Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbingVD Structured version   Visualization version   GIF version

Theorem csbingVD 44875
Description: Virtual deduction proof of csbin 4422. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbin 4422 is csbingVD 44875 without virtual deductions and was automatically derived from csbingVD 44875.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷) }
20:2: 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦 𝐷)}
30:1,20: (   𝐴𝐵   ▶   [𝐴 / 𝑥](𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)}   )
3:1,30: (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)}   )
4:1: (   𝐴𝐵   ▶   𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶 𝑦𝐷)} = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}   )
5:3,4: (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}   )
6:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐶𝑦 𝐴 / 𝑥𝐶)   )
7:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐷𝑦 𝐴 / 𝑥𝐷)   )
8:6,7: (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝑦𝐶 [𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷 ))   )
9:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶 𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷))   )
10:9,8: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶 𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
11:10: (   𝐴𝐵   ▶   𝑦([𝐴 / 𝑥](𝑦 𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
12:11: (   𝐴𝐵   ▶   {𝑦[𝐴 / 𝑥](𝑦𝐶 𝑦𝐷)} = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}   )
13:5,12: (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}   )
14:: (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷) = { 𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}
15:13,14: (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)   )
qed:15: (𝐴𝐵𝐴 / 𝑥(𝐶𝐷) = ( 𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbingVD (𝐴𝐵𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))

Proof of Theorem csbingVD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 idn1 44566 . . . . . 6 (   𝐴𝐵   ▶   𝐴𝐵   )
2 df-in 3938 . . . . . . . 8 (𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)}
32ax-gen 1795 . . . . . . 7 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)}
4 spsbc 3783 . . . . . . 7 (𝐴𝐵 → (∀𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)} → [𝐴 / 𝑥](𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)}))
51, 3, 4e10 44686 . . . . . 6 (   𝐴𝐵   ▶   [𝐴 / 𝑥](𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)}   )
6 sbceqg 4392 . . . . . . 7 (𝐴𝐵 → ([𝐴 / 𝑥](𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)} ↔ 𝐴 / 𝑥(𝐶𝐷) = 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)}))
76biimpd 229 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥](𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)} → 𝐴 / 𝑥(𝐶𝐷) = 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)}))
81, 5, 7e11 44680 . . . . 5 (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)}   )
9 csbab 4420 . . . . . . 7 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)} = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}
109a1i 11 . . . . . 6 (𝐴𝐵𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)} = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)})
111, 10e1a 44619 . . . . 5 (   𝐴𝐵   ▶   𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)} = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}   )
12 eqeq1 2740 . . . . . 6 (𝐴 / 𝑥(𝐶𝐷) = 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)} → (𝐴 / 𝑥(𝐶𝐷) = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} ↔ 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)} = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}))
1312biimprd 248 . . . . 5 (𝐴 / 𝑥(𝐶𝐷) = 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)} → (𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)} = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} → 𝐴 / 𝑥(𝐶𝐷) = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}))
148, 11, 13e11 44680 . . . 4 (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}   )
15 sbcan 3820 . . . . . . . . 9 ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷))
1615a1i 11 . . . . . . . 8 (𝐴𝐵 → ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷)))
171, 16e1a 44619 . . . . . . 7 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷))   )
18 sbcel2 4398 . . . . . . . . . 10 ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶)
1918a1i 11 . . . . . . . . 9 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶))
201, 19e1a 44619 . . . . . . . 8 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶)   )
21 sbcel2 4398 . . . . . . . . . 10 ([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷)
2221a1i 11 . . . . . . . . 9 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷))
231, 22e1a 44619 . . . . . . . 8 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷)   )
24 pm4.38 637 . . . . . . . . 9 ((([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶) ∧ ([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷)) → (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)))
2524ex 412 . . . . . . . 8 (([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶) → (([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷) → (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
2620, 23, 25e11 44680 . . . . . . 7 (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
27 bibi1 351 . . . . . . . 8 (([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷)) → (([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) ↔ (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
2827biimprd 248 . . . . . . 7 (([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷)) → ((([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
2917, 26, 28e11 44680 . . . . . 6 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
3029gen11 44608 . . . . 5 (   𝐴𝐵   ▶   𝑦([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
31 abbib 2805 . . . . . 6 ({𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)} ↔ ∀𝑦([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)))
3231biimpri 228 . . . . 5 (∀𝑦([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)})
3330, 32e1a 44619 . . . 4 (   𝐴𝐵   ▶   {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}   )
34 eqeq1 2740 . . . . 5 (𝐴 / 𝑥(𝐶𝐷) = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} → (𝐴 / 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)} ↔ {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}))
3534biimprd 248 . . . 4 (𝐴 / 𝑥(𝐶𝐷) = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} → ({𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)} → 𝐴 / 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}))
3614, 33, 35e11 44680 . . 3 (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}   )
37 df-in 3938 . . 3 (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}
38 eqeq2 2748 . . . 4 ((𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)} → (𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷) ↔ 𝐴 / 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}))
3938biimprcd 250 . . 3 (𝐴 / 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)} → ((𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)} → 𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)))
4036, 37, 39e10 44686 . 2 (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)   )
4140in1 44563 1 (𝐴𝐵𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  {cab 2714  [wsbc 3770  csb 3879  cin 3930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-in 3938  df-nul 4314  df-vd1 44562
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator