Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbingVD Structured version   Visualization version   GIF version

Theorem csbingVD 44880
Description: Virtual deduction proof of csbin 4408. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbin 4408 is csbingVD 44880 without virtual deductions and was automatically derived from csbingVD 44880.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷) }
20:2: 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦 𝐷)}
30:1,20: (   𝐴𝐵   ▶   [𝐴 / 𝑥](𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)}   )
3:1,30: (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)}   )
4:1: (   𝐴𝐵   ▶   𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶 𝑦𝐷)} = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}   )
5:3,4: (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}   )
6:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐶𝑦 𝐴 / 𝑥𝐶)   )
7:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐷𝑦 𝐴 / 𝑥𝐷)   )
8:6,7: (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝑦𝐶 [𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷 ))   )
9:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶 𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷))   )
10:9,8: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶 𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
11:10: (   𝐴𝐵   ▶   𝑦([𝐴 / 𝑥](𝑦 𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
12:11: (   𝐴𝐵   ▶   {𝑦[𝐴 / 𝑥](𝑦𝐶 𝑦𝐷)} = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}   )
13:5,12: (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}   )
14:: (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷) = { 𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}
15:13,14: (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)   )
qed:15: (𝐴𝐵𝐴 / 𝑥(𝐶𝐷) = ( 𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbingVD (𝐴𝐵𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))

Proof of Theorem csbingVD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 idn1 44571 . . . . . 6 (   𝐴𝐵   ▶   𝐴𝐵   )
2 df-in 3924 . . . . . . . 8 (𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)}
32ax-gen 1795 . . . . . . 7 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)}
4 spsbc 3769 . . . . . . 7 (𝐴𝐵 → (∀𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)} → [𝐴 / 𝑥](𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)}))
51, 3, 4e10 44691 . . . . . 6 (   𝐴𝐵   ▶   [𝐴 / 𝑥](𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)}   )
6 sbceqg 4378 . . . . . . 7 (𝐴𝐵 → ([𝐴 / 𝑥](𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)} ↔ 𝐴 / 𝑥(𝐶𝐷) = 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)}))
76biimpd 229 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥](𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)} → 𝐴 / 𝑥(𝐶𝐷) = 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)}))
81, 5, 7e11 44685 . . . . 5 (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)}   )
9 csbab 4406 . . . . . . 7 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)} = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}
109a1i 11 . . . . . 6 (𝐴𝐵𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)} = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)})
111, 10e1a 44624 . . . . 5 (   𝐴𝐵   ▶   𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)} = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}   )
12 eqeq1 2734 . . . . . 6 (𝐴 / 𝑥(𝐶𝐷) = 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)} → (𝐴 / 𝑥(𝐶𝐷) = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} ↔ 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)} = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}))
1312biimprd 248 . . . . 5 (𝐴 / 𝑥(𝐶𝐷) = 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)} → (𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)} = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} → 𝐴 / 𝑥(𝐶𝐷) = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}))
148, 11, 13e11 44685 . . . 4 (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}   )
15 sbcan 3806 . . . . . . . . 9 ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷))
1615a1i 11 . . . . . . . 8 (𝐴𝐵 → ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷)))
171, 16e1a 44624 . . . . . . 7 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷))   )
18 sbcel2 4384 . . . . . . . . . 10 ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶)
1918a1i 11 . . . . . . . . 9 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶))
201, 19e1a 44624 . . . . . . . 8 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶)   )
21 sbcel2 4384 . . . . . . . . . 10 ([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷)
2221a1i 11 . . . . . . . . 9 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷))
231, 22e1a 44624 . . . . . . . 8 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷)   )
24 pm4.38 637 . . . . . . . . 9 ((([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶) ∧ ([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷)) → (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)))
2524ex 412 . . . . . . . 8 (([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶) → (([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷) → (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
2620, 23, 25e11 44685 . . . . . . 7 (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
27 bibi1 351 . . . . . . . 8 (([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷)) → (([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) ↔ (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
2827biimprd 248 . . . . . . 7 (([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷)) → ((([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
2917, 26, 28e11 44685 . . . . . 6 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
3029gen11 44613 . . . . 5 (   𝐴𝐵   ▶   𝑦([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
31 abbib 2799 . . . . . 6 ({𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)} ↔ ∀𝑦([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)))
3231biimpri 228 . . . . 5 (∀𝑦([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)})
3330, 32e1a 44624 . . . 4 (   𝐴𝐵   ▶   {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}   )
34 eqeq1 2734 . . . . 5 (𝐴 / 𝑥(𝐶𝐷) = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} → (𝐴 / 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)} ↔ {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}))
3534biimprd 248 . . . 4 (𝐴 / 𝑥(𝐶𝐷) = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} → ({𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)} → 𝐴 / 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}))
3614, 33, 35e11 44685 . . 3 (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}   )
37 df-in 3924 . . 3 (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}
38 eqeq2 2742 . . . 4 ((𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)} → (𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷) ↔ 𝐴 / 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}))
3938biimprcd 250 . . 3 (𝐴 / 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)} → ((𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)} → 𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)))
4036, 37, 39e10 44691 . 2 (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)   )
4140in1 44568 1 (𝐴𝐵𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  {cab 2708  [wsbc 3756  csb 3865  cin 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-in 3924  df-nul 4300  df-vd1 44567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator