Proof of Theorem islinindfis
Step | Hyp | Ref
| Expression |
1 | | islininds.b |
. . 3
⊢ 𝐵 = (Base‘𝑀) |
2 | | islininds.z |
. . 3
⊢ 𝑍 = (0g‘𝑀) |
3 | | islininds.r |
. . 3
⊢ 𝑅 = (Scalar‘𝑀) |
4 | | islininds.e |
. . 3
⊢ 𝐸 = (Base‘𝑅) |
5 | | islininds.0 |
. . 3
⊢ 0 =
(0g‘𝑅) |
6 | 1, 2, 3, 4, 5 | islininds 45675 |
. 2
⊢ ((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
7 | | pm4.79 1000 |
. . . . . . 7
⊢ (((𝑓 finSupp 0 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ∨ ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) |
8 | | elmapi 8595 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ (𝐸 ↑m 𝑆) → 𝑓:𝑆⟶𝐸) |
9 | 8 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) → 𝑓:𝑆⟶𝐸) |
10 | | simpll 763 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) → 𝑆 ∈ Fin) |
11 | 5 | fvexi 6770 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
12 | 11 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) → 0 ∈ V) |
13 | 9, 10, 12 | fdmfifsupp 9068 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) → 𝑓 finSupp 0 ) |
14 | 13 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → 𝑓 finSupp 0 ) |
15 | 14 | imim1i 63 |
. . . . . . . . 9
⊢ ((𝑓 finSupp 0 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → ((((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) |
16 | 15 | expd 415 |
. . . . . . . 8
⊢ ((𝑓 finSupp 0 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
17 | | ax-1 6 |
. . . . . . . 8
⊢ (((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
18 | 16, 17 | jaoi 853 |
. . . . . . 7
⊢ (((𝑓 finSupp 0 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ∨ ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) → (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
19 | 7, 18 | sylbir 234 |
. . . . . 6
⊢ (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
20 | 19 | com12 32 |
. . . . 5
⊢ (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
21 | | pm3.42 493 |
. . . . 5
⊢ (((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) |
22 | 20, 21 | impbid1 224 |
. . . 4
⊢ (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ↔ ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
23 | 22 | ralbidva 3119 |
. . 3
⊢ ((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) → (∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ↔ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
24 | 23 | anbi2d 628 |
. 2
⊢ ((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) → ((𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
25 | 6, 24 | bitrd 278 |
1
⊢ ((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |