| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orcanai | Structured version Visualization version GIF version | ||
| Description: Change disjunction in consequent to conjunction in antecedent. (Contributed by NM, 8-Jun-1994.) |
| Ref | Expression |
|---|---|
| orcanai.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Ref | Expression |
|---|---|
| orcanai | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcanai.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 2 | 1 | ord 864 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: elunnel1 4117 elunnel2 4118 bren2 8954 php 9171 unxpdomlem3 9199 tcrank 9837 dfac12lem1 10097 dfac12lem2 10098 ttukeylem3 10464 ttukeylem5 10466 ttukeylem6 10467 xrmax2 13136 xrmin1 13137 xrge0nre 13414 fzne1 13565 ccatco 14801 pcgcd 16849 mreexexd 17609 tsrlemax 18545 gsumval2 18613 xrsdsreval 21328 xrsdsreclb 21330 xrsxmet 24698 elii2 24832 xrhmeo 24844 pcoass 24924 limccnp 25792 logreclem 26672 eldmgm 26932 lgsdir2 27241 maxs2 27678 mins1 27679 colmid 28615 outpasch 28682 lmiisolem 28723 elpreq 32457 2exple2exp 32770 irredminply 33706 esumcvgre 34081 ballotlem2 34480 lclkrlem2h 41508 aomclem5 43047 cvgdvgrat 44302 bccbc 44334 stoweidlem26 46024 stoweidlem34 46032 fourierswlem 46228 |
| Copyright terms: Public domain | W3C validator |