Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem60 Structured version   Visualization version   GIF version

Theorem stoweidlem60 43491
Description: This lemma proves that there exists a function g as in the proof in [BrosowskiDeutsh] p. 91 (this parte of the proof actually spans through pages 91-92): g is in the subalgebra, and for all 𝑡 in 𝑇, there is a 𝑗 such that (j-4/3)*ε < f(t) <= (j-1/3)*ε and (j-4/3)*ε < g(t) < (j+1/3)*ε. Here 𝐹 is used to represent f in the paper, and 𝐸 is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem60.1 𝑡𝐹
stoweidlem60.2 𝑡𝜑
stoweidlem60.3 𝐾 = (topGen‘ran (,))
stoweidlem60.4 𝑇 = 𝐽
stoweidlem60.5 𝐶 = (𝐽 Cn 𝐾)
stoweidlem60.6 𝐷 = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
stoweidlem60.7 𝐵 = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
stoweidlem60.8 (𝜑𝐽 ∈ Comp)
stoweidlem60.9 (𝜑𝑇 ≠ ∅)
stoweidlem60.10 (𝜑𝐴𝐶)
stoweidlem60.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem60.12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem60.13 ((𝜑𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
stoweidlem60.14 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem60.15 (𝜑𝐹𝐶)
stoweidlem60.16 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐹𝑡))
stoweidlem60.17 (𝜑𝐸 ∈ ℝ+)
stoweidlem60.18 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem60 (𝜑 → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
Distinct variable groups:   𝑓,𝑔,𝑗,𝑛,𝑡,𝐴,𝑞,𝑟   𝑦,𝑓,𝑗,𝑛,𝑞,𝑟,𝑡,𝐴   𝐵,𝑓,𝑔   𝐷,𝑓,𝑔   𝑓,𝐸,𝑔,𝑗,𝑛,𝑡   𝑓,𝐽,𝑔,𝑟,𝑡   𝑇,𝑓,𝑔,𝑗,𝑛,𝑡   𝜑,𝑓,𝑔,𝑗,𝑛   𝑔,𝐹,𝑗,𝑛   𝐵,𝑞,𝑟,𝑦   𝐷,𝑞,𝑟,𝑦   𝑇,𝑞,𝑟,𝑦   𝜑,𝑞,𝑟,𝑦   𝐸,𝑟,𝑦   𝑡,𝐾
Allowed substitution hints:   𝜑(𝑡)   𝐵(𝑡,𝑗,𝑛)   𝐶(𝑦,𝑡,𝑓,𝑔,𝑗,𝑛,𝑟,𝑞)   𝐷(𝑡,𝑗,𝑛)   𝐸(𝑞)   𝐹(𝑦,𝑡,𝑓,𝑟,𝑞)   𝐽(𝑦,𝑗,𝑛,𝑞)   𝐾(𝑦,𝑓,𝑔,𝑗,𝑛,𝑟,𝑞)

Proof of Theorem stoweidlem60
Dummy variables 𝑖 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnre 11910 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
21adantl 481 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
3 stoweidlem60.17 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ ℝ+)
43rpred 12701 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ)
54adantr 480 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝐸 ∈ ℝ)
63rpne0d 12706 . . . . . . . . . . . . 13 (𝜑𝐸 ≠ 0)
76adantr 480 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝐸 ≠ 0)
82, 5, 7redivcld 11733 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑚 / 𝐸) ∈ ℝ)
9 1red 10907 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 1 ∈ ℝ)
108, 9readdcld 10935 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑚 / 𝐸) + 1) ∈ ℝ)
1110adantr 480 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) → ((𝑚 / 𝐸) + 1) ∈ ℝ)
12 arch 12160 . . . . . . . . 9 (((𝑚 / 𝐸) + 1) ∈ ℝ → ∃𝑛 ∈ ℕ ((𝑚 / 𝐸) + 1) < 𝑛)
1311, 12syl 17 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) → ∃𝑛 ∈ ℕ ((𝑚 / 𝐸) + 1) < 𝑛)
14 stoweidlem60.2 . . . . . . . . . . . . . . 15 𝑡𝜑
15 nfv 1918 . . . . . . . . . . . . . . 15 𝑡 𝑚 ∈ ℕ
1614, 15nfan 1903 . . . . . . . . . . . . . 14 𝑡(𝜑𝑚 ∈ ℕ)
17 nfra1 3142 . . . . . . . . . . . . . 14 𝑡𝑡𝑇 (𝐹𝑡) < 𝑚
1816, 17nfan 1903 . . . . . . . . . . . . 13 𝑡((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚)
19 nfv 1918 . . . . . . . . . . . . 13 𝑡 𝑛 ∈ ℕ
2018, 19nfan 1903 . . . . . . . . . . . 12 𝑡(((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ)
21 nfv 1918 . . . . . . . . . . . 12 𝑡((𝑚 / 𝐸) + 1) < 𝑛
2220, 21nfan 1903 . . . . . . . . . . 11 𝑡((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛)
23 simp-5l 781 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝜑)
24 stoweidlem60.3 . . . . . . . . . . . . . . . 16 𝐾 = (topGen‘ran (,))
25 stoweidlem60.4 . . . . . . . . . . . . . . . 16 𝑇 = 𝐽
26 stoweidlem60.5 . . . . . . . . . . . . . . . 16 𝐶 = (𝐽 Cn 𝐾)
27 stoweidlem60.15 . . . . . . . . . . . . . . . 16 (𝜑𝐹𝐶)
2824, 25, 26, 27fcnre 42457 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑇⟶ℝ)
2928ffvelrnda 6943 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
3023, 29sylancom 587 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
31 simp-5r 782 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑚 ∈ ℕ)
3231nnred 11918 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑚 ∈ ℝ)
33 simpllr 772 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑛 ∈ ℕ)
3433nnred 11918 . . . . . . . . . . . . . . 15 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑛 ∈ ℝ)
35 1red 10907 . . . . . . . . . . . . . . 15 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 1 ∈ ℝ)
3634, 35resubcld 11333 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → (𝑛 − 1) ∈ ℝ)
3723, 4syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝐸 ∈ ℝ)
3836, 37remulcld 10936 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → ((𝑛 − 1) · 𝐸) ∈ ℝ)
39 simpllr 772 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → ∀𝑡𝑇 (𝐹𝑡) < 𝑚)
4039r19.21bi 3132 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → (𝐹𝑡) < 𝑚)
41 simplr 765 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → ((𝑚 / 𝐸) + 1) < 𝑛)
42 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → ((𝑚 / 𝐸) + 1) < 𝑛)
43 simpl1 1189 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝜑)
44 simpl2 1190 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑚 ∈ ℕ)
4543, 44, 8syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (𝑚 / 𝐸) ∈ ℝ)
46 1red 10907 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 1 ∈ ℝ)
47 simpl3 1191 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑛 ∈ ℕ)
4847nnred 11918 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑛 ∈ ℝ)
4945, 46, 48ltaddsubd 11505 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (((𝑚 / 𝐸) + 1) < 𝑛 ↔ (𝑚 / 𝐸) < (𝑛 − 1)))
5042, 49mpbid 231 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (𝑚 / 𝐸) < (𝑛 − 1))
5113ad2ant2 1132 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℝ)
5251adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑚 ∈ ℝ)
5348, 46resubcld 11333 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (𝑛 − 1) ∈ ℝ)
5443ad2ant1 1131 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝐸 ∈ ℝ)
5554adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝐸 ∈ ℝ)
563rpgt0d 12704 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 𝐸)
5743, 56syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 0 < 𝐸)
58 ltdivmul2 11782 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℝ ∧ (𝑛 − 1) ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → ((𝑚 / 𝐸) < (𝑛 − 1) ↔ 𝑚 < ((𝑛 − 1) · 𝐸)))
5952, 53, 55, 57, 58syl112anc 1372 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → ((𝑚 / 𝐸) < (𝑛 − 1) ↔ 𝑚 < ((𝑛 − 1) · 𝐸)))
6050, 59mpbid 231 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑚 < ((𝑛 − 1) · 𝐸))
6123, 31, 33, 41, 60syl31anc 1371 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑚 < ((𝑛 − 1) · 𝐸))
6230, 32, 38, 40, 61lttrd 11066 . . . . . . . . . . . 12 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
6362ex 412 . . . . . . . . . . 11 (((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (𝑡𝑇 → (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
6422, 63ralrimi 3139 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
6564ex 412 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) → (((𝑚 / 𝐸) + 1) < 𝑛 → ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
6665reximdva 3202 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) → (∃𝑛 ∈ ℕ ((𝑚 / 𝐸) + 1) < 𝑛 → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
6713, 66mpd 15 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
68 stoweidlem60.1 . . . . . . . 8 𝑡𝐹
69 stoweidlem60.8 . . . . . . . 8 (𝜑𝐽 ∈ Comp)
70 stoweidlem60.9 . . . . . . . 8 (𝜑𝑇 ≠ ∅)
7168, 14, 24, 69, 25, 70, 26, 27rfcnnnub 42468 . . . . . . 7 (𝜑 → ∃𝑚 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < 𝑚)
7267, 71r19.29a 3217 . . . . . 6 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
73 df-rex 3069 . . . . . 6 (∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸) ↔ ∃𝑛(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
7472, 73sylib 217 . . . . 5 (𝜑 → ∃𝑛(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
75 simpr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))) → (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
7614, 19nfan 1903 . . . . . . . . . . 11 𝑡(𝜑𝑛 ∈ ℕ)
77 stoweidlem60.6 . . . . . . . . . . 11 𝐷 = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
78 stoweidlem60.7 . . . . . . . . . . 11 𝐵 = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
79 eqid 2738 . . . . . . . . . . 11 {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)} = {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)}
80 eqid 2738 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑛) ↦ {𝑦 ∈ {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)} ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < (𝑦𝑡))}) = (𝑗 ∈ (0...𝑛) ↦ {𝑦 ∈ {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)} ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < (𝑦𝑡))})
8169adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐽 ∈ Comp)
82 stoweidlem60.10 . . . . . . . . . . . 12 (𝜑𝐴𝐶)
8382adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐴𝐶)
84 stoweidlem60.11 . . . . . . . . . . . 12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
85843adant1r 1175 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
