MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-pw Structured version   Visualization version   GIF version

Definition df-pw 4551
Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if 𝐴 = {3, 5, 7}, then 𝒫 𝐴 = {∅, {3}, {5}, {7}, {3, 5}, {3, 7}, {5, 7}, {3, 5, 7}} (ex-pw 30411). We will later introduce the Axiom of Power Sets ax-pow 5305, which can be expressed in class notation per pwexg 5318. Still later we will prove, in hashpw 14345, that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 24-Jun-1993.)
Assertion
Ref Expression
df-pw 𝒫 𝐴 = {𝑥𝑥𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-pw
StepHypRef Expression
1 cA . . 3 class 𝐴
21cpw 4549 . 2 class 𝒫 𝐴
3 vx . . . . 5 setvar 𝑥
43cv 1540 . . . 4 class 𝑥
54, 1wss 3898 . . 3 wff 𝑥𝐴
65, 3cab 2711 . 2 class {𝑥𝑥𝐴}
72, 6wceq 1541 1 wff 𝒫 𝐴 = {𝑥𝑥𝐴}
Colors of variables: wff setvar class
This definition is referenced by:  elpwg  4552  pweqALT  4564  nfpw  4568  pw0  4763  pwpw0  4764  pwsn  4851  vpwex  5317  abssexg  5322  orduniss2  7769  mapexOLD  8762  ssenen  9071  domtriomlem  10340  npex  10884  ustval  24119  avril1  30445  fineqvpow  35159  dfon2lem2  35847  bj-velpwALT  37118
  Copyright terms: Public domain W3C validator