MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qseq1 Structured version   Visualization version   GIF version

Theorem qseq1 8526
Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
qseq1 (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶))

Proof of Theorem qseq1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 3341 . . 3 (𝐴 = 𝐵 → (∃𝑥𝐴 𝑦 = [𝑥]𝐶 ↔ ∃𝑥𝐵 𝑦 = [𝑥]𝐶))
21abbidv 2808 . 2 (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝐶} = {𝑦 ∣ ∃𝑥𝐵 𝑦 = [𝑥]𝐶})
3 df-qs 8478 . 2 (𝐴 / 𝐶) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝐶}
4 df-qs 8478 . 2 (𝐵 / 𝐶) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = [𝑥]𝐶}
52, 3, 43eqtr4g 2804 1 (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  {cab 2716  wrex 3066  [cec 8470   / cqs 8471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-ral 3070  df-rex 3071  df-qs 8478
This theorem is referenced by:  qseq12  8530  pi1bas  24182  pstmval  31824  qseq1i  36403  qseq1d  36404
  Copyright terms: Public domain W3C validator