Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smatrcl Structured version   Visualization version   GIF version

Theorem smatrcl 33807
Description: Closure of the rectangular submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
smat.s 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
smat.m (𝜑𝑀 ∈ ℕ)
smat.n (𝜑𝑁 ∈ ℕ)
smat.k (𝜑𝐾 ∈ (1...𝑀))
smat.l (𝜑𝐿 ∈ (1...𝑁))
smat.a (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
Assertion
Ref Expression
smatrcl (𝜑𝑆 ∈ (𝐵m ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))))

Proof of Theorem smatrcl
Dummy variables 𝑖 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smat.a . . . . . . . 8 (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
2 elmapi 8773 . . . . . . . 8 (𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))) → 𝐴:((1...𝑀) × (1...𝑁))⟶𝐵)
3 ffun 6654 . . . . . . . 8 (𝐴:((1...𝑀) × (1...𝑁))⟶𝐵 → Fun 𝐴)
41, 2, 33syl 18 . . . . . . 7 (𝜑 → Fun 𝐴)
5 eqid 2731 . . . . . . . . 9 (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
65mpofun 7470 . . . . . . . 8 Fun (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
76a1i 11 . . . . . . 7 (𝜑 → Fun (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))
8 funco 6521 . . . . . . 7 ((Fun 𝐴 ∧ Fun (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) → Fun (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
94, 7, 8syl2anc 584 . . . . . 6 (𝜑 → Fun (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
10 smat.s . . . . . . . 8 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
11 fz1ssnn 13455 . . . . . . . . . 10 (1...𝑀) ⊆ ℕ
12 smat.k . . . . . . . . . 10 (𝜑𝐾 ∈ (1...𝑀))
1311, 12sselid 3932 . . . . . . . . 9 (𝜑𝐾 ∈ ℕ)
14 fz1ssnn 13455 . . . . . . . . . 10 (1...𝑁) ⊆ ℕ
15 smat.l . . . . . . . . . 10 (𝜑𝐿 ∈ (1...𝑁))
1614, 15sselid 3932 . . . . . . . . 9 (𝜑𝐿 ∈ ℕ)
17 smatfval 33806 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁)))) → (𝐾(subMat1‘𝐴)𝐿) = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
1813, 16, 1, 17syl3anc 1373 . . . . . . . 8 (𝜑 → (𝐾(subMat1‘𝐴)𝐿) = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
1910, 18eqtrid 2778 . . . . . . 7 (𝜑𝑆 = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
2019funeqd 6503 . . . . . 6 (𝜑 → (Fun 𝑆 ↔ Fun (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))))
219, 20mpbird 257 . . . . 5 (𝜑 → Fun 𝑆)
22 fdmrn 6682 . . . . 5 (Fun 𝑆𝑆:dom 𝑆⟶ran 𝑆)
2321, 22sylib 218 . . . 4 (𝜑𝑆:dom 𝑆⟶ran 𝑆)
2419dmeqd 5845 . . . . . 6 (𝜑 → dom 𝑆 = dom (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
25 dmco 6202 . . . . . . 7 dom (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) = ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ dom 𝐴)
26 fdm 6660 . . . . . . . . . . . 12 (𝐴:((1...𝑀) × (1...𝑁))⟶𝐵 → dom 𝐴 = ((1...𝑀) × (1...𝑁)))
271, 2, 263syl 18 . . . . . . . . . . 11 (𝜑 → dom 𝐴 = ((1...𝑀) × (1...𝑁)))
2827imaeq2d 6009 . . . . . . . . . 10 (𝜑 → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ dom 𝐴) = ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ ((1...𝑀) × (1...𝑁))))
2928eleq2d 2817 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ dom 𝐴) ↔ 𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ ((1...𝑀) × (1...𝑁)))))
30 opex 5404 . . . . . . . . . . . 12 ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ ∈ V
315, 30fnmpoi 8002 . . . . . . . . . . 11 (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) Fn (ℕ × ℕ)
32 elpreima 6991 . . . . . . . . . . 11 ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) Fn (ℕ × ℕ) → (𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ ((1...𝑀) × (1...𝑁))) ↔ (𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)))))
3331, 32ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ ((1...𝑀) × (1...𝑁))) ↔ (𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))))
3433a1i 11 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ ((1...𝑀) × (1...𝑁))) ↔ (𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)))))
35 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
3635fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) = ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨(1st𝑥), (2nd𝑥)⟩))
37 df-ov 7349 . . . . . . . . . . . . . . . . . 18 ((1st𝑥)(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)(2nd𝑥)) = ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨(1st𝑥), (2nd𝑥)⟩)
3836, 37eqtr4di 2784 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) = ((1st𝑥)(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)(2nd𝑥)))
39 breq1 5094 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (1st𝑥) → (𝑖 < 𝐾 ↔ (1st𝑥) < 𝐾))
40 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (1st𝑥) → 𝑖 = (1st𝑥))
41 oveq1 7353 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (1st𝑥) → (𝑖 + 1) = ((1st𝑥) + 1))
4239, 40, 41ifbieq12d 4504 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = (1st𝑥) → if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)) = if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)))
4342opeq1d 4831 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (1st𝑥) → ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ = ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
44 breq1 5094 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = (2nd𝑥) → (𝑗 < 𝐿 ↔ (2nd𝑥) < 𝐿))
45 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = (2nd𝑥) → 𝑗 = (2nd𝑥))
46 oveq1 7353 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = (2nd𝑥) → (𝑗 + 1) = ((2nd𝑥) + 1))
4744, 45, 46ifbieq12d 4504 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = (2nd𝑥) → if(𝑗 < 𝐿, 𝑗, (𝑗 + 1)) = if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)))
4847opeq2d 4832 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (2nd𝑥) → ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ = ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩)
49 opex 5404 . . . . . . . . . . . . . . . . . . 19 ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩ ∈ V
5043, 48, 5, 49ovmpo 7506 . . . . . . . . . . . . . . . . . 18 (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) → ((1st𝑥)(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)(2nd𝑥)) = ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩)
5150adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((1st𝑥)(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)(2nd𝑥)) = ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩)
5238, 51eqtrd 2766 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) = ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩)
5352eleq1d 2816 . . . . . . . . . . . . . . 15 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)) ↔ ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩ ∈ ((1...𝑀) × (1...𝑁))))
54 opelxp 5652 . . . . . . . . . . . . . . 15 (⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩ ∈ ((1...𝑀) × (1...𝑁)) ↔ (if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)) ∈ (1...𝑀) ∧ if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)) ∈ (1...𝑁)))
5553, 54bitrdi 287 . . . . . . . . . . . . . 14 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)) ↔ (if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)) ∈ (1...𝑀) ∧ if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)) ∈ (1...𝑁))))
56 ifel 4520 . . . . . . . . . . . . . . . 16 (if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)) ∈ (1...𝑀) ↔ (((1st𝑥) < 𝐾 ∧ (1st𝑥) ∈ (1...𝑀)) ∨ (¬ (1st𝑥) < 𝐾 ∧ ((1st𝑥) + 1) ∈ (1...𝑀))))
57 simplrl 776 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ∈ ℕ)
5857nnred 12140 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ∈ ℝ)
5913nnred 12140 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐾 ∈ ℝ)
6059ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → 𝐾 ∈ ℝ)
61 smat.m . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑀 ∈ ℕ)
6261nnred 12140 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑀 ∈ ℝ)
6362ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → 𝑀 ∈ ℝ)
64 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) < 𝐾)
6558, 60, 64ltled 11261 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ≤ 𝐾)
66 elfzle2 13428 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾 ∈ (1...𝑀) → 𝐾𝑀)
6712, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐾𝑀)
6867ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → 𝐾𝑀)
6958, 60, 63, 65, 68letrd 11270 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ≤ 𝑀)
