| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orcanai | Structured version Visualization version GIF version | ||
| Description: Change disjunction in consequent to conjunction in antecedent. (Contributed by NM, 8-Jun-1994.) |
| Ref | Expression |
|---|---|
| orcanai.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Ref | Expression |
|---|---|
| orcanai | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcanai.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 2 | 1 | ord 864 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: elunnel1 4105 elunnel2 4106 bren2 8915 php 9126 unxpdomlem3 9152 tcrank 9787 dfac12lem1 10045 dfac12lem2 10046 ttukeylem3 10412 ttukeylem5 10414 ttukeylem6 10415 xrmax2 13085 xrmin1 13086 xrge0nre 13363 fzne1 13514 ccatco 14752 pcgcd 16800 mreexexd 17564 tsrlemax 18502 gsumval2 18604 xrsdsreval 21358 xrsdsreclb 21360 xrsxmet 24735 elii2 24869 xrhmeo 24881 pcoass 24961 limccnp 25829 logreclem 26709 eldmgm 26969 lgsdir2 27278 maxs2 27715 mins1 27716 colmid 28676 outpasch 28743 lmiisolem 28784 elpreq 32519 2exple2exp 32839 irredminply 33740 esumcvgre 34115 ballotlem2 34513 lclkrlem2h 41623 aomclem5 43165 cvgdvgrat 44420 bccbc 44452 stoweidlem26 46138 stoweidlem34 46146 fourierswlem 46342 |
| Copyright terms: Public domain | W3C validator |