Proof of Theorem islinindfis
| Step | Hyp | Ref
| Expression |
| 1 | | islininds.b |
. . 3
⊢ 𝐵 = (Base‘𝑀) |
| 2 | | islininds.z |
. . 3
⊢ 𝑍 = (0g‘𝑀) |
| 3 | | islininds.r |
. . 3
⊢ 𝑅 = (Scalar‘𝑀) |
| 4 | | islininds.e |
. . 3
⊢ 𝐸 = (Base‘𝑅) |
| 5 | | islininds.0 |
. . 3
⊢ 0 =
(0g‘𝑅) |
| 6 | 1, 2, 3, 4, 5 | islininds 48389 |
. 2
⊢ ((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
| 7 | | pm4.79 1005 |
. . . . . . 7
⊢ (((𝑓 finSupp 0 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ∨ ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) |
| 8 | | elmapi 8868 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ (𝐸 ↑m 𝑆) → 𝑓:𝑆⟶𝐸) |
| 9 | 8 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) → 𝑓:𝑆⟶𝐸) |
| 10 | | simpll 766 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) → 𝑆 ∈ Fin) |
| 11 | 5 | fvexi 6895 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
| 12 | 11 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) → 0 ∈ V) |
| 13 | 9, 10, 12 | fdmfifsupp 9392 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) → 𝑓 finSupp 0 ) |
| 14 | 13 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → 𝑓 finSupp 0 ) |
| 15 | 14 | imim1i 63 |
. . . . . . . . 9
⊢ ((𝑓 finSupp 0 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → ((((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) |
| 16 | 15 | expd 415 |
. . . . . . . 8
⊢ ((𝑓 finSupp 0 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
| 17 | | ax-1 6 |
. . . . . . . 8
⊢ (((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
| 18 | 16, 17 | jaoi 857 |
. . . . . . 7
⊢ (((𝑓 finSupp 0 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ∨ ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) → (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
| 19 | 7, 18 | sylbir 235 |
. . . . . 6
⊢ (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
| 20 | 19 | com12 32 |
. . . . 5
⊢ (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
| 21 | | pm3.42 493 |
. . . . 5
⊢ (((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) |
| 22 | 20, 21 | impbid1 225 |
. . . 4
⊢ (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑m 𝑆)) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ↔ ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
| 23 | 22 | ralbidva 3162 |
. . 3
⊢ ((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) → (∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ↔ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
| 24 | 23 | anbi2d 630 |
. 2
⊢ ((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) → ((𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
| 25 | 6, 24 | bitrd 279 |
1
⊢ ((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |