Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inundif | Structured version Visualization version GIF version |
Description: The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
inundif | ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3899 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
2 | eldif 3893 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | orbi12i 911 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
4 | pm4.42 1050 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) | |
5 | 3, 4 | bitr4i 277 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ 𝑥 ∈ 𝐴) |
6 | 5 | uneqri 4081 | 1 ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∪ cun 3881 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 |
This theorem is referenced by: iunxdif3 5020 partfun 6564 resasplit 6628 fresaun 6629 fresaunres2 6630 ixpfi2 9047 hashun3 14027 prmreclem2 16546 mvdco 18968 sylow2a 19139 ablfac1eu 19591 basdif0 22011 neitr 22239 cmpfi 22467 ptbasfi 22640 ptcnplem 22680 fin1aufil 22991 ismbl2 24596 volinun 24615 voliunlem2 24620 mbfeqalem2 24711 itg2cnlem2 24832 dvres2lem 24979 indifundif 30774 imadifxp 30841 ofpreima2 30905 resf1o 30967 gsummptres 31214 tocyccntz 31313 indsumin 31890 measun 32079 measunl 32084 inelcarsg 32178 carsgclctun 32188 sibfof 32207 probdif 32287 hgt750lemd 32528 mthmpps 33444 clcnvlem 41120 radcnvrat 41821 sumnnodd 43061 ovolsplit 43419 omelesplit 43946 ovnsplit 44076 |
Copyright terms: Public domain | W3C validator |