| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orcanai | Structured version Visualization version GIF version | ||
| Description: Change disjunction in consequent to conjunction in antecedent. (Contributed by NM, 8-Jun-1994.) |
| Ref | Expression |
|---|---|
| orcanai.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Ref | Expression |
|---|---|
| orcanai | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcanai.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 2 | 1 | ord 864 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: elunnel1 4102 elunnel2 4103 bren2 8900 php 9111 unxpdomlem3 9137 tcrank 9769 dfac12lem1 10027 dfac12lem2 10028 ttukeylem3 10394 ttukeylem5 10396 ttukeylem6 10397 xrmax2 13067 xrmin1 13068 xrge0nre 13345 fzne1 13496 ccatco 14734 pcgcd 16782 mreexexd 17546 tsrlemax 18484 gsumval2 18586 xrsdsreval 21341 xrsdsreclb 21343 xrsxmet 24718 elii2 24852 xrhmeo 24864 pcoass 24944 limccnp 25812 logreclem 26692 eldmgm 26952 lgsdir2 27261 maxs2 27698 mins1 27699 colmid 28659 outpasch 28726 lmiisolem 28767 elpreq 32498 2exple2exp 32818 irredminply 33719 esumcvgre 34094 ballotlem2 34492 lclkrlem2h 41532 aomclem5 43070 cvgdvgrat 44325 bccbc 44357 stoweidlem26 46043 stoweidlem34 46051 fourierswlem 46247 |
| Copyright terms: Public domain | W3C validator |