MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inundif Structured version   Visualization version   GIF version

Theorem inundif 4426
Description: The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
inundif ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴

Proof of Theorem inundif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3913 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2 eldif 3907 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
31, 2orbi12i 914 . . 3 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐴𝐵)) ↔ ((𝑥𝐴𝑥𝐵) ∨ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
4 pm4.42 1053 . . 3 (𝑥𝐴 ↔ ((𝑥𝐴𝑥𝐵) ∨ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
53, 4bitr4i 278 . 2 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐴𝐵)) ↔ 𝑥𝐴)
65uneqri 4103 1 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 847   = wceq 1541  wcel 2111  cdif 3894  cun 3895  cin 3896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-in 3904
This theorem is referenced by:  iunxdif3  5041  partfun  6628  resasplit  6693  fresaun  6694  fresaunres2  6695  ixpfi2  9234  hashun3  14291  prmreclem2  16829  mvdco  19357  sylow2a  19531  ablfac1eu  19987  basdif0  22868  neitr  23095  cmpfi  23323  ptbasfi  23496  ptcnplem  23536  fin1aufil  23847  ismbl2  25455  volinun  25474  voliunlem2  25479  mbfeqalem2  25570  itg2cnlem2  25690  dvres2lem  25838  indifundif  32504  imadifxp  32581  ofpreima2  32648  resf1o  32713  indsumin  32843  gsummptres  33032  tocyccntz  33113  measun  34224  measunl  34229  inelcarsg  34324  carsgclctun  34334  sibfof  34353  probdif  34433  hgt750lemd  34661  mthmpps  35626  clcnvlem  43664  radcnvrat  44355  sumnnodd  45678  ovolsplit  46034  omelesplit  46564  ovnsplit  46694
  Copyright terms: Public domain W3C validator