Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmqscoelseq Structured version   Visualization version   GIF version

Theorem dmqscoelseq 38646
Description: Two ways to express the equality of the domain quotient of the coelements on the class 𝐴 with the class 𝐴. (Contributed by Peter Mazsa, 26-Sep-2021.)
Assertion
Ref Expression
dmqscoelseq ((dom ∼ 𝐴 /𝐴) = 𝐴 ↔ ( 𝐴 /𝐴) = 𝐴)

Proof of Theorem dmqscoelseq
StepHypRef Expression
1 dmcoels 38442 . . 3 dom ∼ 𝐴 = 𝐴
21qseq1i 38275 . 2 (dom ∼ 𝐴 /𝐴) = ( 𝐴 /𝐴)
32eqeq1i 2735 1 ((dom ∼ 𝐴 /𝐴) = 𝐴 ↔ ( 𝐴 /𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540   cuni 4879  dom cdm 5646   / cqs 8681  ccoels 38167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-eprel 5546  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-qs 8688  df-coss 38396  df-coels 38397
This theorem is referenced by:  dmqs1cosscnvepreseq  38647  dfcomember3  38659
  Copyright terms: Public domain W3C validator