Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expdioph Structured version   Visualization version   GIF version

Theorem expdioph 43047
Description: The exponential function is Diophantine. This result completes and encapsulates our development using Pell equation solution sequences and is sometimes regarded as Matiyasevich's theorem properly. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
expdioph {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))} ∈ (Dioph‘3)

Proof of Theorem expdioph
StepHypRef Expression
1 pm4.42 1053 . . . 4 ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ ¬ (𝑎‘2) ∈ ℕ)))
2 ancom 460 . . . . . 6 (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ↔ ((𝑎‘2) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))
3 elmapi 8863 . . . . . . . . . . . . 13 (𝑎 ∈ (ℕ0m (1...3)) → 𝑎:(1...3)⟶ℕ0)
4 df-2 12303 . . . . . . . . . . . . . . 15 2 = (1 + 1)
5 df-3 12304 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
6 ssid 3981 . . . . . . . . . . . . . . . 16 (1...3) ⊆ (1...3)
75, 6jm2.27dlem5 43037 . . . . . . . . . . . . . . 15 (1...2) ⊆ (1...3)
84, 7jm2.27dlem5 43037 . . . . . . . . . . . . . 14 (1...1) ⊆ (1...3)
9 1nn 12251 . . . . . . . . . . . . . . 15 1 ∈ ℕ
109jm2.27dlem3 43035 . . . . . . . . . . . . . 14 1 ∈ (1...1)
118, 10sselii 3955 . . . . . . . . . . . . 13 1 ∈ (1...3)
12 ffvelcdm 7071 . . . . . . . . . . . . 13 ((𝑎:(1...3)⟶ℕ0 ∧ 1 ∈ (1...3)) → (𝑎‘1) ∈ ℕ0)
133, 11, 12sylancl 586 . . . . . . . . . . . 12 (𝑎 ∈ (ℕ0m (1...3)) → (𝑎‘1) ∈ ℕ0)
1413adantr 480 . . . . . . . . . . 11 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (𝑎‘1) ∈ ℕ0)
15 elnn0 12503 . . . . . . . . . . 11 ((𝑎‘1) ∈ ℕ0 ↔ ((𝑎‘1) ∈ ℕ ∨ (𝑎‘1) = 0))
1614, 15sylib 218 . . . . . . . . . 10 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) ∈ ℕ ∨ (𝑎‘1) = 0))
17 elnn1uz2 12941 . . . . . . . . . . . 12 ((𝑎‘1) ∈ ℕ ↔ ((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)))
1817biimpi 216 . . . . . . . . . . 11 ((𝑎‘1) ∈ ℕ → ((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)))
1918orim1i 909 . . . . . . . . . 10 (((𝑎‘1) ∈ ℕ ∨ (𝑎‘1) = 0) → (((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0))
2016, 19syl 17 . . . . . . . . 9 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0))
2120biantrurd 532 . . . . . . . 8 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ ((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
22 andir 1010 . . . . . . . . . 10 (((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
23 andir 1010 . . . . . . . . . . 11 ((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ (((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
2423orbi1i 913 . . . . . . . . . 10 (((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ↔ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
2522, 24bitri 275 . . . . . . . . 9 (((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
26 nnz 12609 . . . . . . . . . . . . . . . 16 ((𝑎‘2) ∈ ℕ → (𝑎‘2) ∈ ℤ)
27 1exp 14109 . . . . . . . . . . . . . . . 16 ((𝑎‘2) ∈ ℤ → (1↑(𝑎‘2)) = 1)
2826, 27syl 17 . . . . . . . . . . . . . . 15 ((𝑎‘2) ∈ ℕ → (1↑(𝑎‘2)) = 1)
2928adantl 481 . . . . . . . . . . . . . 14 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (1↑(𝑎‘2)) = 1)
3029eqeq2d 2746 . . . . . . . . . . . . 13 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = (1↑(𝑎‘2)) ↔ (𝑎‘3) = 1))
31 oveq1 7412 . . . . . . . . . . . . . . 15 ((𝑎‘1) = 1 → ((𝑎‘1)↑(𝑎‘2)) = (1↑(𝑎‘2)))
3231eqeq2d 2746 . . . . . . . . . . . . . 14 ((𝑎‘1) = 1 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = (1↑(𝑎‘2))))
3332bibi1d 343 . . . . . . . . . . . . 13 ((𝑎‘1) = 1 → (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 1) ↔ ((𝑎‘3) = (1↑(𝑎‘2)) ↔ (𝑎‘3) = 1)))
3430, 33syl5ibrcom 247 . . . . . . . . . . . 12 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) = 1 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 1)))
3534pm5.32d 577 . . . . . . . . . . 11 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘1) = 1 ∧ (𝑎‘3) = 1)))
36 iba 527 . . . . . . . . . . . . 13 ((𝑎‘2) ∈ ℕ → ((𝑎‘1) ∈ (ℤ‘2) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ)))
3736adantl 481 . . . . . . . . . . . 12 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) ∈ (ℤ‘2) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ)))
3837anbi1d 631 . . . . . . . . . . 11 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
3935, 38orbi12d 918 . . . . . . . . . 10 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ↔ (((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))))
40 0exp 14115 . . . . . . . . . . . . . 14 ((𝑎‘2) ∈ ℕ → (0↑(𝑎‘2)) = 0)
4140adantl 481 . . . . . . . . . . . . 13 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (0↑(𝑎‘2)) = 0)
4241eqeq2d 2746 . . . . . . . . . . . 12 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = (0↑(𝑎‘2)) ↔ (𝑎‘3) = 0))
43 oveq1 7412 . . . . . . . . . . . . . 14 ((𝑎‘1) = 0 → ((𝑎‘1)↑(𝑎‘2)) = (0↑(𝑎‘2)))
4443eqeq2d 2746 . . . . . . . . . . . . 13 ((𝑎‘1) = 0 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = (0↑(𝑎‘2))))
4544bibi1d 343 . . . . . . . . . . . 12 ((𝑎‘1) = 0 → (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 0) ↔ ((𝑎‘3) = (0↑(𝑎‘2)) ↔ (𝑎‘3) = 0)))
4642, 45syl5ibrcom 247 . . . . . . . . . . 11 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) = 0 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 0)))
4746pm5.32d 577 . . . . . . . . . 10 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))
4839, 47orbi12d 918 . . . . . . . . 9 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ↔ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))))
4925, 48bitrid 283 . . . . . . . 8 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))))
5021, 49bitrd 279 . . . . . . 7 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))))
5150pm5.32da 579 . . . . . 6 (𝑎 ∈ (ℕ0m (1...3)) → (((𝑎‘2) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))))
522, 51bitrid 283 . . . . 5 (𝑎 ∈ (ℕ0m (1...3)) → (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ↔ ((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))))
53 ancom 460 . . . . . 6 (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ ¬ (𝑎‘2) ∈ ℕ) ↔ (¬ (𝑎‘2) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))
54 2nn 12313 . . . . . . . . . . . 12 2 ∈ ℕ
5554jm2.27dlem3 43035 . . . . . . . . . . 11 2 ∈ (1...2)
567, 55sselii 3955 . . . . . . . . . 10 2 ∈ (1...3)
57 ffvelcdm 7071 . . . . . . . . . 10 ((𝑎:(1...3)⟶ℕ0 ∧ 2 ∈ (1...3)) → (𝑎‘2) ∈ ℕ0)
583, 56, 57sylancl 586 . . . . . . . . 9 (𝑎 ∈ (ℕ0m (1...3)) → (𝑎‘2) ∈ ℕ0)
59 elnn0 12503 . . . . . . . . . . 11 ((𝑎‘2) ∈ ℕ0 ↔ ((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0))
60 pm2.53 851 . . . . . . . . . . 11 (((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0) → (¬ (𝑎‘2) ∈ ℕ → (𝑎‘2) = 0))
6159, 60sylbi 217 . . . . . . . . . 10 ((𝑎‘2) ∈ ℕ0 → (¬ (𝑎‘2) ∈ ℕ → (𝑎‘2) = 0))
62 0nnn 12276 . . . . . . . . . . 11 ¬ 0 ∈ ℕ
63 eleq1 2822 . . . . . . . . . . 11 ((𝑎‘2) = 0 → ((𝑎‘2) ∈ ℕ ↔ 0 ∈ ℕ))
6462, 63mtbiri 327 . . . . . . . . . 10 ((𝑎‘2) = 0 → ¬ (𝑎‘2) ∈ ℕ)
6561, 64impbid1 225 . . . . . . . . 9 ((𝑎‘2) ∈ ℕ0 → (¬ (𝑎‘2) ∈ ℕ ↔ (𝑎‘2) = 0))
6658, 65syl 17 . . . . . . . 8 (𝑎 ∈ (ℕ0m (1...3)) → (¬ (𝑎‘2) ∈ ℕ ↔ (𝑎‘2) = 0))
6766anbi1d 631 . . . . . . 7 (𝑎 ∈ (ℕ0m (1...3)) → ((¬ (𝑎‘2) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘2) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
6813nn0cnd 12564 . . . . . . . . . . 11 (𝑎 ∈ (ℕ0m (1...3)) → (𝑎‘1) ∈ ℂ)
6968exp0d 14158 . . . . . . . . . 10 (𝑎 ∈ (ℕ0m (1...3)) → ((𝑎‘1)↑0) = 1)
7069eqeq2d 2746 . . . . . . . . 9 (𝑎 ∈ (ℕ0m (1...3)) → ((𝑎‘3) = ((𝑎‘1)↑0) ↔ (𝑎‘3) = 1))
71 oveq2 7413 . . . . . . . . . . 11 ((𝑎‘2) = 0 → ((𝑎‘1)↑(𝑎‘2)) = ((𝑎‘1)↑0))
7271eqeq2d 2746 . . . . . . . . . 10 ((𝑎‘2) = 0 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = ((𝑎‘1)↑0)))
7372bibi1d 343 . . . . . . . . 9 ((𝑎‘2) = 0 → (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 1) ↔ ((𝑎‘3) = ((𝑎‘1)↑0) ↔ (𝑎‘3) = 1)))
7470, 73syl5ibrcom 247 . . . . . . . 8 (𝑎 ∈ (ℕ0m (1...3)) → ((𝑎‘2) = 0 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 1)))
7574pm5.32d 577 . . . . . . 7 (𝑎 ∈ (ℕ0m (1...3)) → (((𝑎‘2) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)))
7667, 75bitrd 279 . . . . . 6 (𝑎 ∈ (ℕ0m (1...3)) → ((¬ (𝑎‘2) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)))
7753, 76bitrid 283 . . . . 5 (𝑎 ∈ (ℕ0m (1...3)) → (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ ¬ (𝑎‘2) ∈ ℕ) ↔ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)))
7852, 77orbi12d 918 . . . 4 (𝑎 ∈ (ℕ0m (1...3)) → ((((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ ¬ (𝑎‘2) ∈ ℕ)) ↔ (((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))) ∨ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1))))
791, 78bitrid 283 . . 3 (𝑎 ∈ (ℕ0m (1...3)) → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))) ∨ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1))))
8079rabbiia 3419 . 2 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))} = {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))) ∨ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1))}
81 3nn0 12519 . . . . 5 3 ∈ ℕ0
82 ovex 7438 . . . . . 6 (1...3) ∈ V
83 mzpproj 42760 . . . . . 6 (((1...3) ∈ V ∧ 2 ∈ (1...3)) → (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3)))
8482, 56, 83mp2an 692 . . . . 5 (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3))
85 elnnrabdioph 42830 . . . . 5 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) ∈ ℕ} ∈ (Dioph‘3))
8681, 84, 85mp2an 692 . . . 4 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) ∈ ℕ} ∈ (Dioph‘3)
87 mzpproj 42760 . . . . . . . . 9 (((1...3) ∈ V ∧ 1 ∈ (1...3)) → (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3)))
8882, 11, 87mp2an 692 . . . . . . . 8 (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3))
89 1z 12622 . . . . . . . . 9 1 ∈ ℤ
90 mzpconstmpt 42763 . . . . . . . . 9 (((1...3) ∈ V ∧ 1 ∈ ℤ) → (𝑎 ∈ (ℤ ↑m (1...3)) ↦ 1) ∈ (mzPoly‘(1...3)))
9182, 89, 90mp2an 692 . . . . . . . 8 (𝑎 ∈ (ℤ ↑m (1...3)) ↦ 1) ∈ (mzPoly‘(1...3))
92 eqrabdioph 42800 . . . . . . . 8 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3)) ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ 1) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) = 1} ∈ (Dioph‘3))
9381, 88, 91, 92mp3an 1463 . . . . . . 7 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) = 1} ∈ (Dioph‘3)
94 3nn 12319 . . . . . . . . . 10 3 ∈ ℕ
9594jm2.27dlem3 43035 . . . . . . . . 9 3 ∈ (1...3)
96 mzpproj 42760 . . . . . . . . 9 (((1...3) ∈ V ∧ 3 ∈ (1...3)) → (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3)))
9782, 95, 96mp2an 692 . . . . . . . 8 (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3))
98 eqrabdioph 42800 . . . . . . . 8 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3)) ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ 1) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 1} ∈ (Dioph‘3))
9981, 97, 91, 98mp3an 1463 . . . . . . 7 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 1} ∈ (Dioph‘3)
100 anrabdioph 42803 . . . . . . 7 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) = 1} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 1} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) = 1 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3))
10193, 99, 100mp2an 692 . . . . . 6 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) = 1 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3)
102 expdiophlem2 43046 . . . . . 6 {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))} ∈ (Dioph‘3)
103 orrabdioph 42804 . . . . . 6 (({𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) = 1 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))} ∈ (Dioph‘3))
104101, 102, 103mp2an 692 . . . . 5 {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))} ∈ (Dioph‘3)
105 eq0rabdioph 42799 . . . . . . 7 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) = 0} ∈ (Dioph‘3))
10681, 88, 105mp2an 692 . . . . . 6 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) = 0} ∈ (Dioph‘3)
107 eq0rabdioph 42799 . . . . . . 7 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 0} ∈ (Dioph‘3))
10881, 97, 107mp2an 692 . . . . . 6 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 0} ∈ (Dioph‘3)
109 anrabdioph 42803 . . . . . 6 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) = 0} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 0} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)} ∈ (Dioph‘3))
110106, 108, 109mp2an 692 . . . . 5 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)} ∈ (Dioph‘3)
111 orrabdioph 42804 . . . . 5 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))} ∈ (Dioph‘3))
112104, 110, 111mp2an 692 . . . 4 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))} ∈ (Dioph‘3)
113 anrabdioph 42803 . . . 4 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) ∈ ℕ} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))} ∈ (Dioph‘3))
11486, 112, 113mp2an 692 . . 3 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))} ∈ (Dioph‘3)
115 eq0rabdioph 42799 . . . . 5 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) = 0} ∈ (Dioph‘3))
11681, 84, 115mp2an 692 . . . 4 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) = 0} ∈ (Dioph‘3)
117 anrabdioph 42803 . . . 4 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) = 0} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 1} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3))
118116, 99, 117mp2an 692 . . 3 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3)
119 orrabdioph 42804 . . 3 (({𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))) ∨ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1))} ∈ (Dioph‘3))
120114, 118, 119mp2an 692 . 2 {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))) ∨ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1))} ∈ (Dioph‘3)
12180, 120eqeltri 2830 1 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))} ∈ (Dioph‘3)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  cmpt 5201  wf 6527  cfv 6531  (class class class)co 7405  m cmap 8840  0cc0 11129  1c1 11130  cn 12240  2c2 12295  3c3 12296  0cn0 12501  cz 12588  cuz 12852  ...cfz 13524  cexp 14079  mzPolycmzp 42745  Diophcdioph 42778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-dvds 16273  df-gcd 16514  df-prm 16691  df-numer 16754  df-denom 16755  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517  df-mzpcl 42746  df-mzp 42747  df-dioph 42779  df-squarenn 42864  df-pell1qr 42865  df-pell14qr 42866  df-pell1234qr 42867  df-pellfund 42868  df-rmx 42925  df-rmy 42926
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator