Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwjust | Structured version Visualization version GIF version |
Description: Soundness justification theorem for df-pw 4515. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
pwjust | ⊢ {𝑥 ∣ 𝑥 ⊆ 𝐴} = {𝑦 ∣ 𝑦 ⊆ 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3926 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴)) | |
2 | 1 | cbvabv 2811 | . 2 ⊢ {𝑥 ∣ 𝑥 ⊆ 𝐴} = {𝑧 ∣ 𝑧 ⊆ 𝐴} |
3 | sseq1 3926 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑧 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
4 | 3 | cbvabv 2811 | . 2 ⊢ {𝑧 ∣ 𝑧 ⊆ 𝐴} = {𝑦 ∣ 𝑦 ⊆ 𝐴} |
5 | 2, 4 | eqtri 2765 | 1 ⊢ {𝑥 ∣ 𝑥 ⊆ 𝐴} = {𝑦 ∣ 𝑦 ⊆ 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 {cab 2714 ⊆ wss 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-in 3873 df-ss 3883 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |