Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orcanai | Structured version Visualization version GIF version |
Description: Change disjunction in consequent to conjunction in antecedent. (Contributed by NM, 8-Jun-1994.) |
Ref | Expression |
---|---|
orcanai.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
orcanai | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcanai.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | 1 | ord 861 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
3 | 2 | imp 410 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 |
This theorem is referenced by: elunnel1 4055 bren2 8558 php 8723 unxpdomlem3 8762 tcrank 9346 dfac12lem1 9603 dfac12lem2 9604 ttukeylem3 9971 ttukeylem5 9973 ttukeylem6 9974 xrmax2 12610 xrmin1 12611 xrge0nre 12885 ccatco 14244 pcgcd 16269 mreexexd 16977 tsrlemax 17896 gsumval2 17962 xrsdsreval 20211 xrsdsreclb 20213 xrsxmet 23510 elii2 23637 xrhmeo 23647 pcoass 23725 limccnp 24590 logreclem 25447 eldmgm 25706 lgsdir2 26013 colmid 26581 outpasch 26648 lmiisolem 26689 elpreq 30400 fzne1 30633 esumcvgre 31578 ballotlem2 31974 lclkrlem2h 39112 aomclem5 40397 cvgdvgrat 41412 bccbc 41444 elunnel2 42063 stoweidlem26 43056 stoweidlem34 43064 fourierswlem 43260 |
Copyright terms: Public domain | W3C validator |