| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orcanai | Structured version Visualization version GIF version | ||
| Description: Change disjunction in consequent to conjunction in antecedent. (Contributed by NM, 8-Jun-1994.) |
| Ref | Expression |
|---|---|
| orcanai.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Ref | Expression |
|---|---|
| orcanai | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcanai.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 2 | 1 | ord 864 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: elunnel1 4107 elunnel2 4108 bren2 8915 php 9131 unxpdomlem3 9157 tcrank 9799 dfac12lem1 10057 dfac12lem2 10058 ttukeylem3 10424 ttukeylem5 10426 ttukeylem6 10427 xrmax2 13096 xrmin1 13097 xrge0nre 13374 fzne1 13525 ccatco 14760 pcgcd 16808 mreexexd 17572 tsrlemax 18510 gsumval2 18578 xrsdsreval 21336 xrsdsreclb 21338 xrsxmet 24714 elii2 24848 xrhmeo 24860 pcoass 24940 limccnp 25808 logreclem 26688 eldmgm 26948 lgsdir2 27257 maxs2 27694 mins1 27695 colmid 28651 outpasch 28718 lmiisolem 28759 elpreq 32490 2exple2exp 32803 irredminply 33682 esumcvgre 34057 ballotlem2 34456 lclkrlem2h 41493 aomclem5 43031 cvgdvgrat 44286 bccbc 44318 stoweidlem26 46008 stoweidlem34 46016 fourierswlem 46212 |
| Copyright terms: Public domain | W3C validator |