Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qseq1 | Structured version Visualization version GIF version |
Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
qseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq 3362 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 = [𝑥]𝐶)) | |
2 | 1 | abbidv 2805 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝐶} = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 = [𝑥]𝐶}) |
3 | df-qs 8535 | . 2 ⊢ (𝐴 / 𝐶) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝐶} | |
4 | df-qs 8535 | . 2 ⊢ (𝐵 / 𝐶) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 = [𝑥]𝐶} | |
5 | 2, 3, 4 | 3eqtr4g 2801 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {cab 2713 ∃wrex 3071 [cec 8527 / cqs 8528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-ral 3063 df-rex 3072 df-qs 8535 |
This theorem is referenced by: qseq12 8587 pi1bas 24250 pstmval 31894 qseq1i 36500 qseq1d 36501 |
Copyright terms: Public domain | W3C validator |