Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmqscoelseq Structured version   Visualization version   GIF version

Theorem dmqscoelseq 36773
Description: Two ways to express the equality of the domain quotient of the coelements on the class 𝐴 with the class 𝐴. (Contributed by Peter Mazsa, 26-Sep-2021.)
Assertion
Ref Expression
dmqscoelseq ((dom ∼ 𝐴 /𝐴) = 𝐴 ↔ ( 𝐴 /𝐴) = 𝐴)

Proof of Theorem dmqscoelseq
StepHypRef Expression
1 dmcoels 36575 . . 3 dom ∼ 𝐴 = 𝐴
21qseq1i 36424 . 2 (dom ∼ 𝐴 /𝐴) = ( 𝐴 /𝐴)
32eqeq1i 2743 1 ((dom ∼ 𝐴 /𝐴) = 𝐴 ↔ ( 𝐴 /𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539   cuni 4839  dom cdm 5589   / cqs 8497  ccoels 36334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-eprel 5495  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-qs 8504  df-coss 36537  df-coels 36538
This theorem is referenced by:  dmqs1cosscnvepreseq  36774  dfmember3  36786
  Copyright terms: Public domain W3C validator