| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orcanai | Structured version Visualization version GIF version | ||
| Description: Change disjunction in consequent to conjunction in antecedent. (Contributed by NM, 8-Jun-1994.) |
| Ref | Expression |
|---|---|
| orcanai.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Ref | Expression |
|---|---|
| orcanai | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcanai.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 2 | 1 | ord 864 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: elunnel1 4129 elunnel2 4130 bren2 8995 php 9219 phpOLD 9229 unxpdomlem3 9258 tcrank 9896 dfac12lem1 10156 dfac12lem2 10157 ttukeylem3 10523 ttukeylem5 10525 ttukeylem6 10526 xrmax2 13190 xrmin1 13191 xrge0nre 13468 fzne1 13619 ccatco 14852 pcgcd 16896 mreexexd 17658 tsrlemax 18594 gsumval2 18662 xrsdsreval 21377 xrsdsreclb 21379 xrsxmet 24747 elii2 24881 xrhmeo 24893 pcoass 24973 limccnp 25842 logreclem 26722 eldmgm 26982 lgsdir2 27291 maxs2 27728 mins1 27729 colmid 28613 outpasch 28680 lmiisolem 28721 elpreq 32455 2exple2exp 32770 irredminply 33696 esumcvgre 34068 ballotlem2 34467 lclkrlem2h 41479 aomclem5 43029 cvgdvgrat 44285 bccbc 44317 stoweidlem26 46003 stoweidlem34 46011 fourierswlem 46207 |
| Copyright terms: Public domain | W3C validator |