![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qsss1 | Structured version Visualization version GIF version |
Description: Subclass theorem for quotient sets. (Contributed by Peter Mazsa, 12-Sep-2020.) |
Ref | Expression |
---|---|
qsss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 / 𝐶) ⊆ (𝐵 / 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv 4051 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝐶 → ∃𝑥 ∈ 𝐵 𝑦 = [𝑥]𝐶)) | |
2 | 1 | ss2abdv 4060 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝐶} ⊆ {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 = [𝑥]𝐶}) |
3 | df-qs 8715 | . 2 ⊢ (𝐴 / 𝐶) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝐶} | |
4 | df-qs 8715 | . 2 ⊢ (𝐵 / 𝐶) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 = [𝑥]𝐶} | |
5 | 2, 3, 4 | 3sstr4g 4027 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 / 𝐶) ⊆ (𝐵 / 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 {cab 2708 ∃wrex 3069 ⊆ wss 3948 [cec 8707 / cqs 8708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rex 3070 df-v 3475 df-in 3955 df-ss 3965 df-qs 8715 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |