Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expdioph Structured version   Visualization version   GIF version

Theorem expdioph 42980
Description: The exponential function is Diophantine. This result completes and encapsulates our development using Pell equation solution sequences and is sometimes regarded as Matiyasevich's theorem properly. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
expdioph {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))} ∈ (Dioph‘3)

Proof of Theorem expdioph
StepHypRef Expression
1 pm4.42 1054 . . . 4 ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ ¬ (𝑎‘2) ∈ ℕ)))
2 ancom 460 . . . . . 6 (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ↔ ((𝑎‘2) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))
3 elmapi 8907 . . . . . . . . . . . . 13 (𝑎 ∈ (ℕ0m (1...3)) → 𝑎:(1...3)⟶ℕ0)
4 df-2 12356 . . . . . . . . . . . . . . 15 2 = (1 + 1)
5 df-3 12357 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
6 ssid 4031 . . . . . . . . . . . . . . . 16 (1...3) ⊆ (1...3)
75, 6jm2.27dlem5 42970 . . . . . . . . . . . . . . 15 (1...2) ⊆ (1...3)
84, 7jm2.27dlem5 42970 . . . . . . . . . . . . . 14 (1...1) ⊆ (1...3)
9 1nn 12304 . . . . . . . . . . . . . . 15 1 ∈ ℕ
109jm2.27dlem3 42968 . . . . . . . . . . . . . 14 1 ∈ (1...1)
118, 10sselii 4005 . . . . . . . . . . . . 13 1 ∈ (1...3)
12 ffvelcdm 7115 . . . . . . . . . . . . 13 ((𝑎:(1...3)⟶ℕ0 ∧ 1 ∈ (1...3)) → (𝑎‘1) ∈ ℕ0)
133, 11, 12sylancl 585 . . . . . . . . . . . 12 (𝑎 ∈ (ℕ0m (1...3)) → (𝑎‘1) ∈ ℕ0)
1413adantr 480 . . . . . . . . . . 11 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (𝑎‘1) ∈ ℕ0)
15 elnn0 12555 . . . . . . . . . . 11 ((𝑎‘1) ∈ ℕ0 ↔ ((𝑎‘1) ∈ ℕ ∨ (𝑎‘1) = 0))
1614, 15sylib 218 . . . . . . . . . 10 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) ∈ ℕ ∨ (𝑎‘1) = 0))
17 elnn1uz2 12990 . . . . . . . . . . . 12 ((𝑎‘1) ∈ ℕ ↔ ((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)))
1817biimpi 216 . . . . . . . . . . 11 ((𝑎‘1) ∈ ℕ → ((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)))
1918orim1i 908 . . . . . . . . . 10 (((𝑎‘1) ∈ ℕ ∨ (𝑎‘1) = 0) → (((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0))
2016, 19syl 17 . . . . . . . . 9 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0))
2120biantrurd 532 . . . . . . . 8 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ ((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
22 andir 1009 . . . . . . . . . 10 (((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
23 andir 1009 . . . . . . . . . . 11 ((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ (((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
2423orbi1i 912 . . . . . . . . . 10 (((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ↔ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
2522, 24bitri 275 . . . . . . . . 9 (((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
26 nnz 12660 . . . . . . . . . . . . . . . 16 ((𝑎‘2) ∈ ℕ → (𝑎‘2) ∈ ℤ)
27 1exp 14142 . . . . . . . . . . . . . . . 16 ((𝑎‘2) ∈ ℤ → (1↑(𝑎‘2)) = 1)
2826, 27syl 17 . . . . . . . . . . . . . . 15 ((𝑎‘2) ∈ ℕ → (1↑(𝑎‘2)) = 1)
2928adantl 481 . . . . . . . . . . . . . 14 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (1↑(𝑎‘2)) = 1)
3029eqeq2d 2751 . . . . . . . . . . . . 13 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = (1↑(𝑎‘2)) ↔ (𝑎‘3) = 1))
31 oveq1 7455 . . . . . . . . . . . . . . 15 ((𝑎‘1) = 1 → ((𝑎‘1)↑(𝑎‘2)) = (1↑(𝑎‘2)))
3231eqeq2d 2751 . . . . . . . . . . . . . 14 ((𝑎‘1) = 1 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = (1↑(𝑎‘2))))
3332bibi1d 343 . . . . . . . . . . . . 13 ((𝑎‘1) = 1 → (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 1) ↔ ((𝑎‘3) = (1↑(𝑎‘2)) ↔ (𝑎‘3) = 1)))
3430, 33syl5ibrcom 247 . . . . . . . . . . . 12 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) = 1 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 1)))
3534pm5.32d 576 . . . . . . . . . . 11 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘1) = 1 ∧ (𝑎‘3) = 1)))
36 iba 527 . . . . . . . . . . . . 13 ((𝑎‘2) ∈ ℕ → ((𝑎‘1) ∈ (ℤ‘2) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ)))
3736adantl 481 . . . . . . . . . . . 12 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) ∈ (ℤ‘2) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ)))
3837anbi1d 630 . . . . . . . . . . 11 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
3935, 38orbi12d 917 . . . . . . . . . 10 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ↔ (((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))))
40 0exp 14148 . . . . . . . . . . . . . 14 ((𝑎‘2) ∈ ℕ → (0↑(𝑎‘2)) = 0)
4140adantl 481 . . . . . . . . . . . . 13 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (0↑(𝑎‘2)) = 0)
4241eqeq2d 2751 . . . . . . . . . . . 12 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = (0↑(𝑎‘2)) ↔ (𝑎‘3) = 0))
43 oveq1 7455 . . . . . . . . . . . . . 14 ((𝑎‘1) = 0 → ((𝑎‘1)↑(𝑎‘2)) = (0↑(𝑎‘2)))
4443eqeq2d 2751 . . . . . . . . . . . . 13 ((𝑎‘1) = 0 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = (0↑(𝑎‘2))))
4544bibi1d 343 . . . . . . . . . . . 12 ((𝑎‘1) = 0 → (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 0) ↔ ((𝑎‘3) = (0↑(𝑎‘2)) ↔ (𝑎‘3) = 0)))
4642, 45syl5ibrcom 247 . . . . . . . . . . 11 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) = 0 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 0)))
4746pm5.32d 576 . . . . . . . . . 10 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))
4839, 47orbi12d 917 . . . . . . . . 9 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ↔ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))))
4925, 48bitrid 283 . . . . . . . 8 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))))
5021, 49bitrd 279 . . . . . . 7 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))))
5150pm5.32da 578 . . . . . 6 (𝑎 ∈ (ℕ0m (1...3)) → (((𝑎‘2) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))))
522, 51bitrid 283 . . . . 5 (𝑎 ∈ (ℕ0m (1...3)) → (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ↔ ((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))))
53 ancom 460 . . . . . 6 (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ ¬ (𝑎‘2) ∈ ℕ) ↔ (¬ (𝑎‘2) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))
54 2nn 12366 . . . . . . . . . . . 12 2 ∈ ℕ
5554jm2.27dlem3 42968 . . . . . . . . . . 11 2 ∈ (1...2)
567, 55sselii 4005 . . . . . . . . . 10 2 ∈ (1...3)
57 ffvelcdm 7115 . . . . . . . . . 10 ((𝑎:(1...3)⟶ℕ0 ∧ 2 ∈ (1...3)) → (𝑎‘2) ∈ ℕ0)
583, 56, 57sylancl 585 . . . . . . . . 9 (𝑎 ∈ (ℕ0m (1...3)) → (𝑎‘2) ∈ ℕ0)
59 elnn0 12555 . . . . . . . . . . 11 ((𝑎‘2) ∈ ℕ0 ↔ ((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0))
60 pm2.53 850 . . . . . . . . . . 11 (((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0) → (¬ (𝑎‘2) ∈ ℕ → (𝑎‘2) = 0))
6159, 60sylbi 217 . . . . . . . . . 10 ((𝑎‘2) ∈ ℕ0 → (¬ (𝑎‘2) ∈ ℕ → (𝑎‘2) = 0))
62 0nnn 12329 . . . . . . . . . . 11 ¬ 0 ∈ ℕ
63 eleq1 2832 . . . . . . . . . . 11 ((𝑎‘2) = 0 → ((𝑎‘2) ∈ ℕ ↔ 0 ∈ ℕ))
6462, 63mtbiri 327 . . . . . . . . . 10 ((𝑎‘2) = 0 → ¬ (𝑎‘2) ∈ ℕ)
6561, 64impbid1 225 . . . . . . . . 9 ((𝑎‘2) ∈ ℕ0 → (¬ (𝑎‘2) ∈ ℕ ↔ (𝑎‘2) = 0))
6658, 65syl 17 . . . . . . . 8 (𝑎 ∈ (ℕ0m (1...3)) → (¬ (𝑎‘2) ∈ ℕ ↔ (𝑎‘2) = 0))
6766anbi1d 630 . . . . . . 7 (𝑎 ∈ (ℕ0m (1...3)) → ((¬ (𝑎‘2) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘2) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
6813nn0cnd 12615 . . . . . . . . . . 11 (𝑎 ∈ (ℕ0m (1...3)) → (𝑎‘1) ∈ ℂ)
6968exp0d 14190 . . . . . . . . . 10 (𝑎 ∈ (ℕ0m (1...3)) → ((𝑎‘1)↑0) = 1)
7069eqeq2d 2751 . . . . . . . . 9 (𝑎 ∈ (ℕ0m (1...3)) → ((𝑎‘3) = ((𝑎‘1)↑0) ↔ (𝑎‘3) = 1))
71 oveq2 7456 . . . . . . . . . . 11 ((𝑎‘2) = 0 → ((𝑎‘1)↑(𝑎‘2)) = ((𝑎‘1)↑0))
7271eqeq2d 2751 . . . . . . . . . 10 ((𝑎‘2) = 0 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = ((𝑎‘1)↑0)))
7372bibi1d 343 . . . . . . . . 9 ((𝑎‘2) = 0 → (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 1) ↔ ((𝑎‘3) = ((𝑎‘1)↑0) ↔ (𝑎‘3) = 1)))
7470, 73syl5ibrcom 247 . . . . . . . 8 (𝑎 ∈ (ℕ0m (1...3)) → ((𝑎‘2) = 0 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 1)))
7574pm5.32d 576 . . . . . . 7 (𝑎 ∈ (ℕ0m (1...3)) → (((𝑎‘2) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)))
7667, 75bitrd 279 . . . . . 6 (𝑎 ∈ (ℕ0m (1...3)) → ((¬ (𝑎‘2) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)))
7753, 76bitrid 283 . . . . 5 (𝑎 ∈ (ℕ0m (1...3)) → (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ ¬ (𝑎‘2) ∈ ℕ) ↔ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)))
7852, 77orbi12d 917 . . . 4 (𝑎 ∈ (ℕ0m (1...3)) → ((((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ ¬ (𝑎‘2) ∈ ℕ)) ↔ (((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))) ∨ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1))))
791, 78bitrid 283 . . 3 (𝑎 ∈ (ℕ0m (1...3)) → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))) ∨ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1))))
8079rabbiia 3447 . 2 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))} = {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))) ∨ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1))}
81 3nn0 12571 . . . . 5 3 ∈ ℕ0
82 ovex 7481 . . . . . 6 (1...3) ∈ V
83 mzpproj 42693 . . . . . 6 (((1...3) ∈ V ∧ 2 ∈ (1...3)) → (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3)))
8482, 56, 83mp2an 691 . . . . 5 (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3))
85 elnnrabdioph 42763 . . . . 5 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) ∈ ℕ} ∈ (Dioph‘3))
8681, 84, 85mp2an 691 . . . 4 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) ∈ ℕ} ∈ (Dioph‘3)
87 mzpproj 42693 . . . . . . . . 9 (((1...3) ∈ V ∧ 1 ∈ (1...3)) → (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3)))
8882, 11, 87mp2an 691 . . . . . . . 8 (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3))
89 1z 12673 . . . . . . . . 9 1 ∈ ℤ
90 mzpconstmpt 42696 . . . . . . . . 9 (((1...3) ∈ V ∧ 1 ∈ ℤ) → (𝑎 ∈ (ℤ ↑m (1...3)) ↦ 1) ∈ (mzPoly‘(1...3)))
9182, 89, 90mp2an 691 . . . . . . . 8 (𝑎 ∈ (ℤ ↑m (1...3)) ↦ 1) ∈ (mzPoly‘(1...3))
92 eqrabdioph 42733 . . . . . . . 8 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3)) ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ 1) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) = 1} ∈ (Dioph‘3))
9381, 88, 91, 92mp3an 1461 . . . . . . 7 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) = 1} ∈ (Dioph‘3)
94 3nn 12372 . . . . . . . . . 10 3 ∈ ℕ
9594jm2.27dlem3 42968 . . . . . . . . 9 3 ∈ (1...3)
96 mzpproj 42693 . . . . . . . . 9 (((1...3) ∈ V ∧ 3 ∈ (1...3)) → (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3)))
9782, 95, 96mp2an 691 . . . . . . . 8 (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3))
98 eqrabdioph 42733 . . . . . . . 8 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3)) ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ 1) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 1} ∈ (Dioph‘3))
