| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inundif | Structured version Visualization version GIF version | ||
| Description: The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| inundif | ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3930 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 2 | eldif 3924 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | orbi12i 914 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
| 4 | pm4.42 1053 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) | |
| 5 | 3, 4 | bitr4i 278 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ 𝑥 ∈ 𝐴) |
| 6 | 5 | uneqri 4119 | 1 ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 ∪ cun 3912 ∩ cin 3913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 |
| This theorem is referenced by: iunxdif3 5059 partfun 6665 resasplit 6730 fresaun 6731 fresaunres2 6732 ixpfi2 9301 hashun3 14349 prmreclem2 16888 mvdco 19375 sylow2a 19549 ablfac1eu 20005 basdif0 22840 neitr 23067 cmpfi 23295 ptbasfi 23468 ptcnplem 23508 fin1aufil 23819 ismbl2 25428 volinun 25447 voliunlem2 25452 mbfeqalem2 25543 itg2cnlem2 25663 dvres2lem 25811 indifundif 32453 imadifxp 32530 ofpreima2 32590 resf1o 32653 indsumin 32785 gsummptres 32992 tocyccntz 33101 measun 34201 measunl 34206 inelcarsg 34302 carsgclctun 34312 sibfof 34331 probdif 34411 hgt750lemd 34639 mthmpps 35569 clcnvlem 43612 radcnvrat 44303 sumnnodd 45628 ovolsplit 45986 omelesplit 46516 ovnsplit 46646 |
| Copyright terms: Public domain | W3C validator |