MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwjust Structured version   Visualization version   GIF version

Theorem pwjust 4514
Description: Soundness justification theorem for df-pw 4515. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pwjust {𝑥𝑥𝐴} = {𝑦𝑦𝐴}
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴

Proof of Theorem pwjust
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sseq1 3926 . . 3 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
21cbvabv 2811 . 2 {𝑥𝑥𝐴} = {𝑧𝑧𝐴}
3 sseq1 3926 . . 3 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
43cbvabv 2811 . 2 {𝑧𝑧𝐴} = {𝑦𝑦𝐴}
52, 4eqtri 2765 1 {𝑥𝑥𝐴} = {𝑦𝑦𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  {cab 2714  wss 3866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-in 3873  df-ss 3883
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator