| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qseq1i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for quotient set, inference form. (Contributed by Peter Mazsa, 3-Jun-2021.) |
| Ref | Expression |
|---|---|
| qseq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| qseq1i | ⊢ (𝐴 / 𝐶) = (𝐵 / 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | qseq1 8782 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 / 𝐶) = (𝐵 / 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 / cqs 8725 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-rex 3060 df-qs 8732 |
| This theorem is referenced by: dmqscoelseq 38596 |
| Copyright terms: Public domain | W3C validator |