| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-pw | Structured version Visualization version GIF version | ||
| Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if 𝐴 = {3, 5, 7}, then 𝒫 𝐴 = {∅, {3}, {5}, {7}, {3, 5}, {3, 7}, {5, 7}, {3, 5, 7}} (ex-pw 30391). We will later introduce the Axiom of Power Sets ax-pow 5307, which can be expressed in class notation per pwexg 5320. Still later we will prove, in hashpw 14361, that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 24-Jun-1993.) |
| Ref | Expression |
|---|---|
| df-pw | ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | cpw 4553 | . 2 class 𝒫 𝐴 |
| 3 | vx | . . . . 5 setvar 𝑥 | |
| 4 | 3 | cv 1539 | . . . 4 class 𝑥 |
| 5 | 4, 1 | wss 3905 | . . 3 wff 𝑥 ⊆ 𝐴 |
| 6 | 5, 3 | cab 2707 | . 2 class {𝑥 ∣ 𝑥 ⊆ 𝐴} |
| 7 | 2, 6 | wceq 1540 | 1 wff 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} |
| Colors of variables: wff setvar class |
| This definition is referenced by: elpwg 4556 pweqALT 4568 nfpw 4572 pw0 4766 pwpw0 4767 pwsn 4854 vpwex 5319 abssexg 5324 orduniss2 7772 mapexOLD 8766 ssenen 9075 domtriomlem 10355 npex 10899 ustval 24106 avril1 30425 fineqvpow 35070 dfon2lem2 35757 bj-velpwALT 37026 |
| Copyright terms: Public domain | W3C validator |