Proof of Theorem reuprg
Step | Hyp | Ref
| Expression |
1 | | reuprg.1 |
. . 3
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
2 | | reuprg.2 |
. . 3
⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
3 | 1, 2 | reuprg0 4638 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃!𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ((𝜓 ∧ (𝜒 → 𝐴 = 𝐵)) ∨ (𝜒 ∧ (𝜓 → 𝐴 = 𝐵))))) |
4 | | orddi 1007 |
. . 3
⊢ (((𝜓 ∧ (𝜒 → 𝐴 = 𝐵)) ∨ (𝜒 ∧ (𝜓 → 𝐴 = 𝐵))) ↔ (((𝜓 ∨ 𝜒) ∧ (𝜓 ∨ (𝜓 → 𝐴 = 𝐵))) ∧ (((𝜒 → 𝐴 = 𝐵) ∨ 𝜒) ∧ ((𝜒 → 𝐴 = 𝐵) ∨ (𝜓 → 𝐴 = 𝐵))))) |
5 | | curryax 891 |
. . . . . 6
⊢ (𝜓 ∨ (𝜓 → 𝐴 = 𝐵)) |
6 | 5 | biantru 530 |
. . . . 5
⊢ ((𝜓 ∨ 𝜒) ↔ ((𝜓 ∨ 𝜒) ∧ (𝜓 ∨ (𝜓 → 𝐴 = 𝐵)))) |
7 | 6 | bicomi 223 |
. . . 4
⊢ (((𝜓 ∨ 𝜒) ∧ (𝜓 ∨ (𝜓 → 𝐴 = 𝐵))) ↔ (𝜓 ∨ 𝜒)) |
8 | | curryax 891 |
. . . . . . . 8
⊢ (𝜒 ∨ (𝜒 → 𝐴 = 𝐵)) |
9 | | orcom 867 |
. . . . . . . 8
⊢ (((𝜒 → 𝐴 = 𝐵) ∨ 𝜒) ↔ (𝜒 ∨ (𝜒 → 𝐴 = 𝐵))) |
10 | 8, 9 | mpbir 230 |
. . . . . . 7
⊢ ((𝜒 → 𝐴 = 𝐵) ∨ 𝜒) |
11 | 10 | biantrur 531 |
. . . . . 6
⊢ (((𝜒 → 𝐴 = 𝐵) ∨ (𝜓 → 𝐴 = 𝐵)) ↔ (((𝜒 → 𝐴 = 𝐵) ∨ 𝜒) ∧ ((𝜒 → 𝐴 = 𝐵) ∨ (𝜓 → 𝐴 = 𝐵)))) |
12 | 11 | bicomi 223 |
. . . . 5
⊢ ((((𝜒 → 𝐴 = 𝐵) ∨ 𝜒) ∧ ((𝜒 → 𝐴 = 𝐵) ∨ (𝜓 → 𝐴 = 𝐵))) ↔ ((𝜒 → 𝐴 = 𝐵) ∨ (𝜓 → 𝐴 = 𝐵))) |
13 | | pm4.79 1001 |
. . . . 5
⊢ (((𝜒 → 𝐴 = 𝐵) ∨ (𝜓 → 𝐴 = 𝐵)) ↔ ((𝜒 ∧ 𝜓) → 𝐴 = 𝐵)) |
14 | 12, 13 | bitri 274 |
. . . 4
⊢ ((((𝜒 → 𝐴 = 𝐵) ∨ 𝜒) ∧ ((𝜒 → 𝐴 = 𝐵) ∨ (𝜓 → 𝐴 = 𝐵))) ↔ ((𝜒 ∧ 𝜓) → 𝐴 = 𝐵)) |
15 | 7, 14 | anbi12i 627 |
. . 3
⊢ ((((𝜓 ∨ 𝜒) ∧ (𝜓 ∨ (𝜓 → 𝐴 = 𝐵))) ∧ (((𝜒 → 𝐴 = 𝐵) ∨ 𝜒) ∧ ((𝜒 → 𝐴 = 𝐵) ∨ (𝜓 → 𝐴 = 𝐵)))) ↔ ((𝜓 ∨ 𝜒) ∧ ((𝜒 ∧ 𝜓) → 𝐴 = 𝐵))) |
16 | 4, 15 | bitri 274 |
. 2
⊢ (((𝜓 ∧ (𝜒 → 𝐴 = 𝐵)) ∨ (𝜒 ∧ (𝜓 → 𝐴 = 𝐵))) ↔ ((𝜓 ∨ 𝜒) ∧ ((𝜒 ∧ 𝜓) → 𝐴 = 𝐵))) |
17 | 3, 16 | bitrdi 287 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃!𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ((𝜓 ∨ 𝜒) ∧ ((𝜒 ∧ 𝜓) → 𝐴 = 𝐵)))) |