| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qseq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| qseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 3322 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 = [𝑥]𝐶)) | |
| 2 | 1 | abbidv 2808 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝐶} = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 = [𝑥]𝐶}) |
| 3 | df-qs 8751 | . 2 ⊢ (𝐴 / 𝐶) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝐶} | |
| 4 | df-qs 8751 | . 2 ⊢ (𝐵 / 𝐶) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 = [𝑥]𝐶} | |
| 5 | 2, 3, 4 | 3eqtr4g 2802 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {cab 2714 ∃wrex 3070 [cec 8743 / cqs 8744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-rex 3071 df-qs 8751 |
| This theorem is referenced by: qseq1d 8804 qseq12 8806 pi1bas 25071 pstmval 33894 qseq1i 38291 |
| Copyright terms: Public domain | W3C validator |