MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jaoa Structured version   Visualization version   GIF version

Theorem jaoa 955
Description: Inference disjoining and conjoining the antecedents of two implications. (Contributed by Stefan Allan, 1-Nov-2008.)
Hypotheses
Ref Expression
jaao.1 (𝜑 → (𝜓𝜒))
jaao.2 (𝜃 → (𝜏𝜒))
Assertion
Ref Expression
jaoa ((𝜑𝜃) → ((𝜓𝜏) → 𝜒))

Proof of Theorem jaoa
StepHypRef Expression
1 jaao.1 . . 3 (𝜑 → (𝜓𝜒))
21adantrd 495 . 2 (𝜑 → ((𝜓𝜏) → 𝜒))
3 jaao.2 . . 3 (𝜃 → (𝜏𝜒))
43adantld 494 . 2 (𝜃 → ((𝜓𝜏) → 𝜒))
52, 4jaoi 856 1 ((𝜑𝜃) → ((𝜓𝜏) → 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847
This theorem is referenced by:  pm4.79  1003  19.40b  1895  2eu3  2657  abslt  14767  absle  14768  unconn  22183  dfon2lem4  33339  clsk1indlem3  41222
  Copyright terms: Public domain W3C validator