| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-pw | Structured version Visualization version GIF version | ||
| Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if 𝐴 = {3, 5, 7}, then 𝒫 𝐴 = {∅, {3}, {5}, {7}, {3, 5}, {3, 7}, {5, 7}, {3, 5, 7}} (ex-pw 30358). We will later introduce the Axiom of Power Sets ax-pow 5320, which can be expressed in class notation per pwexg 5333. Still later we will prove, in hashpw 14401, that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 24-Jun-1993.) |
| Ref | Expression |
|---|---|
| df-pw | ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | cpw 4563 | . 2 class 𝒫 𝐴 |
| 3 | vx | . . . . 5 setvar 𝑥 | |
| 4 | 3 | cv 1539 | . . . 4 class 𝑥 |
| 5 | 4, 1 | wss 3914 | . . 3 wff 𝑥 ⊆ 𝐴 |
| 6 | 5, 3 | cab 2707 | . 2 class {𝑥 ∣ 𝑥 ⊆ 𝐴} |
| 7 | 2, 6 | wceq 1540 | 1 wff 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} |
| Colors of variables: wff setvar class |
| This definition is referenced by: elpwg 4566 pweqALT 4578 nfpw 4582 pw0 4776 pwpw0 4777 pwsn 4864 vpwex 5332 abssexg 5337 orduniss2 7808 mapexOLD 8805 ssenen 9115 domtriomlem 10395 npex 10939 ustval 24090 avril1 30392 fineqvpow 35086 dfon2lem2 35772 bj-velpwALT 37041 |
| Copyright terms: Public domain | W3C validator |