Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expdioph Structured version   Visualization version   GIF version

Theorem expdioph 40440
Description: The exponential function is Diophantine. This result completes and encapsulates our development using Pell equation solution sequences and is sometimes regarded as Matiyasevich's theorem properly. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
expdioph {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))} ∈ (Dioph‘3)

Proof of Theorem expdioph
StepHypRef Expression
1 pm4.42 1053 . . . 4 ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ ¬ (𝑎‘2) ∈ ℕ)))
2 ancom 464 . . . . . 6 (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ↔ ((𝑎‘2) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))
3 elmapi 8462 . . . . . . . . . . . . 13 (𝑎 ∈ (ℕ0m (1...3)) → 𝑎:(1...3)⟶ℕ0)
4 df-2 11782 . . . . . . . . . . . . . . 15 2 = (1 + 1)
5 df-3 11783 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
6 ssid 3900 . . . . . . . . . . . . . . . 16 (1...3) ⊆ (1...3)
75, 6jm2.27dlem5 40430 . . . . . . . . . . . . . . 15 (1...2) ⊆ (1...3)
84, 7jm2.27dlem5 40430 . . . . . . . . . . . . . 14 (1...1) ⊆ (1...3)
9 1nn 11730 . . . . . . . . . . . . . . 15 1 ∈ ℕ
109jm2.27dlem3 40428 . . . . . . . . . . . . . 14 1 ∈ (1...1)
118, 10sselii 3875 . . . . . . . . . . . . 13 1 ∈ (1...3)
12 ffvelrn 6862 . . . . . . . . . . . . 13 ((𝑎:(1...3)⟶ℕ0 ∧ 1 ∈ (1...3)) → (𝑎‘1) ∈ ℕ0)
133, 11, 12sylancl 589 . . . . . . . . . . . 12 (𝑎 ∈ (ℕ0m (1...3)) → (𝑎‘1) ∈ ℕ0)
1413adantr 484 . . . . . . . . . . 11 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (𝑎‘1) ∈ ℕ0)
15 elnn0 11981 . . . . . . . . . . 11 ((𝑎‘1) ∈ ℕ0 ↔ ((𝑎‘1) ∈ ℕ ∨ (𝑎‘1) = 0))
1614, 15sylib 221 . . . . . . . . . 10 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) ∈ ℕ ∨ (𝑎‘1) = 0))
17 elnn1uz2 12410 . . . . . . . . . . . 12 ((𝑎‘1) ∈ ℕ ↔ ((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)))
1817biimpi 219 . . . . . . . . . . 11 ((𝑎‘1) ∈ ℕ → ((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)))
1918orim1i 909 . . . . . . . . . 10 (((𝑎‘1) ∈ ℕ ∨ (𝑎‘1) = 0) → (((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0))
2016, 19syl 17 . . . . . . . . 9 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0))
2120biantrurd 536 . . . . . . . 8 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ ((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
22 andir 1008 . . . . . . . . . 10 (((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
23 andir 1008 . . . . . . . . . . 11 ((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ (((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
2423orbi1i 913 . . . . . . . . . 10 (((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ↔ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
2522, 24bitri 278 . . . . . . . . 9 (((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
26 nnz 12088 . . . . . . . . . . . . . . . 16 ((𝑎‘2) ∈ ℕ → (𝑎‘2) ∈ ℤ)
27 1exp 13553 . . . . . . . . . . . . . . . 16 ((𝑎‘2) ∈ ℤ → (1↑(𝑎‘2)) = 1)
2826, 27syl 17 . . . . . . . . . . . . . . 15 ((𝑎‘2) ∈ ℕ → (1↑(𝑎‘2)) = 1)
2928adantl 485 . . . . . . . . . . . . . 14 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (1↑(𝑎‘2)) = 1)
3029eqeq2d 2750 . . . . . . . . . . . . 13 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = (1↑(𝑎‘2)) ↔ (𝑎‘3) = 1))
31 oveq1 7180 . . . . . . . . . . . . . . 15 ((𝑎‘1) = 1 → ((𝑎‘1)↑(𝑎‘2)) = (1↑(𝑎‘2)))
3231eqeq2d 2750 . . . . . . . . . . . . . 14 ((𝑎‘1) = 1 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = (1↑(𝑎‘2))))
3332bibi1d 347 . . . . . . . . . . . . 13 ((𝑎‘1) = 1 → (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 1) ↔ ((𝑎‘3) = (1↑(𝑎‘2)) ↔ (𝑎‘3) = 1)))
3430, 33syl5ibrcom 250 . . . . . . . . . . . 12 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) = 1 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 1)))
3534pm5.32d 580 . . . . . . . . . . 11 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘1) = 1 ∧ (𝑎‘3) = 1)))
36 iba 531 . . . . . . . . . . . . 13 ((𝑎‘2) ∈ ℕ → ((𝑎‘1) ∈ (ℤ‘2) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ)))
3736adantl 485 . . . . . . . . . . . 12 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) ∈ (ℤ‘2) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ)))
3837anbi1d 633 . . . . . . . . . . 11 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
3935, 38orbi12d 918 . . . . . . . . . 10 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ↔ (((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))))
40 0exp 13559 . . . . . . . . . . . . . 14 ((𝑎‘2) ∈ ℕ → (0↑(𝑎‘2)) = 0)
4140adantl 485 . . . . . . . . . . . . 13 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (0↑(𝑎‘2)) = 0)
4241eqeq2d 2750 . . . . . . . . . . . 12 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = (0↑(𝑎‘2)) ↔ (𝑎‘3) = 0))
43 oveq1 7180 . . . . . . . . . . . . . 14 ((𝑎‘1) = 0 → ((𝑎‘1)↑(𝑎‘2)) = (0↑(𝑎‘2)))
4443eqeq2d 2750 . . . . . . . . . . . . 13 ((𝑎‘1) = 0 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = (0↑(𝑎‘2))))
4544bibi1d 347 . . . . . . . . . . . 12 ((𝑎‘1) = 0 → (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 0) ↔ ((𝑎‘3) = (0↑(𝑎‘2)) ↔ (𝑎‘3) = 0)))
4642, 45syl5ibrcom 250 . . . . . . . . . . 11 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) = 0 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 0)))
4746pm5.32d 580 . . . . . . . . . 10 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))
4839, 47orbi12d 918 . . . . . . . . 9 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ↔ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))))
4925, 48syl5bb 286 . . . . . . . 8 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))))
5021, 49bitrd 282 . . . . . . 7 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))))
5150pm5.32da 582 . . . . . 6 (𝑎 ∈ (ℕ0m (1...3)) → (((𝑎‘2) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))))
522, 51syl5bb 286 . . . . 5 (𝑎 ∈ (ℕ0m (1...3)) → (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ↔ ((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))))
53 ancom 464 . . . . . 6 (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ ¬ (𝑎‘2) ∈ ℕ) ↔ (¬ (𝑎‘2) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))
54 2nn 11792 . . . . . . . . . . . 12 2 ∈ ℕ
5554jm2.27dlem3 40428 . . . . . . . . . . 11 2 ∈ (1...2)
567, 55sselii 3875 . . . . . . . . . 10 2 ∈ (1...3)
57 ffvelrn 6862 . . . . . . . . . 10 ((𝑎:(1...3)⟶ℕ0 ∧ 2 ∈ (1...3)) → (𝑎‘2) ∈ ℕ0)
583, 56, 57sylancl 589 . . . . . . . . 9 (𝑎 ∈ (ℕ0m (1...3)) → (𝑎‘2) ∈ ℕ0)
59 elnn0 11981 . . . . . . . . . . 11 ((𝑎‘2) ∈ ℕ0 ↔ ((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0))
60 pm2.53 850 . . . . . . . . . . 11 (((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0) → (¬ (𝑎‘2) ∈ ℕ → (𝑎‘2) = 0))