86 stoweidlem60.12 . . . . . . . . . . . 12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
87863adant1r 1175 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
88 stoweidlem60.13 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
8988adantlr 711 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
90 stoweidlem60.14 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
9190adantlr 711 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
9227adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐹𝐶)
933adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐸 ∈ ℝ+)
94 stoweidlem60.18 . . . . . . . . . . . 12 (𝜑𝐸 < (1 / 3))
9594adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐸 < (1 / 3))
96 simpr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
9768, 76, 24, 25, 26, 77, 78, 79, 80, 81, 83, 85, 87, 89, 91, 92, 93, 95, 96stoweidlem59 43490 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ∃𝑥(𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
9897adantrr 713 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))) → ∃𝑥(𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
99 19.42v 1958 . . . . . . . . 9 (∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ (𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ↔ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ ∃𝑥(𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
10075, 98, 99sylanbrc 582 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))) → ∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ (𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
101 3anass 1093 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))) ↔ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ (𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
102101exbii 1851 . . . . . . . 8 (∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))) ↔ ∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ (𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
103100, 102sylibr 233 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))) → ∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
104103ex 412 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) → ∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
105104eximdv 1921 . . . . 5 (𝜑 → (∃𝑛(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) → ∃𝑛𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
10674, 105mpd 15 . . . 4 (𝜑 → ∃𝑛𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
107 simpl 482 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝜑)
108 simpr1l 1228 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝑛 ∈ ℕ)
109 simpr2 1193 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝑥:(0...𝑛)⟶𝐴)
110 nfv 1918 . . . . . . . . . 10 𝑡 𝑥:(0...𝑛)⟶𝐴
11114, 19, 110nf3an 1905 . . . . . . . . 9 𝑡(𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴)
112 simp2 1135 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝑛 ∈ ℕ)
113 simp3 1136 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝑥:(0...𝑛)⟶𝐴)
114 simp1 1134 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝜑)
115114, 84syl3an1 1161 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
116114, 86syl3an1 1161 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
117883ad2antl1 1183 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) ∧ 𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
11833ad2ant1 1131 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝐸 ∈ ℝ+)
119118rpred 12701 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝐸 ∈ ℝ)
12082sselda 3917 . . . . . . . . . . 11 ((𝜑𝑓𝐴) → 𝑓𝐶)
12124, 25, 26, 120fcnre 42457 . . . . . . . . . 10 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
1221213ad2antl1 1183 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
123111, 112, 113, 115, 116, 117, 119, 122stoweidlem17 43448 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) ∈ 𝐴)
124107, 108, 109, 123syl3anc 1369 . . . . . . 7 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) ∈ 𝐴)
125 nfv 1918 . . . . . . . . 9 𝑗𝜑
126 nfv 1918 . . . . . . . . . 10 𝑗(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
127 nfv 1918 . . . . . . . . . 10 𝑗 𝑥:(0...𝑛)⟶𝐴
128 nfra1 3142 . . . . . . . . . 10 𝑗𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
129126, 127, 128nf3an 1905 . . . . . . . . 9 𝑗((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
130125, 129nfan 1903 . . . . . . . 8 𝑗(𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
131 nfra1 3142 . . . . . . . . . . 11 𝑡𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)
13219, 131nfan 1903 . . . . . . . . . 10 𝑡(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
133 nfcv 2906 . . . . . . . . . . 11 𝑡(0...𝑛)
134 nfra1 3142 . . . . . . . . . . . 12 𝑡𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1)
135 nfra1 3142 . . . . . . . . . . . 12 𝑡𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛)
136 nfra1 3142 . . . . . . . . . . . 12 𝑡𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)
137134, 135, 136nf3an 1905 . . . . . . . . . . 11 𝑡(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
138133, 137nfralw 3149 . . . . . . . . . 10 𝑡𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
139132, 110, 138nf3an 1905 . . . . . . . . 9 𝑡((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
14014, 139nfan 1903 . . . . . . . 8 𝑡(𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
141 eqid 2738 . . . . . . . 8 (𝑡𝑇 ↦ {𝑗 ∈ (1...𝑛) ∣ 𝑡 ∈ (𝐷𝑗)}) = (𝑡𝑇 ↦ {𝑗 ∈ (1...𝑛) ∣ 𝑡 ∈ (𝐷𝑗)})
14269uniexd 7573 . . . . . . . . . 10 (𝜑 𝐽 ∈ V)
14325, 142eqeltrid 2843 . . . . . . . . 9 (𝜑𝑇 ∈ V)
144143adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝑇 ∈ V)
14528adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝐹:𝑇⟶ℝ)
146 stoweidlem60.16 . . . . . . . . . 10 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐹𝑡))
147146r19.21bi 3132 . . . . . . . . 9 ((𝜑𝑡𝑇) → 0 ≤ (𝐹𝑡))
148147adantlr 711 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑡𝑇) → 0 ≤ (𝐹𝑡))
149 simpr1r 1229 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
150149r19.21bi 3132 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑡𝑇) → (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
1513adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝐸 ∈ ℝ+)
15294adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝐸 < (1 / 3))
153 simpll 763 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛)) → 𝜑)
154 simplr2 1214 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛)) → 𝑥:(0...𝑛)⟶𝐴)
155 simpr 484 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛)) → 𝑗 ∈ (0...𝑛))
156 simp1 1134 . . . . . . . . . 10 ((𝜑𝑥:(0...𝑛)⟶𝐴𝑗 ∈ (0...𝑛)) → 𝜑)
157 ffvelrn 6941 . . . . . . . . . . 11 ((𝑥:(0...𝑛)⟶𝐴𝑗 ∈ (0...𝑛)) → (𝑥𝑗) ∈ 𝐴)
1581573adant1 1128 . . . . . . . . . 10 ((𝜑𝑥:(0...𝑛)⟶𝐴𝑗 ∈ (0...𝑛)) → (𝑥𝑗) ∈ 𝐴)
15982sselda 3917 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑗) ∈ 𝐴) → (𝑥𝑗) ∈ 𝐶)
16024, 25, 26, 159fcnre 42457 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑗) ∈ 𝐴) → (𝑥𝑗):𝑇⟶ℝ)
161156, 158, 160syl2anc 583 . . . . . . . . 9 ((𝜑𝑥:(0...𝑛)⟶𝐴𝑗 ∈ (0...𝑛)) → (𝑥𝑗):𝑇⟶ℝ)
162153, 154, 155, 161syl3anc 1369 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛)) → (𝑥𝑗):𝑇⟶ℝ)
163 simp1r3 1269 . . . . . . . . . 10 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
164 r19.26-3 3096 . . . . . . . . . . 11 (∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)) ↔ (∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
165164simp1bi 1143 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1))
166 simpl 482 . . . . . . . . . . 11 ((0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) → 0 ≤ ((𝑥𝑗)‘𝑡))
1671662ralimi 3087 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡))
168163, 165, 1673syl 18 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡))
169 simp2 1135 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → 𝑗 ∈ (0...𝑛))
170 simp3 1136 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → 𝑡𝑇)
171 rspa 3130 . . . . . . . . . 10 ((∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡) ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡))
172171r19.21bi 3132 . . . . . . . . 9 (((∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡) ∧ 𝑗 ∈ (0...𝑛)) ∧ 𝑡𝑇) → 0 ≤ ((𝑥𝑗)‘𝑡))
173168, 169, 170, 172syl21anc 834 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → 0 ≤ ((𝑥𝑗)‘𝑡))
174 simpr 484 . . . . . . . . . . 11 ((0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) → ((𝑥𝑗)‘𝑡) ≤ 1)
1751742ralimi 3087 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1)
176163, 165, 1753syl 18 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1)
177 rspa 3130 . . . . . . . . . 10 ((∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1 ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1)
178177r19.21bi 3132 . . . . . . . . 9 (((∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1 ∧ 𝑗 ∈ (0...𝑛)) ∧ 𝑡𝑇) → ((𝑥𝑗)‘𝑡) ≤ 1)
179176, 169, 170, 178syl21anc 834 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → ((𝑥𝑗)‘𝑡) ≤ 1)
180 simp1r3 1269 . . . . . . . . . 10 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
181164simp2bi 1144 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)) → ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
182180, 181syl 17 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
183 simp2 1135 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → 𝑗 ∈ (0...𝑛))
