![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qseq1i | Structured version Visualization version GIF version |
Description: Equality theorem for quotient set, inference form. (Contributed by Peter Mazsa, 3-Jun-2021.) |
Ref | Expression |
---|---|
qseq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
qseq1i | ⊢ (𝐴 / 𝐶) = (𝐵 / 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | qseq1 8806 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 / 𝐶) = (𝐵 / 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 / cqs 8749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-rex 3070 df-qs 8756 |
This theorem is referenced by: dmqscoelseq 38655 |
Copyright terms: Public domain | W3C validator |