![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orcanai | Structured version Visualization version GIF version |
Description: Change disjunction in consequent to conjunction in antecedent. (Contributed by NM, 8-Jun-1994.) |
Ref | Expression |
---|---|
orcanai.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
orcanai | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcanai.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | 1 | ord 863 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 |
This theorem is referenced by: elunnel1 4177 elunnel2 4178 bren2 9043 php 9273 phpOLD 9285 unxpdomlem3 9315 tcrank 9953 dfac12lem1 10213 dfac12lem2 10214 ttukeylem3 10580 ttukeylem5 10582 ttukeylem6 10583 xrmax2 13238 xrmin1 13239 xrge0nre 13513 ccatco 14884 pcgcd 16925 mreexexd 17706 tsrlemax 18656 gsumval2 18724 xrsdsreval 21452 xrsdsreclb 21454 xrsxmet 24850 elii2 24984 xrhmeo 24996 pcoass 25076 limccnp 25946 logreclem 26823 eldmgm 27083 lgsdir2 27392 maxs2 27829 mins1 27830 colmid 28714 outpasch 28781 lmiisolem 28822 elpreq 32558 fzne1 32793 irredminply 33707 esumcvgre 34055 ballotlem2 34453 lclkrlem2h 41471 aomclem5 43015 cvgdvgrat 44282 bccbc 44314 stoweidlem26 45947 stoweidlem34 45955 fourierswlem 46151 |
Copyright terms: Public domain | W3C validator |