MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inundif Structured version   Visualization version   GIF version

Theorem inundif 4409
Description: The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
inundif ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴

Proof of Theorem inundif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3899 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2 eldif 3893 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
31, 2orbi12i 911 . . 3 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐴𝐵)) ↔ ((𝑥𝐴𝑥𝐵) ∨ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
4 pm4.42 1050 . . 3 (𝑥𝐴 ↔ ((𝑥𝐴𝑥𝐵) ∨ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
53, 4bitr4i 277 . 2 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐴𝐵)) ↔ 𝑥𝐴)
65uneqri 4081 1 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 843   = wceq 1539  wcel 2108  cdif 3880  cun 3881  cin 3882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-un 3888  df-in 3890
This theorem is referenced by:  iunxdif3  5020  partfun  6564  resasplit  6628  fresaun  6629  fresaunres2  6630  ixpfi2  9047  hashun3  14027  prmreclem2  16546  mvdco  18968  sylow2a  19139  ablfac1eu  19591  basdif0  22011  neitr  22239  cmpfi  22467  ptbasfi  22640  ptcnplem  22680  fin1aufil  22991  ismbl2  24596  volinun  24615  voliunlem2  24620  mbfeqalem2  24711  itg2cnlem2  24832  dvres2lem  24979  indifundif  30774  imadifxp  30841  ofpreima2  30905  resf1o  30967  gsummptres  31214  tocyccntz  31313  indsumin  31890  measun  32079  measunl  32084  inelcarsg  32178  carsgclctun  32188  sibfof  32207  probdif  32287  hgt750lemd  32528  mthmpps  33444  clcnvlem  41120  radcnvrat  41821  sumnnodd  43061  ovolsplit  43419  omelesplit  43946  ovnsplit  44076
  Copyright terms: Public domain W3C validator