MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inundif Structured version   Visualization version   GIF version

Theorem inundif 4442
Description: The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
inundif ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴

Proof of Theorem inundif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3930 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2 eldif 3924 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
31, 2orbi12i 914 . . 3 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐴𝐵)) ↔ ((𝑥𝐴𝑥𝐵) ∨ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
4 pm4.42 1053 . . 3 (𝑥𝐴 ↔ ((𝑥𝐴𝑥𝐵) ∨ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
53, 4bitr4i 278 . 2 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐴𝐵)) ↔ 𝑥𝐴)
65uneqri 4119 1 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 847   = wceq 1540  wcel 2109  cdif 3911  cun 3912  cin 3913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-dif 3917  df-un 3919  df-in 3921
This theorem is referenced by:  iunxdif3  5059  partfun  6665  resasplit  6730  fresaun  6731  fresaunres2  6732  ixpfi2  9301  hashun3  14349  prmreclem2  16888  mvdco  19375  sylow2a  19549  ablfac1eu  20005  basdif0  22840  neitr  23067  cmpfi  23295  ptbasfi  23468  ptcnplem  23508  fin1aufil  23819  ismbl2  25428  volinun  25447  voliunlem2  25452  mbfeqalem2  25543  itg2cnlem2  25663  dvres2lem  25811  indifundif  32453  imadifxp  32530  ofpreima2  32590  resf1o  32653  indsumin  32785  gsummptres  32992  tocyccntz  33101  measun  34201  measunl  34206  inelcarsg  34302  carsgclctun  34312  sibfof  34331  probdif  34411  hgt750lemd  34639  mthmpps  35569  clcnvlem  43612  radcnvrat  44303  sumnnodd  45628  ovolsplit  45986  omelesplit  46516  ovnsplit  46646
  Copyright terms: Public domain W3C validator