MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-pw Structured version   Visualization version   GIF version

Definition df-pw 4604
Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if 𝐴 = {3, 5, 7}, then 𝒫 𝐴 = {∅, {3}, {5}, {7}, {3, 5}, {3, 7}, {5, 7}, {3, 5, 7}} (ex-pw 30115). We will later introduce the Axiom of Power Sets ax-pow 5363, which can be expressed in class notation per pwexg 5376. Still later we will prove, in hashpw 14403, that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 24-Jun-1993.)
Assertion
Ref Expression
df-pw 𝒫 𝐴 = {𝑥𝑥𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-pw
StepHypRef Expression
1 cA . . 3 class 𝐴
21cpw 4602 . 2 class 𝒫 𝐴
3 vx . . . . 5 setvar 𝑥
43cv 1539 . . . 4 class 𝑥
54, 1wss 3948 . . 3 wff 𝑥𝐴
65, 3cab 2708 . 2 class {𝑥𝑥𝐴}
72, 6wceq 1540 1 wff 𝒫 𝐴 = {𝑥𝑥𝐴}
Colors of variables: wff setvar class
This definition is referenced by:  elpwg  4605  pweqALT  4617  nfpw  4621  pw0  4815  pwpw0  4816  pwsn  4900  pwsnOLD  4901  vpwex  5375  abssexg  5380  orduniss2  7825  mapex  8832  ssenen  9157  domtriomlem  10443  npex  10987  ustval  24027  avril1  30149  fineqvpow  34560  dfon2lem2  35226  bj-velpwALT  36398
  Copyright terms: Public domain W3C validator