MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inundif Structured version   Visualization version   GIF version

Theorem inundif 4438
Description: The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
inundif ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴

Proof of Theorem inundif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3927 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2 eldif 3921 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
31, 2orbi12i 914 . . 3 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐴𝐵)) ↔ ((𝑥𝐴𝑥𝐵) ∨ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
4 pm4.42 1053 . . 3 (𝑥𝐴 ↔ ((𝑥𝐴𝑥𝐵) ∨ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
53, 4bitr4i 278 . 2 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐴𝐵)) ↔ 𝑥𝐴)
65uneqri 4115 1 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 847   = wceq 1540  wcel 2109  cdif 3908  cun 3909  cin 3910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-dif 3914  df-un 3916  df-in 3918
This theorem is referenced by:  iunxdif3  5054  partfun  6647  resasplit  6712  fresaun  6713  fresaunres2  6714  ixpfi2  9277  hashun3  14325  prmreclem2  16864  mvdco  19351  sylow2a  19525  ablfac1eu  19981  basdif0  22816  neitr  23043  cmpfi  23271  ptbasfi  23444  ptcnplem  23484  fin1aufil  23795  ismbl2  25404  volinun  25423  voliunlem2  25428  mbfeqalem2  25519  itg2cnlem2  25639  dvres2lem  25787  indifundif  32426  imadifxp  32503  ofpreima2  32563  resf1o  32626  indsumin  32758  gsummptres  32965  tocyccntz  33074  measun  34174  measunl  34179  inelcarsg  34275  carsgclctun  34285  sibfof  34304  probdif  34384  hgt750lemd  34612  mthmpps  35542  clcnvlem  43585  radcnvrat  44276  sumnnodd  45601  ovolsplit  45959  omelesplit  46489  ovnsplit  46619
  Copyright terms: Public domain W3C validator