| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orcanai | Structured version Visualization version GIF version | ||
| Description: Change disjunction in consequent to conjunction in antecedent. (Contributed by NM, 8-Jun-1994.) |
| Ref | Expression |
|---|---|
| orcanai.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Ref | Expression |
|---|---|
| orcanai | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcanai.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 2 | 1 | ord 864 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: elunnel1 4129 elunnel2 4130 bren2 8997 php 9221 phpOLD 9231 unxpdomlem3 9260 tcrank 9898 dfac12lem1 10158 dfac12lem2 10159 ttukeylem3 10525 ttukeylem5 10527 ttukeylem6 10528 xrmax2 13192 xrmin1 13193 xrge0nre 13470 fzne1 13621 ccatco 14854 pcgcd 16898 mreexexd 17660 tsrlemax 18596 gsumval2 18664 xrsdsreval 21379 xrsdsreclb 21381 xrsxmet 24749 elii2 24883 xrhmeo 24895 pcoass 24975 limccnp 25844 logreclem 26724 eldmgm 26984 lgsdir2 27293 maxs2 27730 mins1 27731 colmid 28667 outpasch 28734 lmiisolem 28775 elpreq 32509 2exple2exp 32824 irredminply 33750 esumcvgre 34122 ballotlem2 34521 lclkrlem2h 41533 aomclem5 43082 cvgdvgrat 44337 bccbc 44369 stoweidlem26 46055 stoweidlem34 46063 fourierswlem 46259 |
| Copyright terms: Public domain | W3C validator |