6159, 60sylbi 220 . . . . . . . . . 10 ((𝑎‘2) ∈ ℕ0 → (¬ (𝑎‘2) ∈ ℕ → (𝑎‘2) = 0))
62 0nnn 11755 . . . . . . . . . . 11 ¬ 0 ∈ ℕ
63 eleq1 2821 . . . . . . . . . . 11 ((𝑎‘2) = 0 → ((𝑎‘2) ∈ ℕ ↔ 0 ∈ ℕ))
6462, 63mtbiri 330 . . . . . . . . . 10 ((𝑎‘2) = 0 → ¬ (𝑎‘2) ∈ ℕ)
6561, 64impbid1 228 . . . . . . . . 9 ((𝑎‘2) ∈ ℕ0 → (¬ (𝑎‘2) ∈ ℕ ↔ (𝑎‘2) = 0))
6658, 65syl 17 . . . . . . . 8 (𝑎 ∈ (ℕ0m (1...3)) → (¬ (𝑎‘2) ∈ ℕ ↔ (𝑎‘2) = 0))
6766anbi1d 633 . . . . . . 7 (𝑎 ∈ (ℕ0m (1...3)) → ((¬ (𝑎‘2) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘2) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
6813nn0cnd 12041 . . . . . . . . . . 11 (𝑎 ∈ (ℕ0m (1...3)) → (𝑎‘1) ∈ ℂ)
6968exp0d 13599 . . . . . . . . . 10 (𝑎 ∈ (ℕ0m (1...3)) → ((𝑎‘1)↑0) = 1)
7069eqeq2d 2750 . . . . . . . . 9 (𝑎 ∈ (ℕ0m (1...3)) → ((𝑎‘3) = ((𝑎‘1)↑0) ↔ (𝑎‘3) = 1))
71 oveq2 7181 . . . . . . . . . . 11 ((𝑎‘2) = 0 → ((𝑎‘1)↑(𝑎‘2)) = ((𝑎‘1)↑0))
7271eqeq2d 2750 . . . . . . . . . 10 ((𝑎‘2) = 0 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = ((𝑎‘1)↑0)))
7372bibi1d 347 . . . . . . . . 9 ((𝑎‘2) = 0 → (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 1) ↔ ((𝑎‘3) = ((𝑎‘1)↑0) ↔ (𝑎‘3) = 1)))
7470, 73syl5ibrcom 250 . . . . . . . 8 (𝑎 ∈ (ℕ0m (1...3)) → ((𝑎‘2) = 0 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 1)))
7574pm5.32d 580 . . . . . . 7 (𝑎 ∈ (ℕ0m (1...3)) → (((𝑎‘2) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)))
7667, 75bitrd 282 . . . . . 6 (𝑎 ∈ (ℕ0m (1...3)) → ((¬ (𝑎‘2) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)))
7753, 76syl5bb 286 . . . . 5 (𝑎 ∈ (ℕ0m (1...3)) → (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ ¬ (𝑎‘2) ∈ ℕ) ↔ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)))
7852, 77orbi12d 918 . . . 4 (𝑎 ∈ (ℕ0m (1...3)) → ((((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ ¬ (𝑎‘2) ∈ ℕ)) ↔ (((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))) ∨ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1))))
791, 78syl5bb 286 . . 3 (𝑎 ∈ (ℕ0m (1...3)) → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))) ∨ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1))))
8079rabbiia 3374 . 2 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))} = {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))) ∨ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1))}
81 3nn0 11997 . . . . 5 3 ∈ ℕ0
82 ovex 7206 . . . . . 6 (1...3) ∈ V
83 mzpproj 40154 . . . . . 6 (((1...3) ∈ V ∧ 2 ∈ (1...3)) → (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3)))
8482, 56, 83mp2an 692 . . . . 5 (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3))
85 elnnrabdioph 40224 . . . . 5 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) ∈ ℕ} ∈ (Dioph‘3))
8681, 84, 85mp2an 692 . . . 4 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) ∈ ℕ} ∈ (Dioph‘3)
87 mzpproj 40154 . . . . . . . . 9 (((1...3) ∈ V ∧ 1 ∈ (1...3)) → (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3)))
8882, 11, 87mp2an 692 . . . . . . . 8 (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3))
89 1z 12096 . . . . . . . . 9 1 ∈ ℤ
90 mzpconstmpt 40157 . . . . . . . . 9 (((1...3) ∈ V ∧ 1 ∈ ℤ) → (𝑎 ∈ (ℤ ↑m (1...3)) ↦ 1) ∈ (mzPoly‘(1...3)))
9182, 89, 90mp2an 692 . . . . . . . 8 (𝑎 ∈ (ℤ ↑m (1...3)) ↦ 1) ∈ (mzPoly‘(1...3))
92 eqrabdioph 40194 . . . . . . . 8 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3)) ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ 1) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) = 1} ∈ (Dioph‘3))
9381, 88, 91, 92mp3an 1462 . . . . . . 7 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) = 1} ∈ (Dioph‘3)
94 3nn 11798 . . . . . . . . . 10 3 ∈ ℕ
9594jm2.27dlem3 40428 . . . . . . . . 9 3 ∈ (1...3)
96 mzpproj 40154 . . . . . . . . 9 (((1...3) ∈ V ∧ 3 ∈ (1...3)) → (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3)))
9782, 95, 96mp2an 692 . . . . . . . 8 (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3))
98 eqrabdioph 40194 . . . . . . . 8 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3)) ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ 1) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 1} ∈ (Dioph‘3))
9981, 97, 91, 98mp3an 1462 . . . . . . 7 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 1} ∈ (Dioph‘3)
100 anrabdioph 40197 . . . . . . 7 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) = 1} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 1} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) = 1 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3))
10193, 99, 100mp2an 692 . . . . . 6 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) = 1 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3)
102 expdiophlem2 40439 . . . . . 6 {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))} ∈ (Dioph‘3)
103 orrabdioph 40198 . . . . . 6 (({𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) = 1 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))} ∈ (Dioph‘3))
104101, 102, 103mp2an 692 . . . . 5 {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))} ∈ (Dioph‘3)
105 eq0rabdioph 40193 . . . . . . 7 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) = 0} ∈ (Dioph‘3))
10681, 88, 105mp2an 692 . . . . . 6 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) = 0} ∈ (Dioph‘3)
107 eq0rabdioph 40193 . . . . . . 7 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 0} ∈ (Dioph‘3))
10881, 97, 107mp2an 692 . . . . . 6 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 0} ∈ (Dioph‘3)
109 anrabdioph 40197 . . . . . 6 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) = 0} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 0} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)} ∈ (Dioph‘3))
110106, 108, 109mp2an 692 . . . . 5 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)} ∈ (Dioph‘3)
111 orrabdioph 40198 . . . . 5 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))} ∈ (Dioph‘3))
112104, 110, 111mp2an 692 . . . 4 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))} ∈ (Dioph‘3)
113 anrabdioph 40197 . . . 4 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) ∈ ℕ} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))} ∈ (Dioph‘3))
11486, 112, 113mp2an 692 . . 3 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))} ∈ (Dioph‘3)
115 eq0rabdioph 40193 . . . . 5 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) = 0} ∈ (Dioph‘3))
11681, 84, 115mp2an 692 . . . 4 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) = 0} ∈ (Dioph‘3)
117 anrabdioph 40197 . . . 4 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) = 0} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 1} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3))
118116, 99, 117mp2an 692 . . 3 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3)
