MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-pw Structured version   Visualization version   GIF version

Definition df-pw 4555
Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if 𝐴 = {3, 5, 7}, then 𝒫 𝐴 = {∅, {3}, {5}, {7}, {3, 5}, {3, 7}, {5, 7}, {3, 5, 7}} (ex-pw 30391). We will later introduce the Axiom of Power Sets ax-pow 5307, which can be expressed in class notation per pwexg 5320. Still later we will prove, in hashpw 14361, that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 24-Jun-1993.)
Assertion
Ref Expression
df-pw 𝒫 𝐴 = {𝑥𝑥𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-pw
StepHypRef Expression
1 cA . . 3 class 𝐴
21cpw 4553 . 2 class 𝒫 𝐴
3 vx . . . . 5 setvar 𝑥
43cv 1539 . . . 4 class 𝑥
54, 1wss 3905 . . 3 wff 𝑥𝐴
65, 3cab 2707 . 2 class {𝑥𝑥𝐴}
72, 6wceq 1540 1 wff 𝒫 𝐴 = {𝑥𝑥𝐴}
Colors of variables: wff setvar class
This definition is referenced by:  elpwg  4556  pweqALT  4568  nfpw  4572  pw0  4766  pwpw0  4767  pwsn  4854  vpwex  5319  abssexg  5324  orduniss2  7772  mapexOLD  8766  ssenen  9075  domtriomlem  10355  npex  10899  ustval  24106  avril1  30425  fineqvpow  35070  dfon2lem2  35757  bj-velpwALT  37026
  Copyright terms: Public domain W3C validator