Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inundif | Structured version Visualization version GIF version |
Description: The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
inundif | ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3921 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
2 | eldif 3915 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | orbi12i 913 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
4 | pm4.42 1052 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) | |
5 | 3, 4 | bitr4i 278 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ 𝑥 ∈ 𝐴) |
6 | 5 | uneqri 4106 | 1 ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ∖ cdif 3902 ∪ cun 3903 ∩ cin 3904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3445 df-dif 3908 df-un 3910 df-in 3912 |
This theorem is referenced by: iunxdif3 5050 partfun 6640 resasplit 6704 fresaun 6705 fresaunres2 6706 ixpfi2 9224 hashun3 14208 prmreclem2 16720 mvdco 19154 sylow2a 19325 ablfac1eu 19775 basdif0 22213 neitr 22441 cmpfi 22669 ptbasfi 22842 ptcnplem 22882 fin1aufil 23193 ismbl2 24801 volinun 24820 voliunlem2 24825 mbfeqalem2 24916 itg2cnlem2 25037 dvres2lem 25184 indifundif 31224 imadifxp 31291 ofpreima2 31354 resf1o 31416 gsummptres 31663 tocyccntz 31762 indsumin 32352 measun 32541 measunl 32546 inelcarsg 32642 carsgclctun 32652 sibfof 32671 probdif 32751 hgt750lemd 32992 mthmpps 33907 clcnvlem 41604 radcnvrat 42305 sumnnodd 43559 ovolsplit 43917 omelesplit 44445 ovnsplit 44575 |
Copyright terms: Public domain | W3C validator |