑 ∧ [𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏]𝜓))
73, 5, 63bitri 297 . . . . 5 ([𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏](𝜑𝜓) ↔ ([𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏]𝜑 ∧ [𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏]𝜓))
8 pm4.38 637 . . . . 5 ((([𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏]𝜑𝜑) ∧ ([𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏]𝜓𝜓)) → (([𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏]𝜑 ∧ [𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏]𝜓) ↔ (𝜑𝜓)))
97, 8bitrid 283 . . . 4 ((([𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏]𝜑𝜑) ∧ ([𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏]𝜓𝜓)) → ([𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏](𝜑𝜓) ↔ (𝜑𝜓)))
109alanimi 1817 . . 3 ((∀𝑏([𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏]𝜑𝜑) ∧ ∀𝑏([𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏]𝜓𝜓)) → ∀𝑏([𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏](𝜑𝜓) ↔ (𝜑𝜓)))
1110alanimi 1817 . 2 ((∀𝑎𝑏([𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏]𝜑𝜑) ∧ ∀𝑎𝑏([𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏]𝜓𝜓)) → ∀𝑎𝑏([𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏](𝜑𝜓) ↔ (𝜑𝜓)))
12 df-ich 47556 . . 3 ([𝑎𝑏]𝜑 ↔ ∀𝑎𝑏([𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏]𝜑𝜑))
13 df-ich 47556 . . 3 ([𝑎𝑏]𝜓 ↔ ∀𝑎𝑏([𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏]𝜓𝜓))
1412, 13anbi12i 628 . 2 (([𝑎𝑏]𝜑 ∧ [𝑎𝑏]𝜓) ↔ (∀𝑎𝑏([𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏]𝜑𝜑) ∧ ∀𝑎𝑏([𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏]𝜓𝜓)))
15 df-ich 47556 . 2 ([𝑎𝑏](𝜑𝜓) ↔ ∀𝑎𝑏([𝑎 / 𝑥][𝑏 / 𝑎][𝑥 / 𝑏](𝜑𝜓) ↔ (𝜑𝜓)))
1611, 14, 153imtr4i 292 1 (([𝑎𝑏]𝜑 ∧ [𝑎𝑏]𝜓) → [𝑎𝑏](𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  [wsb 2067  [wich 47555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-an 396  df-sb 2068  df-ich 47556
This theorem is referenced by:  ichim  47567
  Copyright terms: Public domain W3C validator