Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qseq1i Structured version   Visualization version   GIF version

Theorem qseq1i 38248
Description: Equality theorem for quotient set, inference form. (Contributed by Peter Mazsa, 3-Jun-2021.)
Hypothesis
Ref Expression
qseq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
qseq1i (𝐴 / 𝐶) = (𝐵 / 𝐶)

Proof of Theorem qseq1i
StepHypRef Expression
1 qseq1i.1 . 2 𝐴 = 𝐵
2 qseq1 8821 . 2 (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶))
31, 2ax-mp 5 1 (𝐴 / 𝐶) = (𝐵 / 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537   / cqs 8764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-rex 3077  df-qs 8771
This theorem is referenced by:  dmqscoelseq  38619
  Copyright terms: Public domain W3C validator