MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qseq1 Structured version   Visualization version   GIF version

Theorem qseq1 8800
Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
qseq1 (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶))

Proof of Theorem qseq1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 3320 . . 3 (𝐴 = 𝐵 → (∃𝑥𝐴 𝑦 = [𝑥]𝐶 ↔ ∃𝑥𝐵 𝑦 = [𝑥]𝐶))
21abbidv 2806 . 2 (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝐶} = {𝑦 ∣ ∃𝑥𝐵 𝑦 = [𝑥]𝐶})
3 df-qs 8750 . 2 (𝐴 / 𝐶) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝐶}
4 df-qs 8750 . 2 (𝐵 / 𝐶) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = [𝑥]𝐶}
52, 3, 43eqtr4g 2800 1 (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  {cab 2712  wrex 3068  [cec 8742   / cqs 8743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-rex 3069  df-qs 8750
This theorem is referenced by:  qseq1d  8803  qseq12  8805  pi1bas  25085  pstmval  33856  qseq1i  38272
  Copyright terms: Public domain W3C validator