![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inundif | Structured version Visualization version GIF version |
Description: The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
inundif | ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3963 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
2 | eldif 3957 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | orbi12i 913 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
4 | pm4.42 1052 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) | |
5 | 3, 4 | bitr4i 277 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ 𝑥 ∈ 𝐴) |
6 | 5 | uneqri 4150 | 1 ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ∖ cdif 3944 ∪ cun 3945 ∩ cin 3946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 |
This theorem is referenced by: iunxdif3 5097 partfun 6694 resasplit 6758 fresaun 6759 fresaunres2 6760 ixpfi2 9346 hashun3 14340 prmreclem2 16846 mvdco 19307 sylow2a 19481 ablfac1eu 19937 basdif0 22447 neitr 22675 cmpfi 22903 ptbasfi 23076 ptcnplem 23116 fin1aufil 23427 ismbl2 25035 volinun 25054 voliunlem2 25059 mbfeqalem2 25150 itg2cnlem2 25271 dvres2lem 25418 indifundif 31749 imadifxp 31819 ofpreima2 31878 resf1o 31942 gsummptres 32191 tocyccntz 32290 indsumin 33008 measun 33197 measunl 33202 inelcarsg 33298 carsgclctun 33308 sibfof 33327 probdif 33407 hgt750lemd 33648 mthmpps 34561 clcnvlem 42359 radcnvrat 43058 sumnnodd 44332 ovolsplit 44690 omelesplit 45220 ovnsplit 45350 |
Copyright terms: Public domain | W3C validator |