Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsss1 Structured version   Visualization version   GIF version

Theorem qsss1 36423
Description: Subclass theorem for quotient sets. (Contributed by Peter Mazsa, 12-Sep-2020.)
Assertion
Ref Expression
qsss1 (𝐴𝐵 → (𝐴 / 𝐶) ⊆ (𝐵 / 𝐶))

Proof of Theorem qsss1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrexv 3988 . . 3 (𝐴𝐵 → (∃𝑥𝐴 𝑦 = [𝑥]𝐶 → ∃𝑥𝐵 𝑦 = [𝑥]𝐶))
21ss2abdv 3997 . 2 (𝐴𝐵 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝐶} ⊆ {𝑦 ∣ ∃𝑥𝐵 𝑦 = [𝑥]𝐶})
3 df-qs 8504 . 2 (𝐴 / 𝐶) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝐶}
4 df-qs 8504 . 2 (𝐵 / 𝐶) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = [𝑥]𝐶}
52, 3, 43sstr4g 3966 1 (𝐴𝐵 → (𝐴 / 𝐶) ⊆ (𝐵 / 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  {cab 2715  wrex 3065  wss 3887  [cec 8496   / cqs 8497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rex 3070  df-v 3434  df-in 3894  df-ss 3904  df-qs 8504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator