Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orcanai | Structured version Visualization version GIF version |
Description: Change disjunction in consequent to conjunction in antecedent. (Contributed by NM, 8-Jun-1994.) |
Ref | Expression |
---|---|
orcanai.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
orcanai | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcanai.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | 1 | ord 860 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: elunnel1 4088 bren2 8742 php 8957 phpOLD 8970 unxpdomlem3 8990 tcrank 9626 dfac12lem1 9883 dfac12lem2 9884 ttukeylem3 10251 ttukeylem5 10253 ttukeylem6 10254 xrmax2 12892 xrmin1 12893 xrge0nre 13167 ccatco 14529 pcgcd 16560 mreexexd 17338 tsrlemax 18285 gsumval2 18351 xrsdsreval 20624 xrsdsreclb 20626 xrsxmet 23953 elii2 24080 xrhmeo 24090 pcoass 24168 limccnp 25036 logreclem 25893 eldmgm 26152 lgsdir2 26459 colmid 27030 outpasch 27097 lmiisolem 27138 elpreq 30857 fzne1 31088 esumcvgre 32038 ballotlem2 32434 lclkrlem2h 39507 aomclem5 40863 cvgdvgrat 41884 bccbc 41916 elunnel2 42535 stoweidlem26 43521 stoweidlem34 43529 fourierswlem 43725 |
Copyright terms: Public domain | W3C validator |