![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orcanai | Structured version Visualization version GIF version |
Description: Change disjunction in consequent to conjunction in antecedent. (Contributed by NM, 8-Jun-1994.) |
Ref | Expression |
---|---|
orcanai.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
orcanai | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcanai.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | 1 | ord 864 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
This theorem is referenced by: elunnel1 4163 elunnel2 4164 bren2 9021 php 9244 phpOLD 9256 unxpdomlem3 9285 tcrank 9921 dfac12lem1 10181 dfac12lem2 10182 ttukeylem3 10548 ttukeylem5 10550 ttukeylem6 10551 xrmax2 13214 xrmin1 13215 xrge0nre 13489 fzne1 13640 ccatco 14870 pcgcd 16911 mreexexd 17692 tsrlemax 18643 gsumval2 18711 xrsdsreval 21446 xrsdsreclb 21448 xrsxmet 24844 elii2 24978 xrhmeo 24990 pcoass 25070 limccnp 25940 logreclem 26819 eldmgm 27079 lgsdir2 27388 maxs2 27825 mins1 27826 colmid 28710 outpasch 28777 lmiisolem 28818 elpreq 32555 irredminply 33721 esumcvgre 34071 ballotlem2 34469 lclkrlem2h 41496 aomclem5 43046 cvgdvgrat 44308 bccbc 44340 stoweidlem26 45981 stoweidlem34 45989 fourierswlem 46185 |
Copyright terms: Public domain | W3C validator |