MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inundif Structured version   Visualization version   GIF version

Theorem inundif 4502
Description: The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
inundif ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴

Proof of Theorem inundif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3992 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2 eldif 3986 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
31, 2orbi12i 913 . . 3 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐴𝐵)) ↔ ((𝑥𝐴𝑥𝐵) ∨ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
4 pm4.42 1054 . . 3 (𝑥𝐴 ↔ ((𝑥𝐴𝑥𝐵) ∨ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
53, 4bitr4i 278 . 2 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐴𝐵)) ↔ 𝑥𝐴)
65uneqri 4179 1 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 846   = wceq 1537  wcel 2108  cdif 3973  cun 3974  cin 3975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-un 3981  df-in 3983
This theorem is referenced by:  iunxdif3  5118  partfun  6727  resasplit  6791  fresaun  6792  fresaunres2  6793  ixpfi2  9420  hashun3  14433  prmreclem2  16964  mvdco  19487  sylow2a  19661  ablfac1eu  20117  basdif0  22981  neitr  23209  cmpfi  23437  ptbasfi  23610  ptcnplem  23650  fin1aufil  23961  ismbl2  25581  volinun  25600  voliunlem2  25605  mbfeqalem2  25696  itg2cnlem2  25817  dvres2lem  25965  indifundif  32554  imadifxp  32623  ofpreima2  32684  resf1o  32744  gsummptres  33035  tocyccntz  33137  indsumin  33986  measun  34175  measunl  34180  inelcarsg  34276  carsgclctun  34286  sibfof  34305  probdif  34385  hgt750lemd  34625  mthmpps  35550  clcnvlem  43585  radcnvrat  44283  sumnnodd  45551  ovolsplit  45909  omelesplit  46439  ovnsplit  46569
  Copyright terms: Public domain W3C validator