| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inundif | Structured version Visualization version GIF version | ||
| Description: The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| inundif | ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3913 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 2 | eldif 3907 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | orbi12i 914 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
| 4 | pm4.42 1053 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) | |
| 5 | 3, 4 | bitr4i 278 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ 𝑥 ∈ 𝐴) |
| 6 | 5 | uneqri 4103 | 1 ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ∪ cun 3895 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 |
| This theorem is referenced by: iunxdif3 5041 partfun 6628 resasplit 6693 fresaun 6694 fresaunres2 6695 ixpfi2 9234 hashun3 14291 prmreclem2 16829 mvdco 19357 sylow2a 19531 ablfac1eu 19987 basdif0 22868 neitr 23095 cmpfi 23323 ptbasfi 23496 ptcnplem 23536 fin1aufil 23847 ismbl2 25455 volinun 25474 voliunlem2 25479 mbfeqalem2 25570 itg2cnlem2 25690 dvres2lem 25838 indifundif 32504 imadifxp 32581 ofpreima2 32648 resf1o 32713 indsumin 32843 gsummptres 33032 tocyccntz 33113 measun 34224 measunl 34229 inelcarsg 34324 carsgclctun 34334 sibfof 34353 probdif 34433 hgt750lemd 34661 mthmpps 35626 clcnvlem 43664 radcnvrat 44355 sumnnodd 45678 ovolsplit 46034 omelesplit 46564 ovnsplit 46694 |
| Copyright terms: Public domain | W3C validator |