7057, 69jca 511 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ 𝑀))
7161nnzd 12495 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀 ∈ ℤ)
72 fznn 13492 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℤ → ((1st𝑥) ∈ (1...𝑀) ↔ ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ 𝑀)))
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((1st𝑥) ∈ (1...𝑀) ↔ ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ 𝑀)))
7473ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → ((1st𝑥) ∈ (1...𝑀) ↔ ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ 𝑀)))
7570, 74mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ∈ (1...𝑀))
7658, 60, 63, 64, 68ltletrd 11273 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) < 𝑀)
7761ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → 𝑀 ∈ ℕ)
78 nnltlem1 12540 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑥) ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((1st𝑥) < 𝑀 ↔ (1st𝑥) ≤ (𝑀 − 1)))
7957, 77, 78syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → ((1st𝑥) < 𝑀 ↔ (1st𝑥) ≤ (𝑀 − 1)))
8076, 79mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ≤ (𝑀 − 1))
8175, 802thd 265 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → ((1st𝑥) ∈ (1...𝑀) ↔ (1st𝑥) ≤ (𝑀 − 1)))
8281pm5.32da 579 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((1st𝑥) < 𝐾 ∧ (1st𝑥) ∈ (1...𝑀)) ↔ ((1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1))))
83 fznn 13492 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℤ → (((1st𝑥) + 1) ∈ (1...𝑀) ↔ (((1st𝑥) + 1) ∈ ℕ ∧ ((1st𝑥) + 1) ≤ 𝑀)))
8471, 83syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((1st𝑥) + 1) ∈ (1...𝑀) ↔ (((1st𝑥) + 1) ∈ ℕ ∧ ((1st𝑥) + 1) ≤ 𝑀)))
8584ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((1st𝑥) + 1) ∈ (1...𝑀) ↔ (((1st𝑥) + 1) ∈ ℕ ∧ ((1st𝑥) + 1) ≤ 𝑀)))
86 simprl 770 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (1st𝑥) ∈ ℕ)
8786peano2nnd 12142 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((1st𝑥) + 1) ∈ ℕ)
8887biantrurd 532 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((1st𝑥) + 1) ≤ 𝑀 ↔ (((1st𝑥) + 1) ∈ ℕ ∧ ((1st𝑥) + 1) ≤ 𝑀)))
8986nnzd 12495 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (1st𝑥) ∈ ℤ)
9071ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → 𝑀 ∈ ℤ)
91 zltp1le 12522 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑥) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((1st𝑥) < 𝑀 ↔ ((1st𝑥) + 1) ≤ 𝑀))
92 zltlem1 12525 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑥) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((1st𝑥) < 𝑀 ↔ (1st𝑥) ≤ (𝑀 − 1)))
9391, 92bitr3d 281 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑥) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((1st𝑥) + 1) ≤ 𝑀 ↔ (1st𝑥) ≤ (𝑀 − 1)))
9489, 90, 93syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((1st𝑥) + 1) ≤ 𝑀 ↔ (1st𝑥) ≤ (𝑀 − 1)))
9585, 88, 943bitr2d 307 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((1st𝑥) + 1) ∈ (1...𝑀) ↔ (1st𝑥) ≤ (𝑀 − 1)))
9695anbi2d 630 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((¬ (1st𝑥) < 𝐾 ∧ ((1st𝑥) + 1) ∈ (1...𝑀)) ↔ (¬ (1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1))))
9782, 96orbi12d 918 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((((1st𝑥) < 𝐾 ∧ (1st𝑥) ∈ (1...𝑀)) ∨ (¬ (1st𝑥) < 𝐾 ∧ ((1st𝑥) + 1) ∈ (1...𝑀))) ↔ (((1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)) ∨ (¬ (1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)))))
98 pm4.42 1053 . . . . . . . . . . . . . . . . . 18 ((1st𝑥) ≤ (𝑀 − 1) ↔ (((1st𝑥) ≤ (𝑀 − 1) ∧ (1st𝑥) < 𝐾) ∨ ((1st𝑥) ≤ (𝑀 − 1) ∧ ¬ (1st𝑥) < 𝐾)))
99 ancom 460 . . . . . . . . . . . . . . . . . . 19 (((1st𝑥) ≤ (𝑀 − 1) ∧ (1st𝑥) < 𝐾) ↔ ((1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)))
100 ancom 460 . . . . . . . . . . . . . . . . . . 19 (((1st𝑥) ≤ (𝑀 − 1) ∧ ¬ (1st𝑥) < 𝐾) ↔ (¬ (1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)))
10199, 100orbi12i 914 . . . . . . . . . . . . . . . . . 18 ((((1st𝑥) ≤ (𝑀 − 1) ∧ (1st𝑥) < 𝐾) ∨ ((1st𝑥) ≤ (𝑀 − 1) ∧ ¬ (1st𝑥) < 𝐾)) ↔ (((1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)) ∨ (¬ (1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1))))
10298, 101bitri 275 . . . . . . . . . . . . . . . . 17 ((1st𝑥) ≤ (𝑀 − 1) ↔ (((1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)) ∨ (¬ (1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1))))
10397, 102bitr4di 289 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((((1st𝑥) < 𝐾 ∧ (1st𝑥) ∈ (1...𝑀)) ∨ (¬ (1st𝑥) < 𝐾 ∧ ((1st𝑥) + 1) ∈ (1...𝑀))) ↔ (1st𝑥) ≤ (𝑀 − 1)))
10456, 103bitrid 283 . . . . . . . . . . . . . . 15 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)) ∈ (1...𝑀) ↔ (1st𝑥) ≤ (𝑀 − 1)))
105 ifel 4520 . . . . . . . . . . . . . . . 16 (if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)) ∈ (1...𝑁) ↔ (((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ∈ (1...𝑁)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ ((2nd𝑥) + 1) ∈ (1...𝑁))))
106 simplrr 777 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ∈ ℕ)
107106nnred 12140 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ∈ ℝ)
10816nnred 12140 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐿 ∈ ℝ)
109108ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → 𝐿 ∈ ℝ)
110 smat.n . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑁 ∈ ℕ)
111110nnred 12140 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑁 ∈ ℝ)
112111ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → 𝑁 ∈ ℝ)
113 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) < 𝐿)
114107, 109, 113ltled 11261 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ≤ 𝐿)
115 elfzle2 13428 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿 ∈ (1...𝑁) → 𝐿𝑁)
11615, 115syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐿𝑁)
117116ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → 𝐿𝑁)
118107, 109, 112, 114, 117letrd 11270 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ≤ 𝑁)
119106, 118jca 511 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ 𝑁))
120110nnzd 12495 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑁 ∈ ℤ)
121 fznn 13492 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℤ → ((2nd𝑥) ∈ (1...𝑁) ↔ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ 𝑁)))
122120, 121syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((2nd𝑥) ∈ (1...𝑁) ↔ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ 𝑁)))
123122ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → ((2nd𝑥) ∈ (1...𝑁) ↔ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ 𝑁)))
124119, 123mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ∈ (1...𝑁))
125107, 109, 112, 113, 117ltletrd 11273 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) < 𝑁)
126110ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → 𝑁 ∈ ℕ)
127 nnltlem1 12540 . . . . . . . . . . . . . . . . . . . . . 22 (((2nd𝑥) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2nd𝑥) < 𝑁 ↔ (2nd𝑥) ≤ (𝑁 − 1)))
128106, 126, 127syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → ((2nd𝑥) < 𝑁 ↔ (2nd𝑥) ≤ (𝑁 − 1)))
129125, 128mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ≤ (𝑁 − 1))
130124, 1292thd 265 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → ((2nd𝑥) ∈ (1...𝑁) ↔ (2nd𝑥) ≤ (𝑁 − 1)))
131130pm5.32da 579 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ∈ (1...𝑁)) ↔ ((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1))))
132 fznn 13492 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → (((2nd𝑥) + 1) ∈ (1...𝑁) ↔ (((2nd𝑥) + 1) ∈ ℕ ∧ ((2nd𝑥) + 1) ≤ 𝑁)))
133120, 132syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((2nd𝑥) + 1) ∈ (1...𝑁) ↔ (((2nd𝑥) + 1) ∈ ℕ ∧ ((2nd𝑥) + 1) ≤ 𝑁)))
134133ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((2nd𝑥) + 1) ∈ (1...𝑁) ↔ (((2nd𝑥) + 1) ∈ ℕ ∧ ((2nd𝑥) + 1) ≤ 𝑁)))
135 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (2nd𝑥) ∈ ℕ)
136135peano2nnd 12142 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((2nd𝑥) + 1) ∈ ℕ)
137136biantrurd 532 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((2nd𝑥) + 1) ≤ 𝑁 ↔ (((2nd𝑥) + 1) ∈ ℕ ∧ ((2nd𝑥) + 1) ≤ 𝑁)))
138135nnzd 12495 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (2nd𝑥) ∈ ℤ)
139120ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → 𝑁 ∈ ℤ)
140 zltp1le 12522 . . . . . . . . . . . . . . . . . . . . . 22 (((2nd𝑥) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((2nd𝑥) < 𝑁 ↔ ((2nd𝑥) + 1) ≤ 𝑁))
141 zltlem1 12525 . . . . . . . . . . . . . . . . . . . . . 22 (((2nd𝑥) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((2nd𝑥) < 𝑁 ↔ (2nd𝑥) ≤ (𝑁 − 1)))
142140, 141bitr3d 281 . . . . . . . . . . . . . . . . . . . . 21 (((2nd𝑥) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((2nd𝑥) + 1) ≤ 𝑁 ↔ (2nd𝑥) ≤ (𝑁 − 1)))
143138, 139, 142syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((2nd𝑥) + 1) ≤ 𝑁 ↔ (2nd𝑥) ≤ (𝑁 − 1)))
144134, 137, 1433bitr2d 307 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((2nd𝑥) + 1) ∈ (1...𝑁) ↔ (2nd𝑥) ≤ (𝑁 − 1)))
145144anbi2d 630 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((¬ (2nd𝑥) < 𝐿 ∧ ((2nd𝑥) + 1) ∈ (1...𝑁)) ↔ (¬ (2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1))))
146131, 145orbi12d 918 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ∈ (1...𝑁)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ ((2nd𝑥) + 1) ∈ (1...𝑁))) ↔ (((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)))))
147 pm4.42 1053 . . . . . . . . . . . . . . . . . 18 ((2nd𝑥) ≤ (𝑁 − 1) ↔ (((2nd𝑥) ≤ (𝑁 − 1) ∧ (2nd𝑥) < 𝐿) ∨ ((2nd𝑥) ≤ (𝑁 − 1) ∧ ¬ (2nd𝑥) < 𝐿)))
148 ancom 460 . . . . . . . . . . . . . . . . . . 19 (((2nd𝑥) ≤ (𝑁 − 1) ∧ (2nd𝑥) < 𝐿) ↔ ((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)))
149 ancom 460 . . . . . . . . . . . . . . . . . . 19 (((2nd𝑥) ≤ (𝑁 − 1) ∧ ¬ (2nd𝑥) < 𝐿) ↔ (¬ (2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)))
150148, 149orbi12i 914 . . . . . . . . . . . . . . . . . 18 ((((2nd𝑥) ≤ (𝑁 − 1) ∧ (2nd𝑥) < 𝐿) ∨ ((2nd𝑥) ≤ (𝑁 − 1) ∧ ¬ (2nd𝑥) < 𝐿)) ↔ (((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1))))
151147, 150bitri 275 . . . . . . . . . . . . . . . . 17 ((2nd𝑥) ≤ (𝑁 − 1) ↔ (((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1))))
152146, 151bitr4di 289 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ∈ (1...𝑁)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ ((2nd𝑥) + 1) ∈ (1...𝑁))) ↔ (2nd𝑥) ≤ (𝑁 − 1)))
153105, 152bitrid 283 . . . . . . . . . . . . . . 15 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)) ∈ (1...𝑁) ↔ (2nd𝑥) ≤ (𝑁 − 1)))
154104, 153anbi12d 632 . . . . . . . . . . . . . 14 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)) ∈ (1...𝑀) ∧ if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)) ∈ (1...𝑁)) ↔ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1))))
15555, 154bitrd 279 . . . . . . . . . . . . 13 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)) ↔ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1))))
156155pm5.32da 579 . . . . . . . . . . . 12 ((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) → ((((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1)))))
157 1zzd 12503 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℤ)
15871, 157zsubcld 12582 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 − 1) ∈ ℤ)
159 fznn 13492 . . . . . . . . . . . . . . . 16 ((𝑀 − 1) ∈ ℤ → ((1st𝑥) ∈ (1...(𝑀 − 1)) ↔ ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ (𝑀 − 1))))
160158, 159syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((1st𝑥) ∈ (1...(𝑀 − 1)) ↔ ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ (𝑀 − 1))))
161120, 157zsubcld 12582 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 1) ∈ ℤ)
162 fznn 13492 . . . . . . . . . . . . . . . 16 ((𝑁 − 1) ∈ ℤ → ((2nd𝑥) ∈ (1...(𝑁 − 1)) ↔ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ (𝑁 − 1))))
163161, 162syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((2nd𝑥) ∈ (1...(𝑁 − 1)) ↔ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ (𝑁 − 1))))
164160, 163anbi12d 632 . . . . . . . . . . . . . 14 (𝜑 → (((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1))) ↔ (((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ (𝑀 − 1)) ∧ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ (𝑁 − 1)))))
165 an4 656 . . . . . . . . . . . . . 14 ((((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ (𝑀 − 1)) ∧ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ (𝑁 − 1))) ↔ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1))))
