Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smatrcl Structured version   Visualization version   GIF version

Theorem smatrcl 33793
Description: Closure of the rectangular submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
smat.s 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
smat.m (𝜑𝑀 ∈ ℕ)
smat.n (𝜑𝑁 ∈ ℕ)
smat.k (𝜑𝐾 ∈ (1...𝑀))
smat.l (𝜑𝐿 ∈ (1...𝑁))
smat.a (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
Assertion
Ref Expression
smatrcl (𝜑𝑆 ∈ (𝐵m ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))))

Proof of Theorem smatrcl
Dummy variables 𝑖 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smat.a . . . . . . . 8 (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
2 elmapi 8825 . . . . . . . 8 (𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))) → 𝐴:((1...𝑀) × (1...𝑁))⟶𝐵)
3 ffun 6694 . . . . . . . 8 (𝐴:((1...𝑀) × (1...𝑁))⟶𝐵 → Fun 𝐴)
41, 2, 33syl 18 . . . . . . 7 (𝜑 → Fun 𝐴)
5 eqid 2730 . . . . . . . . 9 (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
65mpofun 7516 . . . . . . . 8 Fun (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
76a1i 11 . . . . . . 7 (𝜑 → Fun (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))
8 funco 6559 . . . . . . 7 ((Fun 𝐴 ∧ Fun (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) → Fun (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
94, 7, 8syl2anc 584 . . . . . 6 (𝜑 → Fun (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
10 smat.s . . . . . . . 8 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
11 fz1ssnn 13523 . . . . . . . . . 10 (1...𝑀) ⊆ ℕ
12 smat.k . . . . . . . . . 10 (𝜑𝐾 ∈ (1...𝑀))
1311, 12sselid 3947 . . . . . . . . 9 (𝜑𝐾 ∈ ℕ)
14 fz1ssnn 13523 . . . . . . . . . 10 (1...𝑁) ⊆ ℕ
15 smat.l . . . . . . . . . 10 (𝜑𝐿 ∈ (1...𝑁))
1614, 15sselid 3947 . . . . . . . . 9 (𝜑𝐿 ∈ ℕ)
17 smatfval 33792 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁)))) → (𝐾(subMat1‘𝐴)𝐿) = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
1813, 16, 1, 17syl3anc 1373 . . . . . . . 8 (𝜑 → (𝐾(subMat1‘𝐴)𝐿) = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
1910, 18eqtrid 2777 . . . . . . 7 (𝜑𝑆 = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
2019funeqd 6541 . . . . . 6 (𝜑 → (Fun 𝑆 ↔ Fun (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))))
219, 20mpbird 257 . . . . 5 (𝜑 → Fun 𝑆)
22 fdmrn 6722 . . . . 5 (Fun 𝑆𝑆:dom 𝑆⟶ran 𝑆)
2321, 22sylib 218 . . . 4 (𝜑𝑆:dom 𝑆⟶ran 𝑆)
2419dmeqd 5872 . . . . . 6 (𝜑 → dom 𝑆 = dom (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
25 dmco 6230 . . . . . . 7 dom (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) = ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ dom 𝐴)
26 fdm 6700 . . . . . . . . . . . 12 (𝐴:((1...𝑀) × (1...𝑁))⟶𝐵 → dom 𝐴 = ((1...𝑀) × (1...𝑁)))
271, 2, 263syl 18 . . . . . . . . . . 11 (𝜑 → dom 𝐴 = ((1...𝑀) × (1...𝑁)))
2827imaeq2d 6034 . . . . . . . . . 10 (𝜑 → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ dom 𝐴) = ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ ((1...𝑀) × (1...𝑁))))
2928eleq2d 2815 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ dom 𝐴) ↔ 𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ ((1...𝑀) × (1...𝑁)))))
30 opex 5427 . . . . . . . . . . . 12 ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ ∈ V
315, 30fnmpoi 8052 . . . . . . . . . . 11 (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) Fn (ℕ × ℕ)
32 elpreima 7033 . . . . . . . . . . 11 ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) Fn (ℕ × ℕ) → (𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ ((1...𝑀) × (1...𝑁))) ↔ (𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)))))
3331, 32ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ ((1...𝑀) × (1...𝑁))) ↔ (𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))))
3433a1i 11 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ ((1...𝑀) × (1...𝑁))) ↔ (𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)))))
35 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
3635fveq2d 6865 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) = ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨(1st𝑥), (2nd𝑥)⟩))
37 df-ov 7393 . . . . . . . . . . . . . . . . . 18 ((1st𝑥)(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)(2nd𝑥)) = ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨(1st𝑥), (2nd𝑥)⟩)
3836, 37eqtr4di 2783 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) = ((1st𝑥)(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)(2nd𝑥)))
39 breq1 5113 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (1st𝑥) → (𝑖 < 𝐾 ↔ (1st𝑥) < 𝐾))
40 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (1st𝑥) → 𝑖 = (1st𝑥))
41 oveq1 7397 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (1st𝑥) → (𝑖 + 1) = ((1st𝑥) + 1))
4239, 40, 41ifbieq12d 4520 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = (1st𝑥) → if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)) = if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)))
4342opeq1d 4846 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (1st𝑥) → ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ = ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
44 breq1 5113 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = (2nd𝑥) → (𝑗 < 𝐿 ↔ (2nd𝑥) < 𝐿))
45 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = (2nd𝑥) → 𝑗 = (2nd𝑥))
46 oveq1 7397 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = (2nd𝑥) → (𝑗 + 1) = ((2nd𝑥) + 1))
4744, 45, 46ifbieq12d 4520 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = (2nd𝑥) → if(𝑗 < 𝐿, 𝑗, (𝑗 + 1)) = if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)))
4847opeq2d 4847 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (2nd𝑥) → ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ = ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩)
49 opex 5427 . . . . . . . . . . . . . . . . . . 19 ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩ ∈ V
5043, 48, 5, 49ovmpo 7552 . . . . . . . . . . . . . . . . . 18 (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) → ((1st𝑥)(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)(2nd𝑥)) = ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩)
5150adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((1st𝑥)(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)(2nd𝑥)) = ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩)
5238, 51eqtrd 2765 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) = ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩)
5352eleq1d 2814 . . . . . . . . . . . . . . 15 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)) ↔ ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩ ∈ ((1...𝑀) × (1...𝑁))))
54 opelxp 5677 . . . . . . . . . . . . . . 15 (⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩ ∈ ((1...𝑀) × (1...𝑁)) ↔ (if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)) ∈ (1...𝑀) ∧ if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)) ∈ (1...𝑁)))
5553, 54bitrdi 287 . . . . . . . . . . . . . 14 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)) ↔ (if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)) ∈ (1...𝑀) ∧ if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)) ∈ (1...𝑁))))
56 ifel 4536 . . . . . . . . . . . . . . . 16 (if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)) ∈ (1...𝑀) ↔ (((1st𝑥) < 𝐾 ∧ (1st𝑥) ∈ (1...𝑀)) ∨ (¬ (1st𝑥) < 𝐾 ∧ ((1st𝑥) + 1) ∈ (1...𝑀))))
57 simplrl 776 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ∈ ℕ)
5857nnred 12208 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ∈ ℝ)
5913nnred 12208 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐾 ∈ ℝ)
6059ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → 𝐾 ∈ ℝ)
61 smat.m . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑀 ∈ ℕ)
6261nnred 12208 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑀 ∈ ℝ)
6362ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → 𝑀 ∈ ℝ)
64 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) < 𝐾)
6558, 60, 64ltled 11329 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ≤ 𝐾)
66 elfzle2 13496 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾 ∈ (1...𝑀) → 𝐾𝑀)
6712, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐾𝑀)
6867ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → 𝐾𝑀)
6958, 60, 63, 65, 68letrd 11338 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ≤ 𝑀)
7057, 69jca 511 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ 𝑀))
7161nnzd 12563 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀 ∈ ℤ)
72 fznn 13560 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℤ → ((1st𝑥) ∈ (1...𝑀) ↔ ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ 𝑀)))
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((1st𝑥) ∈ (1...𝑀) ↔ ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ 𝑀)))
7473ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → ((1st𝑥) ∈ (1...𝑀) ↔ ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ 𝑀)))
7570, 74mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ∈ (1...𝑀))
7658, 60, 63, 64, 68ltletrd 11341 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) < 𝑀)
7761ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → 𝑀 ∈ ℕ)
78 nnltlem1 12608 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑥) ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((1st𝑥) < 𝑀 ↔ (1st𝑥) ≤ (𝑀 − 1)))
7957, 77, 78syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → ((1st𝑥) < 𝑀 ↔ (1st𝑥) ≤ (𝑀 − 1)))
8076, 79mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ≤ (𝑀 − 1))
8175, 802thd 265 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → ((1st𝑥) ∈ (1...𝑀) ↔ (1st𝑥) ≤ (𝑀 − 1)))
8281pm5.32da 579 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((1st𝑥) < 𝐾 ∧ (1st𝑥) ∈ (1...𝑀)) ↔ ((1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1))))
83 fznn 13560 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℤ → (((1st𝑥) + 1) ∈ (1...𝑀) ↔ (((1st𝑥) + 1) ∈ ℕ ∧ ((1st𝑥) + 1) ≤ 𝑀)))
8471, 83syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((1st𝑥) + 1) ∈ (1...𝑀) ↔ (((1st𝑥) + 1) ∈ ℕ ∧ ((1st𝑥) + 1) ≤ 𝑀)))
8584ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((1st𝑥) + 1) ∈ (1...𝑀) ↔ (((1st𝑥) + 1) ∈ ℕ ∧ ((1st𝑥) + 1) ≤ 𝑀)))
86 simprl 770 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (1st𝑥) ∈ ℕ)
8786peano2nnd 12210 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((1st𝑥) + 1) ∈ ℕ)
8887biantrurd 532 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((1st𝑥) + 1) ≤ 𝑀 ↔ (((1st𝑥) + 1) ∈ ℕ ∧ ((1st𝑥) + 1) ≤ 𝑀)))
8986nnzd 12563 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (1st𝑥) ∈ ℤ)
9071ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → 𝑀 ∈ ℤ)
91 zltp1le 12590 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑥) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((1st𝑥) < 𝑀 ↔ ((1st𝑥) + 1) ≤ 𝑀))
92 zltlem1 12593 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑥) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((1st𝑥) < 𝑀 ↔ (1st𝑥) ≤ (𝑀 − 1)))
9391, 92bitr3d 281 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑥) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((1st𝑥) + 1) ≤ 𝑀 ↔ (1st𝑥) ≤ (𝑀 − 1)))
9489, 90, 93syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((1st𝑥) + 1) ≤ 𝑀 ↔ (1st𝑥) ≤ (𝑀 − 1)))
9585, 88, 943bitr2d 307 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((1st𝑥) + 1) ∈ (1...𝑀) ↔ (1st𝑥) ≤ (𝑀 − 1)))
9695anbi2d 630 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((¬ (1st𝑥) < 𝐾 ∧ ((1st𝑥) + 1) ∈ (1...𝑀)) ↔ (¬ (1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1))))
9782, 96orbi12d 918 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((((1st𝑥) < 𝐾 ∧ (1st𝑥) ∈ (1...𝑀)) ∨ (¬ (1st𝑥) < 𝐾 ∧ ((1st𝑥) + 1) ∈ (1...𝑀))) ↔ (((1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)) ∨ (¬ (1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)))))
98 pm4.42 1053 . . . . . . . . . . . . . . . . . 18 ((1st𝑥) ≤ (𝑀 − 1) ↔ (((1st𝑥) ≤ (𝑀 − 1) ∧ (1st𝑥) < 𝐾) ∨ ((1st𝑥) ≤ (𝑀 − 1) ∧ ¬ (1st𝑥) < 𝐾)))
99 ancom 460 . . . . . . . . . . . . . . . . . . 19 (((1st𝑥) ≤ (𝑀 − 1) ∧ (1st𝑥) < 𝐾) ↔ ((1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)))
100 ancom 460 . . . . . . . . . . . . . . . . . . 19 (((1st𝑥) ≤ (𝑀 − 1) ∧ ¬ (1st𝑥) < 𝐾) ↔ (¬ (1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)))
10199, 100orbi12i 914 . . . . . . . . . . . . . . . . . 18 ((((1st𝑥) ≤ (𝑀 − 1) ∧ (1st𝑥) < 𝐾) ∨ ((1st𝑥) ≤ (𝑀 − 1) ∧ ¬ (1st𝑥) < 𝐾)) ↔ (((1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)) ∨ (¬ (1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1))))
10298, 101bitri 275 . . . . . . . . . . . . . . . . 17 ((1st𝑥) ≤ (𝑀 − 1) ↔ (((1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)) ∨ (¬ (1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1))))
10397, 102bitr4di 289 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((((1st𝑥) < 𝐾 ∧ (1st𝑥) ∈ (1...𝑀)) ∨ (¬ (1st𝑥) < 𝐾 ∧ ((1st𝑥) + 1) ∈ (1...𝑀))) ↔ (1st𝑥) ≤ (𝑀 − 1)))
10456, 103bitrid 283 . . . . . . . . . . . . . . 15 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)) ∈ (1...𝑀) ↔ (1st𝑥) ≤ (𝑀 − 1)))
105 ifel 4536 . . . . . . . . . . . . . . . 16 (if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)) ∈ (1...𝑁) ↔ (((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ∈ (1...𝑁)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ ((2nd𝑥) + 1) ∈ (1...𝑁))))
106 simplrr 777 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ∈ ℕ)
107106nnred 12208 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ∈ ℝ)
10816nnred 12208 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐿 ∈ ℝ)
109108ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → 𝐿 ∈ ℝ)
110 smat.n . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑁 ∈ ℕ)
111110nnred 12208 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑁 ∈ ℝ)
112111ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → 𝑁 ∈ ℝ)
113 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) < 𝐿)
114107, 109, 113ltled 11329 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ≤ 𝐿)
115 elfzle2 13496 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿 ∈ (1...𝑁) → 𝐿𝑁)
11615, 115syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐿𝑁)
117116ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → 𝐿𝑁)
118107, 109, 112, 114, 117letrd 11338 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ≤ 𝑁)
119106, 118jca 511 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ 𝑁))
120110nnzd 12563 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑁 ∈ ℤ)
121 fznn 13560 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℤ → ((2nd𝑥) ∈ (1...𝑁) ↔ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ 𝑁)))
122120, 121syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((2nd𝑥) ∈ (1...𝑁) ↔ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ 𝑁)))
123122ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → ((2nd𝑥) ∈ (1...𝑁) ↔ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ 𝑁)))
124119, 123mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ∈ (1...𝑁))
125107, 109, 112, 113, 117ltletrd 11341 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) < 𝑁)
126110ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → 𝑁 ∈ ℕ)
127 nnltlem1 12608 . . . . . . . . . . . . . . . . . . . . . 22 (((2nd𝑥) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2nd𝑥) < 𝑁 ↔ (2nd𝑥) ≤ (𝑁 − 1)))
128106, 126, 127syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → ((2nd𝑥) < 𝑁 ↔ (2nd𝑥) ≤ (𝑁 − 1)))
129125, 128mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ≤ (𝑁 − 1))
130124, 1292thd 265 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → ((2nd𝑥) ∈ (1...𝑁) ↔ (2nd𝑥) ≤ (𝑁 − 1)))
131130pm5.32da 579 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ∈ (1...𝑁)) ↔ ((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1))))
132 fznn 13560 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → (((2nd𝑥) + 1) ∈ (1...𝑁) ↔ (((2nd𝑥) + 1) ∈ ℕ ∧ ((2nd𝑥) + 1) ≤ 𝑁)))
133120, 132syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((2nd𝑥) + 1) ∈ (1...𝑁) ↔ (((2nd𝑥) + 1) ∈ ℕ ∧ ((2nd𝑥) + 1) ≤ 𝑁)))
134133ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((2nd𝑥) + 1) ∈ (1...𝑁) ↔ (((2nd𝑥) + 1) ∈ ℕ ∧ ((2nd𝑥) + 1) ≤ 𝑁)))
135 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (2nd𝑥) ∈ ℕ)
136135peano2nnd 12210 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((2nd𝑥) + 1) ∈ ℕ)
137136biantrurd 532 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((2nd𝑥) + 1) ≤ 𝑁 ↔ (((2nd𝑥) + 1) ∈ ℕ ∧ ((2nd𝑥) + 1) ≤ 𝑁)))
138135nnzd 12563 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (2nd𝑥) ∈ ℤ)
139120ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → 𝑁 ∈ ℤ)
140 zltp1le 12590 . . . . . . . . . . . . . . . . . . . . . 22 (((2nd𝑥) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((2nd𝑥) < 𝑁 ↔ ((2nd𝑥) + 1) ≤ 𝑁))
141 zltlem1 12593 . . . . . . . . . . . . . . . . . . . . . 22 (((2nd𝑥) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((2nd𝑥) < 𝑁 ↔ (2nd𝑥) ≤ (𝑁 − 1)))
142140, 141bitr3d 281 . . . . . . . . . . . . . . . . . . . . 21 (((2nd𝑥) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((2nd𝑥) + 1) ≤ 𝑁 ↔ (2nd𝑥) ≤ (𝑁 − 1)))
143138, 139, 142syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((2nd𝑥) + 1) ≤ 𝑁 ↔ (2nd𝑥) ≤ (𝑁 − 1)))
144134, 137, 1433bitr2d 307 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((2nd𝑥) + 1) ∈ (1...𝑁) ↔ (2nd𝑥) ≤ (𝑁 − 1)))
145144anbi2d 630 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((¬ (2nd𝑥) < 𝐿 ∧ ((2nd𝑥) + 1) ∈ (1...𝑁)) ↔ (¬ (2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1))))
146131, 145orbi12d 918 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ∈ (1...𝑁)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ ((2nd𝑥) + 1) ∈ (1...𝑁))) ↔ (((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)))))
147 pm4.42 1053 . . . . . . . . . . . . . . . . . 18 ((2nd𝑥) ≤ (𝑁 − 1) ↔ (((2nd𝑥) ≤ (𝑁 − 1) ∧ (2nd𝑥) < 𝐿) ∨ ((2nd𝑥) ≤ (𝑁 − 1) ∧ ¬ (2nd𝑥) < 𝐿)))
148 ancom 460 . . . . . . . . . . . . . . . . . . 19 (((2nd𝑥) ≤ (𝑁 − 1) ∧ (2nd𝑥) < 𝐿) ↔ ((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)))
149 ancom 460 . . . . . . . . . . . . . . . . . . 19 (((2nd𝑥) ≤ (𝑁 − 1) ∧ ¬ (2nd𝑥) < 𝐿) ↔ (¬ (2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)))
150148, 149orbi12i 914 . . . . . . . . . . . . . . . . . 18 ((((2nd𝑥) ≤ (𝑁 − 1) ∧ (2nd𝑥) < 𝐿) ∨ ((2nd𝑥) ≤ (𝑁 − 1) ∧ ¬ (2nd𝑥) < 𝐿)) ↔ (((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1))))
151147, 150bitri 275 . . . . . . . . . . . . . . . . 17 ((2nd𝑥) ≤ (𝑁 − 1) ↔ (((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1))))
152146, 151bitr4di 289 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ∈ (1...𝑁)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ ((2nd𝑥) + 1) ∈ (1...𝑁))) ↔ (2nd𝑥) ≤ (𝑁 − 1)))
153105, 152bitrid 283 . . . . . . . . . . . . . . 15 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)) ∈ (1...𝑁) ↔ (2nd𝑥) ≤ (𝑁 − 1)))
154104, 153anbi12d 632 . . . . . . . . . . . . . 14 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)) ∈ (1...𝑀) ∧ if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)) ∈ (1...𝑁)) ↔ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1))))
15555, 154bitrd 279 . . . . . . . . . . . . 13 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)) ↔ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1))))
156155pm5.32da 579 . . . . . . . . . . . 12 ((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) → ((((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1)))))
157 1zzd 12571 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℤ)
15871, 157zsubcld 12650 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 − 1) ∈ ℤ)
159 fznn 13560 . . . . . . . . . . . . . . . 16 ((𝑀 − 1) ∈ ℤ → ((1st𝑥) ∈ (1...(𝑀 − 1)) ↔ ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ (𝑀 − 1))))
160158, 159syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((1st𝑥) ∈ (1...(𝑀 − 1)) ↔ ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ (𝑀 − 1))))
161120, 157zsubcld 12650 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 1) ∈ ℤ)
162 fznn 13560 . . . . . . . . . . . . . . . 16 ((𝑁 − 1) ∈ ℤ → ((2nd𝑥) ∈ (1...(𝑁 − 1)) ↔ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ (𝑁 − 1))))
163161, 162syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((2nd𝑥) ∈ (1...(𝑁 − 1)) ↔ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ (𝑁 − 1))))
164160, 163anbi12d 632 . . . . . . . . . . . . . 14 (𝜑 → (((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1))) ↔ (((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ (𝑀 − 1)) ∧ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ (𝑁 − 1)))))
165 an4 656 . . . . . . . . . . . . . 14 ((((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ (𝑀 − 1)) ∧ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ (𝑁 − 1))) ↔ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1))))
