Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jaoa | Structured version Visualization version GIF version |
Description: Inference disjoining and conjoining the antecedents of two implications. (Contributed by Stefan Allan, 1-Nov-2008.) |
Ref | Expression |
---|---|
jaao.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jaao.2 | ⊢ (𝜃 → (𝜏 → 𝜒)) |
Ref | Expression |
---|---|
jaoa | ⊢ ((𝜑 ∨ 𝜃) → ((𝜓 ∧ 𝜏) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaao.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | adantrd 495 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜏) → 𝜒)) |
3 | jaao.2 | . . 3 ⊢ (𝜃 → (𝜏 → 𝜒)) | |
4 | 3 | adantld 494 | . 2 ⊢ (𝜃 → ((𝜓 ∧ 𝜏) → 𝜒)) |
5 | 2, 4 | jaoi 856 | 1 ⊢ ((𝜑 ∨ 𝜃) → ((𝜓 ∧ 𝜏) → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 |
This theorem is referenced by: pm4.79 1003 19.40b 1895 2eu3 2657 abslt 14767 absle 14768 unconn 22183 dfon2lem4 33339 clsk1indlem3 41222 |
Copyright terms: Public domain | W3C validator |