Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsss1 Structured version   Visualization version   GIF version

Theorem qsss1 38326
Description: Subclass theorem for quotient sets. (Contributed by Peter Mazsa, 12-Sep-2020.)
Assertion
Ref Expression
qsss1 (𝐴𝐵 → (𝐴 / 𝐶) ⊆ (𝐵 / 𝐶))

Proof of Theorem qsss1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrexv 3999 . . 3 (𝐴𝐵 → (∃𝑥𝐴 𝑦 = [𝑥]𝐶 → ∃𝑥𝐵 𝑦 = [𝑥]𝐶))
21ss2abdv 4012 . 2 (𝐴𝐵 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝐶} ⊆ {𝑦 ∣ ∃𝑥𝐵 𝑦 = [𝑥]𝐶})
3 df-qs 8628 . 2 (𝐴 / 𝐶) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝐶}
4 df-qs 8628 . 2 (𝐵 / 𝐶) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = [𝑥]𝐶}
52, 3, 43sstr4g 3983 1 (𝐴𝐵 → (𝐴 / 𝐶) ⊆ (𝐵 / 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  {cab 2709  wrex 3056  wss 3897  [cec 8620   / cqs 8621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-rex 3057  df-ss 3914  df-qs 8628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator