| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inundif | Structured version Visualization version GIF version | ||
| Description: The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| inundif | ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3927 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 2 | eldif 3921 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | orbi12i 914 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
| 4 | pm4.42 1053 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) | |
| 5 | 3, 4 | bitr4i 278 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ 𝑥 ∈ 𝐴) |
| 6 | 5 | uneqri 4115 | 1 ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∖ cdif 3908 ∪ cun 3909 ∩ cin 3910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 |
| This theorem is referenced by: iunxdif3 5054 partfun 6647 resasplit 6712 fresaun 6713 fresaunres2 6714 ixpfi2 9277 hashun3 14325 prmreclem2 16864 mvdco 19351 sylow2a 19525 ablfac1eu 19981 basdif0 22816 neitr 23043 cmpfi 23271 ptbasfi 23444 ptcnplem 23484 fin1aufil 23795 ismbl2 25404 volinun 25423 voliunlem2 25428 mbfeqalem2 25519 itg2cnlem2 25639 dvres2lem 25787 indifundif 32426 imadifxp 32503 ofpreima2 32563 resf1o 32626 indsumin 32758 gsummptres 32965 tocyccntz 33074 measun 34174 measunl 34179 inelcarsg 34275 carsgclctun 34285 sibfof 34304 probdif 34384 hgt750lemd 34612 mthmpps 35542 clcnvlem 43585 radcnvrat 44276 sumnnodd 45601 ovolsplit 45959 omelesplit 46489 ovnsplit 46619 |
| Copyright terms: Public domain | W3C validator |