MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwjust Structured version   Visualization version   GIF version

Theorem pwjust 4603
Description: Soundness justification theorem for df-pw 4604. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pwjust {𝑥𝑥𝐴} = {𝑦𝑦𝐴}
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴

Proof of Theorem pwjust
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sseq1 4007 . . 3 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
21cbvabv 2805 . 2 {𝑥𝑥𝐴} = {𝑧𝑧𝐴}
3 sseq1 4007 . . 3 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
43cbvabv 2805 . 2 {𝑧𝑧𝐴} = {𝑦𝑦𝐴}
52, 4eqtri 2760 1 {𝑥𝑥𝐴} = {𝑦𝑦𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  {cab 2709  wss 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3955  df-ss 3965
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator