MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inundif Structured version   Visualization version   GIF version

Theorem inundif 4454
Description: The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
inundif ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴

Proof of Theorem inundif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3942 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2 eldif 3936 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
31, 2orbi12i 914 . . 3 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐴𝐵)) ↔ ((𝑥𝐴𝑥𝐵) ∨ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
4 pm4.42 1053 . . 3 (𝑥𝐴 ↔ ((𝑥𝐴𝑥𝐵) ∨ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
53, 4bitr4i 278 . 2 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐴𝐵)) ↔ 𝑥𝐴)
65uneqri 4131 1 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 847   = wceq 1540  wcel 2108  cdif 3923  cun 3924  cin 3925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-dif 3929  df-un 3931  df-in 3933
This theorem is referenced by:  iunxdif3  5071  partfun  6685  resasplit  6748  fresaun  6749  fresaunres2  6750  ixpfi2  9362  hashun3  14402  prmreclem2  16937  mvdco  19426  sylow2a  19600  ablfac1eu  20056  basdif0  22891  neitr  23118  cmpfi  23346  ptbasfi  23519  ptcnplem  23559  fin1aufil  23870  ismbl2  25480  volinun  25499  voliunlem2  25504  mbfeqalem2  25595  itg2cnlem2  25715  dvres2lem  25863  indifundif  32505  imadifxp  32582  ofpreima2  32644  resf1o  32707  indsumin  32839  gsummptres  33046  tocyccntz  33155  measun  34242  measunl  34247  inelcarsg  34343  carsgclctun  34353  sibfof  34372  probdif  34452  hgt750lemd  34680  mthmpps  35604  clcnvlem  43647  radcnvrat  44338  sumnnodd  45659  ovolsplit  46017  omelesplit  46547  ovnsplit  46677
  Copyright terms: Public domain W3C validator