Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > qseq1i | Structured version Visualization version GIF version |
Description: Equality theorem for quotient set, inference form. (Contributed by Peter Mazsa, 3-Jun-2021.) |
Ref | Expression |
---|---|
qseq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
qseq1i | ⊢ (𝐴 / 𝐶) = (𝐵 / 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | qseq1 8468 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 / 𝐶) = (𝐵 / 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 / cqs 8413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-ral 3068 df-rex 3069 df-qs 8420 |
This theorem is referenced by: dmqscoelseq 36542 |
Copyright terms: Public domain | W3C validator |