MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.26-3 Structured version   Visualization version   GIF version

Theorem r19.26-3 3097
Description: Version of r19.26 3095 with three quantifiers. (Contributed by FL, 22-Nov-2010.)
Assertion
Ref Expression
r19.26-3 (∀𝑥𝐴 (𝜑𝜓𝜒) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓 ∧ ∀𝑥𝐴 𝜒))

Proof of Theorem r19.26-3
StepHypRef Expression
1 df-3an 1088 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
21ralbii 3092 . 2 (∀𝑥𝐴 (𝜑𝜓𝜒) ↔ ∀𝑥𝐴 ((𝜑𝜓) ∧ 𝜒))
3 r19.26 3095 . 2 (∀𝑥𝐴 ((𝜑𝜓) ∧ 𝜒) ↔ (∀𝑥𝐴 (𝜑𝜓) ∧ ∀𝑥𝐴 𝜒))
4 r19.26 3095 . . . 4 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
54anbi1i 624 . . 3 ((∀𝑥𝐴 (𝜑𝜓) ∧ ∀𝑥𝐴 𝜒) ↔ ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) ∧ ∀𝑥𝐴 𝜒))
6 df-3an 1088 . . 3 ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓 ∧ ∀𝑥𝐴 𝜒) ↔ ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) ∧ ∀𝑥𝐴 𝜒))
75, 6bitr4i 277 . 2 ((∀𝑥𝐴 (𝜑𝜓) ∧ ∀𝑥𝐴 𝜒) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓 ∧ ∀𝑥𝐴 𝜒))
82, 3, 73bitri 297 1 (∀𝑥𝐴 (𝜑𝜓𝜒) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓 ∧ ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086  wral 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-ral 3069
This theorem is referenced by:  sgrp2rid2ex  18566  axeuclid  27331  axcontlem8  27339  stoweidlem60  43601
  Copyright terms: Public domain W3C validator