166164, 165bitrdi 287 . . . . . . . . . . . . 13 (𝜑 → (((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1))) ↔ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1)))))
167166adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) → (((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1))) ↔ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1)))))
168156, 167bitr4d 282 . . . . . . . . . . 11 ((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) → ((((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ ((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1)))))
169168pm5.32da 579 . . . . . . . . . 10 (𝜑 → ((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)))) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1))))))
170 elxp6 8005 . . . . . . . . . . . 12 (𝑥 ∈ (ℕ × ℕ) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)))
171170anbi1i 624 . . . . . . . . . . 11 ((𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ ((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))))
172 anass 468 . . . . . . . . . . 11 (((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)))))
173171, 172bitri 275 . . . . . . . . . 10 ((𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)))))
174 elxp6 8005 . . . . . . . . . 10 (𝑥 ∈ ((1...(𝑀 − 1)) × (1...(𝑁 − 1))) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1)))))
175169, 173, 1743bitr4g 314 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ 𝑥 ∈ ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))))
17629, 34, 1753bitrd 305 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ dom 𝐴) ↔ 𝑥 ∈ ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))))
177176eqrdv 2728 . . . . . . 7 (𝜑 → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ dom 𝐴) = ((1...(𝑀 − 1)) × (1...(𝑁 − 1))))
17825, 177eqtrid 2777 . . . . . 6 (𝜑 → dom (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) = ((1...(𝑀 − 1)) × (1...(𝑁 − 1))))
17924, 178eqtrd 2765 . . . . 5 (𝜑 → dom 𝑆 = ((1...(𝑀 − 1)) × (1...(𝑁 − 1))))
180179feq2d 6675 . . . 4 (𝜑 → (𝑆:dom 𝑆⟶ran 𝑆𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶ran 𝑆))
18123, 180mpbid 232 . . 3 (𝜑𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶ran 𝑆)
18219rneqd 5905 . . . . 5 (𝜑 → ran 𝑆 = ran (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
183 rncoss 5942 . . . . 5 ran (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) ⊆ ran 𝐴
184182, 183eqsstrdi 3994 . . . 4 (𝜑 → ran 𝑆 ⊆ ran 𝐴)
185 frn 6698 . . . . 5 (𝐴:((1...𝑀) × (1...𝑁))⟶𝐵 → ran 𝐴𝐵)
1861, 2, 1853syl 18 . . . 4 (𝜑 → ran 𝐴𝐵)
187184, 186sstrd 3960 . . 3 (𝜑 → ran 𝑆𝐵)
188 fss 6707 . . 3 ((𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶ran 𝑆 ∧ ran 𝑆𝐵) → 𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶𝐵)
189181, 187, 188syl2anc 584 . 2 (𝜑𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶𝐵)
190 reldmmap 8811 . . . . . 6 Rel dom ↑m
191190ovrcl 7431 . . . . 5 (𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))) → (𝐵 ∈ V ∧ ((1...𝑀) × (1...𝑁)) ∈ V))
1921, 191syl 17 . . . 4 (𝜑 → (𝐵 ∈ V ∧ ((1...𝑀) × (1...𝑁)) ∈ V))
193192simpld 494 . . 3 (𝜑𝐵 ∈ V)
194 ovex 7423 . . . 4 (1...(𝑀 − 1)) ∈ V
195 ovex 7423 . . . 4 (1...(𝑁 − 1)) ∈ V
196194, 195xpex 7732 . . 3 ((1...(𝑀 − 1)) × (1...(𝑁 − 1))) ∈ V
197 elmapg 8815 . . 3 ((𝐵 ∈ V ∧ ((1...(𝑀 − 1)) × (1...(𝑁 − 1))) ∈ V) → (𝑆 ∈ (𝐵m ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))) ↔ 𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶𝐵))
198193, 196, 197sylancl 586 . 2 (𝜑 → (𝑆 ∈ (𝐵m ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))) ↔ 𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶𝐵))
199189, 198mpbird 257 1 (𝜑𝑆 ∈ (𝐵m ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  ifcif 4491  cop 4598   class class class wbr 5110   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644  ccom 5645  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  m cmap 8802  cr 11074  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412  cn 12193  cz 12536  ...cfz 13475  subMat1csmat 33790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-smat 33791
This theorem is referenced by:  smatcl  33799  1smat1  33801
  Copyright terms: Public domain W3C validator