| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inundif | Structured version Visualization version GIF version | ||
| Description: The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| inundif | ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3919 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 2 | eldif 3913 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | orbi12i 914 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
| 4 | pm4.42 1053 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) | |
| 5 | 3, 4 | bitr4i 278 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ 𝑥 ∈ 𝐴) |
| 6 | 5 | uneqri 4107 | 1 ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∖ cdif 3900 ∪ cun 3901 ∩ cin 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 |
| This theorem is referenced by: iunxdif3 5044 partfun 6629 resasplit 6694 fresaun 6695 fresaunres2 6696 ixpfi2 9240 hashun3 14291 prmreclem2 16829 mvdco 19324 sylow2a 19498 ablfac1eu 19954 basdif0 22838 neitr 23065 cmpfi 23293 ptbasfi 23466 ptcnplem 23506 fin1aufil 23817 ismbl2 25426 volinun 25445 voliunlem2 25450 mbfeqalem2 25541 itg2cnlem2 25661 dvres2lem 25809 indifundif 32468 imadifxp 32545 ofpreima2 32609 resf1o 32673 indsumin 32805 gsummptres 33005 tocyccntz 33086 measun 34178 measunl 34183 inelcarsg 34279 carsgclctun 34289 sibfof 34308 probdif 34388 hgt750lemd 34616 mthmpps 35555 clcnvlem 43596 radcnvrat 44287 sumnnodd 45611 ovolsplit 45969 omelesplit 46499 ovnsplit 46629 |
| Copyright terms: Public domain | W3C validator |