Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orcanai | Structured version Visualization version GIF version |
Description: Change disjunction in consequent to conjunction in antecedent. (Contributed by NM, 8-Jun-1994.) |
Ref | Expression |
---|---|
orcanai.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
orcanai | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcanai.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | 1 | ord 862 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
3 | 2 | imp 408 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 |
This theorem is referenced by: elunnel1 4090 bren2 8804 php 9031 phpOLD 9043 unxpdomlem3 9073 tcrank 9686 dfac12lem1 9945 dfac12lem2 9946 ttukeylem3 10313 ttukeylem5 10315 ttukeylem6 10316 xrmax2 12956 xrmin1 12957 xrge0nre 13231 ccatco 14593 pcgcd 16624 mreexexd 17402 tsrlemax 18349 gsumval2 18415 xrsdsreval 20688 xrsdsreclb 20690 xrsxmet 24017 elii2 24144 xrhmeo 24154 pcoass 24232 limccnp 25100 logreclem 25957 eldmgm 26216 lgsdir2 26523 colmid 27094 outpasch 27161 lmiisolem 27202 elpreq 30923 fzne1 31154 esumcvgre 32104 ballotlem2 32500 lclkrlem2h 39570 aomclem5 40921 cvgdvgrat 41969 bccbc 42001 elunnel2 42620 stoweidlem26 43616 stoweidlem34 43624 fourierswlem 43820 |
Copyright terms: Public domain | W3C validator |