166164, 165bitrdi 287 . . . . . . . . . . . . 13 (𝜑 → (((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1))) ↔ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1)))))
167166adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) → (((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1))) ↔ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1)))))
168156, 167bitr4d 282 . . . . . . . . . . 11 ((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) → ((((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ ((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1)))))
169168pm5.32da 579 . . . . . . . . . 10 (𝜑 → ((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)))) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1))))))
170 elxp6 7955 . . . . . . . . . . . 12 (𝑥 ∈ (ℕ × ℕ) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)))
171170anbi1i 624 . . . . . . . . . . 11 ((𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ ((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))))
172 anass 468 . . . . . . . . . . 11 (((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)))))
173171, 172bitri 275 . . . . . . . . . 10 ((𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)))))
174 elxp6 7955 . . . . . . . . . 10 (𝑥 ∈ ((1...(𝑀 − 1)) × (1...(𝑁 − 1))) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1)))))
175169, 173, 1743bitr4g 314 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ 𝑥 ∈ ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))))
17629, 34, 1753bitrd 305 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ dom 𝐴) ↔ 𝑥 ∈ ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))))
177176eqrdv 2729 . . . . . . 7 (𝜑 → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ dom 𝐴) = ((1...(𝑀 − 1)) × (1...(𝑁 − 1))))
17825, 177eqtrid 2778 . . . . . 6 (𝜑 → dom (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) = ((1...(𝑀 − 1)) × (1...(𝑁 − 1))))
17924, 178eqtrd 2766 . . . . 5 (𝜑 → dom 𝑆 = ((1...(𝑀 − 1)) × (1...(𝑁 − 1))))
180179feq2d 6635 . . . 4 (𝜑 → (𝑆:dom 𝑆⟶ran 𝑆𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶ran 𝑆))
18123, 180mpbid 232 . . 3 (𝜑𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶ran 𝑆)
18219rneqd 5878 . . . . 5 (𝜑 → ran 𝑆 = ran (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
183 rncoss 5916 . . . . 5 ran (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) ⊆ ran 𝐴
184182, 183eqsstrdi 3979 . . . 4 (𝜑 → ran 𝑆 ⊆ ran 𝐴)
185 frn 6658 . . . . 5 (𝐴:((1...𝑀) × (1...𝑁))⟶𝐵 → ran 𝐴𝐵)
1861, 2, 1853syl 18 . . . 4 (𝜑 → ran 𝐴𝐵)
187184, 186sstrd 3945 . . 3 (𝜑 → ran 𝑆𝐵)
188 fss 6667 . . 3 ((𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶ran 𝑆 ∧ ran 𝑆𝐵) → 𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶𝐵)
189181, 187, 188syl2anc 584 . 2 (𝜑𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶𝐵)
190 reldmmap 8759 . . . . . 6 Rel dom ↑m
191190ovrcl 7387 . . . . 5 (𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))) → (𝐵 ∈ V ∧ ((1...𝑀) × (1...𝑁)) ∈ V))
1921, 191syl 17 . . . 4 (𝜑 → (𝐵 ∈ V ∧ ((1...𝑀) × (1...𝑁)) ∈ V))
193192simpld 494 . . 3 (𝜑𝐵 ∈ V)
194 ovex 7379 . . . 4 (1...(𝑀 − 1)) ∈ V
195 ovex 7379 . . . 4 (1...(𝑁 − 1)) ∈ V
196194, 195xpex 7686 . . 3 ((1...(𝑀 − 1)) × (1...(𝑁 − 1))) ∈ V
197 elmapg 8763 . . 3 ((𝐵 ∈ V ∧ ((1...(𝑀 − 1)) × (1...(𝑁 − 1))) ∈ V) → (𝑆 ∈ (𝐵m ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))) ↔ 𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶𝐵))
198193, 196, 197sylancl 586 . 2 (𝜑 → (𝑆 ∈ (𝐵m ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))) ↔ 𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶𝐵))
199189, 198mpbird 257 1 (𝜑𝑆 ∈ (𝐵m ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  Vcvv 3436  wss 3902  ifcif 4475  cop 4582   class class class wbr 5091   × cxp 5614  ccnv 5615  dom cdm 5616  ran crn 5617  cima 5619  ccom 5620  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  m cmap 8750  cr 11005  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cmin 11344  cn 12125  cz 12468  ...cfz 13407  subMat1csmat 33804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-smat 33805
This theorem is referenced by:  smatcl  33813  1smat1  33815
  Copyright terms: Public domain W3C validator