Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islinindfis Structured version   Visualization version   GIF version

Theorem islinindfis 45678
Description: The property of being a linearly independent finite subset. (Contributed by AV, 27-Apr-2019.)
Hypotheses
Ref Expression
islininds.b 𝐵 = (Base‘𝑀)
islininds.z 𝑍 = (0g𝑀)
islininds.r 𝑅 = (Scalar‘𝑀)
islininds.e 𝐸 = (Base‘𝑅)
islininds.0 0 = (0g𝑅)
Assertion
Ref Expression
islinindfis ((𝑆 ∈ Fin ∧ 𝑀𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
Distinct variable groups:   𝑓,𝐸   𝑓,𝑀,𝑥   𝑆,𝑓,𝑥   0 ,𝑓   𝑓,𝑍   𝑓,𝑊
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝑅(𝑥,𝑓)   𝐸(𝑥)   𝑊(𝑥)   0 (𝑥)   𝑍(𝑥)

Proof of Theorem islinindfis
StepHypRef Expression
1 islininds.b . . 3 𝐵 = (Base‘𝑀)
2 islininds.z . . 3 𝑍 = (0g𝑀)
3 islininds.r . . 3 𝑅 = (Scalar‘𝑀)
4 islininds.e . . 3 𝐸 = (Base‘𝑅)
5 islininds.0 . . 3 0 = (0g𝑅)
61, 2, 3, 4, 5islininds 45675 . 2 ((𝑆 ∈ Fin ∧ 𝑀𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
7 pm4.79 1000 . . . . . . 7 (((𝑓 finSupp 0 → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ∨ ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 )) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))
8 elmapi 8595 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐸m 𝑆) → 𝑓:𝑆𝐸)
98adantl 481 . . . . . . . . . . . 12 (((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) → 𝑓:𝑆𝐸)
10 simpll 763 . . . . . . . . . . . 12 (((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) → 𝑆 ∈ Fin)
115fvexi 6770 . . . . . . . . . . . . 13 0 ∈ V
1211a1i 11 . . . . . . . . . . . 12 (((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) → 0 ∈ V)
139, 10, 12fdmfifsupp 9068 . . . . . . . . . . 11 (((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) → 𝑓 finSupp 0 )
1413adantr 480 . . . . . . . . . 10 ((((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → 𝑓 finSupp 0 )
1514imim1i 63 . . . . . . . . 9 ((𝑓 finSupp 0 → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → ((((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))
1615expd 415 . . . . . . . 8 ((𝑓 finSupp 0 → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
17 ax-1 6 . . . . . . . 8 (((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
1816, 17jaoi 853 . . . . . . 7 (((𝑓 finSupp 0 → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ∨ ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 )) → (((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
197, 18sylbir 234 . . . . . 6 (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
2019com12 32 . . . . 5 (((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
21 pm3.42 493 . . . . 5 (((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))
2220, 21impbid1 224 . . . 4 (((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
2322ralbidva 3119 . . 3 ((𝑆 ∈ Fin ∧ 𝑀𝑊) → (∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
2423anbi2d 628 . 2 ((𝑆 ∈ Fin ∧ 𝑀𝑊) → ((𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )) ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
256, 24bitrd 278 1 ((𝑆 ∈ Fin ∧ 𝑀𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  𝒫 cpw 4530   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691   finSupp cfsupp 9058  Basecbs 16840  Scalarcsca 16891  0gc0g 17067   linC clinc 45633   linIndS clininds 45669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-1o 8267  df-map 8575  df-en 8692  df-fin 8695  df-fsupp 9059  df-lininds 45671
This theorem is referenced by:  islinindfiss  45679
  Copyright terms: Public domain W3C validator