Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islinindfis Structured version   Visualization version   GIF version

Theorem islinindfis 47031
Description: The property of being a linearly independent finite subset. (Contributed by AV, 27-Apr-2019.)
Hypotheses
Ref Expression
islininds.b 𝐵 = (Base‘𝑀)
islininds.z 𝑍 = (0g𝑀)
islininds.r 𝑅 = (Scalar‘𝑀)
islininds.e 𝐸 = (Base‘𝑅)
islininds.0 0 = (0g𝑅)
Assertion
Ref Expression
islinindfis ((𝑆 ∈ Fin ∧ 𝑀𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
Distinct variable groups:   𝑓,𝐸   𝑓,𝑀,𝑥   𝑆,𝑓,𝑥   0 ,𝑓   𝑓,𝑍   𝑓,𝑊
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝑅(𝑥,𝑓)   𝐸(𝑥)   𝑊(𝑥)   0 (𝑥)   𝑍(𝑥)

Proof of Theorem islinindfis
StepHypRef Expression
1 islininds.b . . 3 𝐵 = (Base‘𝑀)
2 islininds.z . . 3 𝑍 = (0g𝑀)
3 islininds.r . . 3 𝑅 = (Scalar‘𝑀)
4 islininds.e . . 3 𝐸 = (Base‘𝑅)
5 islininds.0 . . 3 0 = (0g𝑅)
61, 2, 3, 4, 5islininds 47028 . 2 ((𝑆 ∈ Fin ∧ 𝑀𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
7 pm4.79 1003 . . . . . . 7 (((𝑓 finSupp 0 → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ∨ ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 )) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))
8 elmapi 8838 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐸m 𝑆) → 𝑓:𝑆𝐸)
98adantl 483 . . . . . . . . . . . 12 (((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) → 𝑓:𝑆𝐸)
10 simpll 766 . . . . . . . . . . . 12 (((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) → 𝑆 ∈ Fin)
115fvexi 6901 . . . . . . . . . . . . 13 0 ∈ V
1211a1i 11 . . . . . . . . . . . 12 (((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) → 0 ∈ V)
139, 10, 12fdmfifsupp 9368 . . . . . . . . . . 11 (((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) → 𝑓 finSupp 0 )
1413adantr 482 . . . . . . . . . 10 ((((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → 𝑓 finSupp 0 )
1514imim1i 63 . . . . . . . . 9 ((𝑓 finSupp 0 → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → ((((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))
1615expd 417 . . . . . . . 8 ((𝑓 finSupp 0 → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
17 ax-1 6 . . . . . . . 8 (((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
1816, 17jaoi 856 . . . . . . 7 (((𝑓 finSupp 0 → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ∨ ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 )) → (((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
197, 18sylbir 234 . . . . . 6 (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
2019com12 32 . . . . 5 (((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
21 pm3.42 495 . . . . 5 (((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))
2220, 21impbid1 224 . . . 4 (((𝑆 ∈ Fin ∧ 𝑀𝑊) ∧ 𝑓 ∈ (𝐸m 𝑆)) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
2322ralbidva 3176 . . 3 ((𝑆 ∈ Fin ∧ 𝑀𝑊) → (∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
2423anbi2d 630 . 2 ((𝑆 ∈ Fin ∧ 𝑀𝑊) → ((𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )) ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
256, 24bitrd 279 1 ((𝑆 ∈ Fin ∧ 𝑀𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  𝒫 cpw 4600   class class class wbr 5146  wf 6535  cfv 6539  (class class class)co 7403  m cmap 8815  Fincfn 8934   finSupp cfsupp 9356  Basecbs 17139  Scalarcsca 17195  0gc0g 17380   linC clinc 46986   linIndS clininds 47022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-iun 4997  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8141  df-1o 8460  df-map 8817  df-en 8935  df-fin 8938  df-fsupp 9357  df-lininds 47024
This theorem is referenced by:  islinindfiss  47032
  Copyright terms: Public domain W3C validator