| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orcanai | Structured version Visualization version GIF version | ||
| Description: Change disjunction in consequent to conjunction in antecedent. (Contributed by NM, 8-Jun-1994.) |
| Ref | Expression |
|---|---|
| orcanai.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Ref | Expression |
|---|---|
| orcanai | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcanai.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 2 | 1 | ord 864 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: elunnel1 4120 elunnel2 4121 bren2 8957 php 9177 unxpdomlem3 9206 tcrank 9844 dfac12lem1 10104 dfac12lem2 10105 ttukeylem3 10471 ttukeylem5 10473 ttukeylem6 10474 xrmax2 13143 xrmin1 13144 xrge0nre 13421 fzne1 13572 ccatco 14808 pcgcd 16856 mreexexd 17616 tsrlemax 18552 gsumval2 18620 xrsdsreval 21335 xrsdsreclb 21337 xrsxmet 24705 elii2 24839 xrhmeo 24851 pcoass 24931 limccnp 25799 logreclem 26679 eldmgm 26939 lgsdir2 27248 maxs2 27685 mins1 27686 colmid 28622 outpasch 28689 lmiisolem 28730 elpreq 32464 2exple2exp 32777 irredminply 33713 esumcvgre 34088 ballotlem2 34487 lclkrlem2h 41515 aomclem5 43054 cvgdvgrat 44309 bccbc 44341 stoweidlem26 46031 stoweidlem34 46039 fourierswlem 46235 |
| Copyright terms: Public domain | W3C validator |