184 simp3 1136 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → 𝑡 ∈ (𝐷𝑗))
185 rspa 3130 . . . . . . . . . 10 ((∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
186185r19.21bi 3132 . . . . . . . . 9 (((∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ 𝑗 ∈ (0...𝑛)) ∧ 𝑡 ∈ (𝐷𝑗)) → ((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
187182, 183, 184, 186syl21anc 834 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → ((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
188 simp1r3 1269 . . . . . . . . . 10 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
189164simp3bi 1145 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)) → ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
190188, 189syl 17 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
191 simp2 1135 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → 𝑗 ∈ (0...𝑛))
192 simp3 1136 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → 𝑡 ∈ (𝐵𝑗))
193 rspa 3130 . . . . . . . . . 10 ((∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡) ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
194193r19.21bi 3132 . . . . . . . . 9 (((∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡) ∧ 𝑗 ∈ (0...𝑛)) ∧ 𝑡 ∈ (𝐵𝑗)) → (1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
195190, 191, 192, 194syl21anc 834 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → (1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
19668, 130, 140, 77, 78, 141, 108, 144, 145, 148, 150, 151, 152, 162, 173, 179, 187, 195stoweidlem34 43465 . . . . . . 7 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → ∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡))))
197 nfmpt1 5178 . . . . . . . . . 10 𝑡(𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))
198197nfeq2 2923 . . . . . . . . 9 𝑡 𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))
199 fveq1 6755 . . . . . . . . . . . . 13 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (𝑔𝑡) = ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡))
200199breq1d 5080 . . . . . . . . . . . 12 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ↔ ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸)))
201199breq2d 5082 . . . . . . . . . . . 12 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡) ↔ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))
202200, 201anbi12d 630 . . . . . . . . . . 11 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)) ↔ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡))))
203202anbi2d 628 . . . . . . . . . 10 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) ↔ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))))
204203rexbidv 3225 . . . . . . . . 9 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) ↔ ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))))
205198, 204ralbid 3158 . . . . . . . 8 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) ↔ ∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))))
206205rspcev 3552 . . . . . . 7 (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) ∈ 𝐴 ∧ ∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
207124, 196, 206syl2anc 583 . . . . . 6 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
208207ex 412 . . . . 5 (𝜑 → (((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
2092082eximdv 1923 . . . 4 (𝜑 → (∃𝑛𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))) → ∃𝑛𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
210106, 209mpd 15 . . 3 (𝜑 → ∃𝑛𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
211 idd 24 . . . 4 (𝜑 → (∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
212211exlimdv 1937 . . 3 (𝜑 → (∃𝑛𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
213210, 212mpd 15 . 2 (𝜑 → ∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
214 idd 24 . . 3 (𝜑 → (∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
215214exlimdv 1937 . 2 (𝜑 → (∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
216213, 215mpd 15 1 (𝜑 → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wnf 1787  wcel 2108  wnfc 2886  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  c0 4253   cuni 4836   class class class wbr 5070  cmpt 5153  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  3c3 11959  4c4 11960  +crp 12659  (,)cioo 13008  ...cfz 13168  Σcsu 15325  topGenctg 17065   Cn ccn 22283  Compccmp 22445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-cn 22286  df-cnp 22287  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-xms 23381  df-ms 23382  df-tms 23383
This theorem is referenced by:  stoweidlem61  43492
  Copyright terms: Public domain W3C validator