119 orrabdioph 40198 . . 3 (({𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))) ∨ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1))} ∈ (Dioph‘3))
120114, 118, 119mp2an 692 . 2 {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))) ∨ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1))} ∈ (Dioph‘3)
12180, 120eqeltri 2830 1 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))} ∈ (Dioph‘3)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 846   = wceq 1542  wcel 2114  {crab 3058  Vcvv 3399  cmpt 5111  wf 6336  cfv 6340  (class class class)co 7173  m cmap 8440  0cc0 10618  1c1 10619  cn 11719  2c2 11774  3c3 11775  0cn0 11979  cz 12065  cuz 12327  ...cfz 12984  cexp 13524  mzPolycmzp 40139  Diophcdioph 40172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-inf2 9180  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695  ax-pre-sup 10696  ax-addf 10697  ax-mulf 10698
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-se 5485  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-of 7428  df-om 7603  df-1st 7717  df-2nd 7718  df-supp 7860  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-1o 8134  df-2o 8135  df-oadd 8138  df-omul 8139  df-er 8323  df-map 8442  df-pm 8443  df-ixp 8511  df-en 8559  df-dom 8560  df-sdom 8561  df-fin 8562  df-fsupp 8910  df-fi 8951  df-sup 8982  df-inf 8983  df-oi 9050  df-dju 9406  df-card 9444  df-acn 9447  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-div 11379  df-nn 11720  df-2 11782  df-3 11783  df-4 11784  df-5 11785  df-6 11786  df-7 11787  df-8 11788  df-9 11789  df-n0 11980  df-xnn0 12052  df-z 12066  df-dec 12183  df-uz 12328  df-q 12434  df-rp 12476  df-xneg 12593  df-xadd 12594  df-xmul 12595  df-ioo 12828  df-ioc 12829  df-ico 12830  df-icc 12831  df-fz 12985  df-fzo 13128  df-fl 13256  df-mod 13332  df-seq 13464  df-exp 13525  df-fac 13729  df-bc 13758  df-hash 13786  df-shft 14519  df-cj 14551  df-re 14552  df-im 14553  df-sqrt 14687  df-abs 14688  df-limsup 14921  df-clim 14938  df-rlim 14939  df-sum 15139  df-ef 15516  df-sin 15518  df-cos 15519  df-pi 15521  df-dvds 15703  df-gcd 15941  df-prm 16116  df-numer 16178  df-denom 16179  df-struct 16591  df-ndx 16592  df-slot 16593  df-base 16595  df-sets 16596  df-ress 16597  df-plusg 16684  df-mulr 16685  df-starv 16686  df-sca 16687  df-vsca 16688  df-ip 16689  df-tset 16690  df-ple 16691  df-ds 16693  df-unif 16694  df-hom 16695  df-cco 16696  df-rest 16802  df-topn 16803  df-0g 16821  df-gsum 16822  df-topgen 16823  df-pt 16824  df-prds 16827  df-xrs 16881  df-qtop 16886  df-imas 16887  df-xps 16889  df-mre 16963  df-mrc 16964  df-acs 16966  df-mgm 17971  df-sgrp 18020  df-mnd 18031  df-submnd 18076  df-mulg 18346  df-cntz 18568  df-cmn 19029  df-psmet 20212  df-xmet 20213  df-met 20214  df-bl 20215  df-mopn 20216  df-fbas 20217  df-fg 20218  df-cnfld 20221  df-top 21648  df-topon 21665  df-topsp 21687  df-bases 21700  df-cld 21773  df-ntr 21774  df-cls 21775  df-nei 21852  df-lp 21890  df-perf 21891  df-cn 21981  df-cnp 21982  df-haus 22069  df-tx 22316  df-hmeo 22509  df-fil 22600  df-fm 22692  df-flim 22693  df-flf 22694  df-xms 23076  df-ms 23077  df-tms 23078  df-cncf 23633  df-limc 24621  df-dv 24622  df-log 25303  df-mzpcl 40140  df-mzp 40141  df-dioph 40173  df-squarenn 40258  df-pell1qr 40259  df-pell14qr 40260  df-pell1234qr 40261  df-pellfund 40262  df-rmx 40319  df-rmy 40320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator