MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orcanai Structured version   Visualization version   GIF version

Theorem orcanai 999
Description: Change disjunction in consequent to conjunction in antecedent. (Contributed by NM, 8-Jun-1994.)
Hypothesis
Ref Expression
orcanai.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
orcanai ((𝜑 ∧ ¬ 𝜓) → 𝜒)

Proof of Theorem orcanai
StepHypRef Expression
1 orcanai.1 . . 3 (𝜑 → (𝜓𝜒))
21ord 860 . 2 (𝜑 → (¬ 𝜓𝜒))
32imp 406 1 ((𝜑 ∧ ¬ 𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844
This theorem is referenced by:  elunnel1  4088  bren2  8742  php  8957  phpOLD  8970  unxpdomlem3  8990  tcrank  9626  dfac12lem1  9883  dfac12lem2  9884  ttukeylem3  10251  ttukeylem5  10253  ttukeylem6  10254  xrmax2  12892  xrmin1  12893  xrge0nre  13167  ccatco  14529  pcgcd  16560  mreexexd  17338  tsrlemax  18285  gsumval2  18351  xrsdsreval  20624  xrsdsreclb  20626  xrsxmet  23953  elii2  24080  xrhmeo  24090  pcoass  24168  limccnp  25036  logreclem  25893  eldmgm  26152  lgsdir2  26459  colmid  27030  outpasch  27097  lmiisolem  27138  elpreq  30857  fzne1  31088  esumcvgre  32038  ballotlem2  32434  lclkrlem2h  39507  aomclem5  40863  cvgdvgrat  41884  bccbc  41916  elunnel2  42535  stoweidlem26  43521  stoweidlem34  43529  fourierswlem  43725
  Copyright terms: Public domain W3C validator