Step | Hyp | Ref
| Expression |
1 | | idn1 42147 |
. . . . . 6
⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) |
2 | | df-in 3898 |
. . . . . . . 8
⊢ (𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} |
3 | 2 | ax-gen 1801 |
. . . . . . 7
⊢
∀𝑥(𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} |
4 | | spsbc 3732 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} → [𝐴 / 𝑥](𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)})) |
5 | 1, 3, 4 | e10 42267 |
. . . . . 6
⊢ ( 𝐴 ∈ 𝐵 ▶ [𝐴 / 𝑥](𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} ) |
6 | | sbceqg 4348 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} ↔ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)})) |
7 | 6 | biimpd 228 |
. . . . . 6
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)})) |
8 | 1, 5, 7 | e11 42261 |
. . . . 5
⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} ) |
9 | | csbab 4376 |
. . . . . . 7
⊢
⦋𝐴 /
𝑥⦌{𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} = {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} |
10 | 9 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ 𝐵 → ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} = {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)}) |
11 | 1, 10 | e1a 42200 |
. . . . 5
⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} = {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} ) |
12 | | eqeq1 2743 |
. . . . . 6
⊢
(⦋𝐴 /
𝑥⦌(𝐶 ∩ 𝐷) = ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} → (⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} ↔ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} = {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)})) |
13 | 12 | biimprd 247 |
. . . . 5
⊢
(⦋𝐴 /
𝑥⦌(𝐶 ∩ 𝐷) = ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} → (⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} = {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)})) |
14 | 8, 11, 13 | e11 42261 |
. . . 4
⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} ) |
15 | | sbcan 3771 |
. . . . . . . . 9
⊢
([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐷)) |
16 | 15 | a1i 11 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐷))) |
17 | 1, 16 | e1a 42200 |
. . . . . . 7
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐷)) ) |
18 | | sbcel2 4354 |
. . . . . . . . . 10
⊢
([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶) |
19 | 18 | a1i 11 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
20 | 1, 19 | e1a 42200 |
. . . . . . . 8
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶) ) |
21 | | sbcel2 4354 |
. . . . . . . . . 10
⊢
([𝐴 / 𝑥]𝑦 ∈ 𝐷 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷) |
22 | 21 | a1i 11 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝑦 ∈ 𝐷 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) |
23 | 1, 22 | e1a 42200 |
. . . . . . . 8
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐷 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷) ) |
24 | | pm4.38 634 |
. . . . . . . . 9
⊢
((([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶) ∧ ([𝐴 / 𝑥]𝑦 ∈ 𝐷 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) → (([𝐴 / 𝑥]𝑦 ∈ 𝐶 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷))) |
25 | 24 | ex 412 |
. . . . . . . 8
⊢
(([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶) → (([𝐴 / 𝑥]𝑦 ∈ 𝐷 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷) → (([𝐴 / 𝑥]𝑦 ∈ 𝐶 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)))) |
26 | 20, 23, 25 | e11 42261 |
. . . . . . 7
⊢ ( 𝐴 ∈ 𝐵 ▶ (([𝐴 / 𝑥]𝑦 ∈ 𝐶 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) ) |
27 | | bibi1 351 |
. . . . . . . 8
⊢
(([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐷)) → (([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) ↔ (([𝐴 / 𝑥]𝑦 ∈ 𝐶 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)))) |
28 | 27 | biimprd 247 |
. . . . . . 7
⊢
(([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐷)) → ((([𝐴 / 𝑥]𝑦 ∈ 𝐶 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) → ([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)))) |
29 | 17, 26, 28 | e11 42261 |
. . . . . 6
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) ) |
30 | 29 | gen11 42189 |
. . . . 5
⊢ ( 𝐴 ∈ 𝐵 ▶ ∀𝑦([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) ) |
31 | | abbi 2811 |
. . . . . 6
⊢
(∀𝑦([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) ↔ {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} = {𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)}) |
32 | 31 | biimpi 215 |
. . . . 5
⊢
(∀𝑦([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) → {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} = {𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)}) |
33 | 30, 32 | e1a 42200 |
. . . 4
⊢ ( 𝐴 ∈ 𝐵 ▶ {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} = {𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)} ) |
34 | | eqeq1 2743 |
. . . . 5
⊢
(⦋𝐴 /
𝑥⦌(𝐶 ∩ 𝐷) = {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} → (⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)} ↔ {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} = {𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)})) |
35 | 34 | biimprd 247 |
. . . 4
⊢
(⦋𝐴 /
𝑥⦌(𝐶 ∩ 𝐷) = {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} → ({𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} = {𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)} → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)})) |
36 | 14, 33, 35 | e11 42261 |
. . 3
⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)} ) |
37 | | df-in 3898 |
. . 3
⊢
(⦋𝐴 /
𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷) = {𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)} |
38 | | eqeq2 2751 |
. . . 4
⊢
((⦋𝐴 /
𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷) = {𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)} → (⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷) ↔ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)})) |
39 | 38 | biimprcd 249 |
. . 3
⊢
(⦋𝐴 /
𝑥⦌(𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)} → ((⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷) = {𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)} → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷))) |
40 | 36, 37, 39 | e10 42267 |
. 2
⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷) ) |
41 | 40 | in1 42144 |
1
⊢ (𝐴 ∈ 𝐵 → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷)) |