9981, 97, 91, 98mp3an 1461 . . . . . . 7 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 1} ∈ (Dioph‘3)
100 anrabdioph 42736 . . . . . . 7 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) = 1} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 1} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) = 1 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3))
10193, 99, 100mp2an 691 . . . . . 6 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) = 1 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3)
102 expdiophlem2 42979 . . . . . 6 {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))} ∈ (Dioph‘3)
103 orrabdioph 42737 . . . . . 6 (({𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) = 1 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))} ∈ (Dioph‘3))
104101, 102, 103mp2an 691 . . . . 5 {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))} ∈ (Dioph‘3)
105 eq0rabdioph 42732 . . . . . . 7 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) = 0} ∈ (Dioph‘3))
10681, 88, 105mp2an 691 . . . . . 6 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) = 0} ∈ (Dioph‘3)
107 eq0rabdioph 42732 . . . . . . 7 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 0} ∈ (Dioph‘3))
10881, 97, 107mp2an 691 . . . . . 6 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 0} ∈ (Dioph‘3)
109 anrabdioph 42736 . . . . . 6 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) = 0} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 0} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)} ∈ (Dioph‘3))
110106, 108, 109mp2an 691 . . . . 5 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)} ∈ (Dioph‘3)
111 orrabdioph 42737 . . . . 5 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))} ∈ (Dioph‘3))
112104, 110, 111mp2an 691 . . . 4 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))} ∈ (Dioph‘3)
113 anrabdioph 42736 . . . 4 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) ∈ ℕ} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))} ∈ (Dioph‘3))
11486, 112, 113mp2an 691 . . 3 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))} ∈ (Dioph‘3)
115 eq0rabdioph 42732 . . . . 5 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) = 0} ∈ (Dioph‘3))
11681, 84, 115mp2an 691 . . . 4 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) = 0} ∈ (Dioph‘3)
117 anrabdioph 42736 . . . 4 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) = 0} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 1} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3))
118116, 99, 117mp2an 691 . . 3 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3)
119 orrabdioph 42737 . . 3 (({𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))) ∨ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1))} ∈ (Dioph‘3))
120114, 118, 119mp2an 691 . 2 {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))) ∨ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1))} ∈ (Dioph‘3)
12180, 120eqeltri 2840 1 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))} ∈ (Dioph‘3)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  0cc0 11184  1c1 11185  cn 12293  2c2 12348  3c3 12349  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567  cexp 14112  mzPolycmzp 42678  Diophcdioph 42711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-gcd 16541  df-prm 16719  df-numer 16782  df-denom 16783  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-mzpcl 42679  df-mzp 42680  df-dioph 42712  df-squarenn 42797  df-pell1qr 42798  df-pell14qr 42799  df-pell1234qr 42800  df-pellfund 42801  df-rmx 42858  df-rmy 42859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator