Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem60 Structured version   Visualization version   GIF version

Theorem stoweidlem60 43143
Description: This lemma proves that there exists a function g as in the proof in [BrosowskiDeutsh] p. 91 (this parte of the proof actually spans through pages 91-92): g is in the subalgebra, and for all 𝑡 in 𝑇, there is a 𝑗 such that (j-4/3)*ε < f(t) <= (j-1/3)*ε and (j-4/3)*ε < g(t) < (j+1/3)*ε. Here 𝐹 is used to represent f in the paper, and 𝐸 is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem60.1 𝑡𝐹
stoweidlem60.2 𝑡𝜑
stoweidlem60.3 𝐾 = (topGen‘ran (,))
stoweidlem60.4 𝑇 = 𝐽
stoweidlem60.5 𝐶 = (𝐽 Cn 𝐾)
stoweidlem60.6 𝐷 = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
stoweidlem60.7 𝐵 = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
stoweidlem60.8 (𝜑𝐽 ∈ Comp)
stoweidlem60.9 (𝜑𝑇 ≠ ∅)
stoweidlem60.10 (𝜑𝐴𝐶)
stoweidlem60.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem60.12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem60.13 ((𝜑𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
stoweidlem60.14 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem60.15 (𝜑𝐹𝐶)
stoweidlem60.16 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐹𝑡))
stoweidlem60.17 (𝜑𝐸 ∈ ℝ+)
stoweidlem60.18 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem60 (𝜑 → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
Distinct variable groups:   𝑓,𝑔,𝑗,𝑛,𝑡,𝐴,𝑞,𝑟   𝑦,𝑓,𝑗,𝑛,𝑞,𝑟,𝑡,𝐴   𝐵,𝑓,𝑔   𝐷,𝑓,𝑔   𝑓,𝐸,𝑔,𝑗,𝑛,𝑡   𝑓,𝐽,𝑔,𝑟,𝑡   𝑇,𝑓,𝑔,𝑗,𝑛,𝑡   𝜑,𝑓,𝑔,𝑗,𝑛   𝑔,𝐹,𝑗,𝑛   𝐵,𝑞,𝑟,𝑦   𝐷,𝑞,𝑟,𝑦   𝑇,𝑞,𝑟,𝑦   𝜑,𝑞,𝑟,𝑦   𝐸,𝑟,𝑦   𝑡,𝐾
Allowed substitution hints:   𝜑(𝑡)   𝐵(𝑡,𝑗,𝑛)   𝐶(𝑦,𝑡,𝑓,𝑔,𝑗,𝑛,𝑟,𝑞)   𝐷(𝑡,𝑗,𝑛)   𝐸(𝑞)   𝐹(𝑦,𝑡,𝑓,𝑟,𝑞)   𝐽(𝑦,𝑗,𝑛,𝑞)   𝐾(𝑦,𝑓,𝑔,𝑗,𝑛,𝑟,𝑞)

Proof of Theorem stoweidlem60
Dummy variables 𝑖 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnre 11723 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
21adantl 485 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
3 stoweidlem60.17 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ ℝ+)
43rpred 12514 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ)
54adantr 484 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝐸 ∈ ℝ)
63rpne0d 12519 . . . . . . . . . . . . 13 (𝜑𝐸 ≠ 0)
76adantr 484 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝐸 ≠ 0)
82, 5, 7redivcld 11546 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑚 / 𝐸) ∈ ℝ)
9 1red 10720 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 1 ∈ ℝ)
108, 9readdcld 10748 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑚 / 𝐸) + 1) ∈ ℝ)
1110adantr 484 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) → ((𝑚 / 𝐸) + 1) ∈ ℝ)
12 arch 11973 . . . . . . . . 9 (((𝑚 / 𝐸) + 1) ∈ ℝ → ∃𝑛 ∈ ℕ ((𝑚 / 𝐸) + 1) < 𝑛)
1311, 12syl 17 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) → ∃𝑛 ∈ ℕ ((𝑚 / 𝐸) + 1) < 𝑛)
14 stoweidlem60.2 . . . . . . . . . . . . . . 15 𝑡𝜑
15 nfv 1921 . . . . . . . . . . . . . . 15 𝑡 𝑚 ∈ ℕ
1614, 15nfan 1906 . . . . . . . . . . . . . 14 𝑡(𝜑𝑚 ∈ ℕ)
17 nfra1 3131 . . . . . . . . . . . . . 14 𝑡𝑡𝑇 (𝐹𝑡) < 𝑚
1816, 17nfan 1906 . . . . . . . . . . . . 13 𝑡((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚)
19 nfv 1921 . . . . . . . . . . . . 13 𝑡 𝑛 ∈ ℕ
2018, 19nfan 1906 . . . . . . . . . . . 12 𝑡(((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ)
21 nfv 1921 . . . . . . . . . . . 12 𝑡((𝑚 / 𝐸) + 1) < 𝑛
2220, 21nfan 1906 . . . . . . . . . . 11 𝑡((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛)
23 simp-5l 785 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝜑)
24 stoweidlem60.3 . . . . . . . . . . . . . . . 16 𝐾 = (topGen‘ran (,))
25 stoweidlem60.4 . . . . . . . . . . . . . . . 16 𝑇 = 𝐽
26 stoweidlem60.5 . . . . . . . . . . . . . . . 16 𝐶 = (𝐽 Cn 𝐾)
27 stoweidlem60.15 . . . . . . . . . . . . . . . 16 (𝜑𝐹𝐶)
2824, 25, 26, 27fcnre 42106 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑇⟶ℝ)
2928ffvelrnda 6861 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
3023, 29sylancom 591 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
31 simp-5r 786 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑚 ∈ ℕ)
3231nnred 11731 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑚 ∈ ℝ)
33 simpllr 776 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑛 ∈ ℕ)
3433nnred 11731 . . . . . . . . . . . . . . 15 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑛 ∈ ℝ)
35 1red 10720 . . . . . . . . . . . . . . 15 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 1 ∈ ℝ)
3634, 35resubcld 11146 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → (𝑛 − 1) ∈ ℝ)
3723, 4syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝐸 ∈ ℝ)
3836, 37remulcld 10749 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → ((𝑛 − 1) · 𝐸) ∈ ℝ)
39 simpllr 776 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → ∀𝑡𝑇 (𝐹𝑡) < 𝑚)
4039r19.21bi 3121 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → (𝐹𝑡) < 𝑚)
41 simplr 769 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → ((𝑚 / 𝐸) + 1) < 𝑛)
42 simpr 488 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → ((𝑚 / 𝐸) + 1) < 𝑛)
43 simpl1 1192 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝜑)
44 simpl2 1193 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑚 ∈ ℕ)
4543, 44, 8syl2anc 587 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (𝑚 / 𝐸) ∈ ℝ)
46 1red 10720 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 1 ∈ ℝ)
47 simpl3 1194 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑛 ∈ ℕ)
4847nnred 11731 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑛 ∈ ℝ)
4945, 46, 48ltaddsubd 11318 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (((𝑚 / 𝐸) + 1) < 𝑛 ↔ (𝑚 / 𝐸) < (𝑛 − 1)))
5042, 49mpbid 235 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (𝑚 / 𝐸) < (𝑛 − 1))
5113ad2ant2 1135 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℝ)
5251adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑚 ∈ ℝ)
5348, 46resubcld 11146 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (𝑛 − 1) ∈ ℝ)
5443ad2ant1 1134 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝐸 ∈ ℝ)
5554adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝐸 ∈ ℝ)
563rpgt0d 12517 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 𝐸)
5743, 56syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 0 < 𝐸)
58 ltdivmul2 11595 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℝ ∧ (𝑛 − 1) ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → ((𝑚 / 𝐸) < (𝑛 − 1) ↔ 𝑚 < ((𝑛 − 1) · 𝐸)))
5952, 53, 55, 57, 58syl112anc 1375 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → ((𝑚 / 𝐸) < (𝑛 − 1) ↔ 𝑚 < ((𝑛 − 1) · 𝐸)))
6050, 59mpbid 235 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑚 < ((𝑛 − 1) · 𝐸))
6123, 31, 33, 41, 60syl31anc 1374 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑚 < ((𝑛 − 1) · 𝐸))
6230, 32, 38, 40, 61lttrd 10879 . . . . . . . . . . . 12 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
6362ex 416 . . . . . . . . . . 11 (((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (𝑡𝑇 → (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
6422, 63ralrimi 3128 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
6564ex 416 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) → (((𝑚 / 𝐸) + 1) < 𝑛 → ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
6665reximdva 3184 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) → (∃𝑛 ∈ ℕ ((𝑚 / 𝐸) + 1) < 𝑛 → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
6713, 66mpd 15 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
68 stoweidlem60.1 . . . . . . . 8 𝑡𝐹
69 stoweidlem60.8 . . . . . . . 8 (𝜑𝐽 ∈ Comp)
70 stoweidlem60.9 . . . . . . . 8 (𝜑𝑇 ≠ ∅)
7168, 14, 24, 69, 25, 70, 26, 27rfcnnnub 42117 . . . . . . 7 (𝜑 → ∃𝑚 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < 𝑚)
7267, 71r19.29a 3199 . . . . . 6 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
73 df-rex 3059 . . . . . 6 (∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸) ↔ ∃𝑛(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
7472, 73sylib 221 . . . . 5 (𝜑 → ∃𝑛(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
75 simpr 488 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))) → (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
7614, 19nfan 1906 . . . . . . . . . . 11 𝑡(𝜑𝑛 ∈ ℕ)
77 stoweidlem60.6 . . . . . . . . . . 11 𝐷 = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
78 stoweidlem60.7 . . . . . . . . . . 11 𝐵 = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
79 eqid 2738 . . . . . . . . . . 11 {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)} = {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)}
80 eqid 2738 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑛) ↦ {𝑦 ∈ {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)} ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < (𝑦𝑡))}) = (𝑗 ∈ (0...𝑛) ↦ {𝑦 ∈ {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)} ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < (𝑦𝑡))})
8169adantr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐽 ∈ Comp)
82 stoweidlem60.10 . . . . . . . . . . . 12 (𝜑𝐴𝐶)
8382adantr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐴𝐶)
84 stoweidlem60.11 . . . . . . . . . . . 12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
85843adant1r 1178 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
86 stoweidlem60.12 . . . . . . . . . . . 12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
87863adant1r 1178 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
88 stoweidlem60.13 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
8988adantlr 715 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
90 stoweidlem60.14 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
9190adantlr 715 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
9227adantr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐹𝐶)
933adantr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐸 ∈ ℝ+)
94 stoweidlem60.18 . . . . . . . . . . . 12 (𝜑𝐸 < (1 / 3))
9594adantr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐸 < (1 / 3))
96 simpr 488 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
9768, 76, 24, 25, 26, 77, 78, 79, 80, 81, 83, 85, 87, 89, 91, 92, 93, 95, 96stoweidlem59 43142 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ∃𝑥(𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
9897adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))) → ∃𝑥(𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
99 19.42v 1961 . . . . . . . . 9 (∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ (𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ↔ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ ∃𝑥(𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
10075, 98, 99sylanbrc 586 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))) → ∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ (𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
101 3anass 1096 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))) ↔ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ (𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
102101exbii 1854 . . . . . . . 8 (∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))) ↔ ∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ (𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
103100, 102sylibr 237 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))) → ∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
104103ex 416 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) → ∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
105104eximdv 1924 . . . . 5 (𝜑 → (∃𝑛(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) → ∃𝑛𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
10674, 105mpd 15 . . . 4 (𝜑 → ∃𝑛𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
107 simpl 486 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝜑)
108 simpr1l 1231 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝑛 ∈ ℕ)
109 simpr2 1196 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝑥:(0...𝑛)⟶𝐴)
110 nfv 1921 . . . . . . . . . 10 𝑡 𝑥:(0...𝑛)⟶𝐴
11114, 19, 110nf3an 1908 . . . . . . . . 9 𝑡(𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴)
112 simp2 1138 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝑛 ∈ ℕ)
113 simp3 1139 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝑥:(0...𝑛)⟶𝐴)
114 simp1 1137 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝜑)
115114, 84syl3an1 1164 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
116114, 86syl3an1 1164 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
117883ad2antl1 1186 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) ∧ 𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
11833ad2ant1 1134 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝐸 ∈ ℝ+)
119118rpred 12514 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝐸 ∈ ℝ)
12082sselda 3877 . . . . . . . . . . 11 ((𝜑𝑓𝐴) → 𝑓𝐶)
12124, 25, 26, 120fcnre 42106 . . . . . . . . . 10 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
1221213ad2antl1 1186 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
123111, 112, 113, 115, 116, 117, 119, 122stoweidlem17 43100 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) ∈ 𝐴)
124107, 108, 109, 123syl3anc 1372 . . . . . . 7 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) ∈ 𝐴)
125 nfv 1921 . . . . . . . . 9 𝑗𝜑
126 nfv 1921 . . . . . . . . . 10 𝑗(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
127 nfv 1921 . . . . . . . . . 10 𝑗 𝑥:(0...𝑛)⟶𝐴
128 nfra1 3131 . . . . . . . . . 10 𝑗𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
129126, 127, 128nf3an 1908 . . . . . . . . 9 𝑗((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
130125, 129nfan 1906 . . . . . . . 8 𝑗(𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
131 nfra1 3131 . . . . . . . . . . 11 𝑡𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)
13219, 131nfan 1906 . . . . . . . . . 10 𝑡(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
133 nfcv 2899 . . . . . . . . . . 11 𝑡(0...𝑛)
134 nfra1 3131 . . . . . . . . . . . 12 𝑡𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1)
135 nfra1 3131 . . . . . . . . . . . 12 𝑡𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛)
136 nfra1 3131 . . . . . . . . . . . 12 𝑡𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)
137134, 135, 136nf3an 1908 . . . . . . . . . . 11 𝑡(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
138133, 137nfralw 3138 . . . . . . . . . 10 𝑡𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
139132, 110, 138nf3an 1908 . . . . . . . . 9 𝑡((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
14014, 139nfan 1906 . . . . . . . 8 𝑡(𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
141 eqid 2738 . . . . . . . 8 (𝑡𝑇 ↦ {𝑗 ∈ (1...𝑛) ∣ 𝑡 ∈ (𝐷𝑗)}) = (𝑡𝑇 ↦ {𝑗 ∈ (1...𝑛) ∣ 𝑡 ∈ (𝐷𝑗)})
14269uniexd 7486 . . . . . . . . . 10 (𝜑 𝐽 ∈ V)
14325, 142eqeltrid 2837 . . . . . . . . 9 (𝜑𝑇 ∈ V)
144143adantr 484 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝑇 ∈ V)
14528adantr 484 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝐹:𝑇⟶ℝ)
146 stoweidlem60.16 . . . . . . . . . 10 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐹𝑡))
147146r19.21bi 3121 . . . . . . . . 9 ((𝜑𝑡𝑇) → 0 ≤ (𝐹𝑡))
148147adantlr 715 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑡𝑇) → 0 ≤ (𝐹𝑡))
149 simpr1r 1232 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
150149r19.21bi 3121 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑡𝑇) → (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
1513adantr 484 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝐸 ∈ ℝ+)
15294adantr 484 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝐸 < (1 / 3))
153 simpll 767 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛)) → 𝜑)
154 simplr2 1217 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛)) → 𝑥:(0...𝑛)⟶𝐴)
155 simpr 488 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛)) → 𝑗 ∈ (0...𝑛))
156 simp1 1137 . . . . . . . . . 10 ((𝜑𝑥:(0...𝑛)⟶𝐴𝑗 ∈ (0...𝑛)) → 𝜑)
157 ffvelrn 6859 . . . . . . . . . . 11 ((𝑥:(0...𝑛)⟶𝐴𝑗 ∈ (0...𝑛)) → (𝑥𝑗) ∈ 𝐴)
1581573adant1 1131 . . . . . . . . . 10 ((𝜑𝑥:(0...𝑛)⟶𝐴𝑗 ∈ (0...𝑛)) → (𝑥𝑗) ∈ 𝐴)
15982sselda 3877 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑗) ∈ 𝐴) → (𝑥𝑗) ∈ 𝐶)
16024, 25, 26, 159fcnre 42106 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑗) ∈ 𝐴) → (𝑥𝑗):𝑇⟶ℝ)
161156, 158, 160syl2anc 587 . . . . . . . . 9 ((𝜑𝑥:(0...𝑛)⟶𝐴𝑗 ∈ (0...𝑛)) → (𝑥𝑗):𝑇⟶ℝ)
162153, 154, 155, 161syl3anc 1372 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛)) → (𝑥𝑗):𝑇⟶ℝ)
163 simp1r3 1272 . . . . . . . . . 10 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
164 r19.26-3 3086 . . . . . . . . . . 11 (∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)) ↔ (∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
165164simp1bi 1146 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1))
166 simpl 486 . . . . . . . . . . 11 ((0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) → 0 ≤ ((𝑥𝑗)‘𝑡))
1671662ralimi 3076 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡))
168163, 165, 1673syl 18 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡))
169 simp2 1138 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → 𝑗 ∈ (0...𝑛))
170 simp3 1139 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → 𝑡𝑇)
171 rspa 3119 . . . . . . . . . 10 ((∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡) ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡))
172171r19.21bi 3121 . . . . . . . . 9 (((∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡) ∧ 𝑗 ∈ (0...𝑛)) ∧ 𝑡𝑇) → 0 ≤ ((𝑥𝑗)‘𝑡))
173168, 169, 170, 172syl21anc 837 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → 0 ≤ ((𝑥𝑗)‘𝑡))
174 simpr 488 . . . . . . . . . . 11 ((0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) → ((𝑥𝑗)‘𝑡) ≤ 1)
1751742ralimi 3076 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1)
176163, 165, 1753syl 18 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1)
177 rspa 3119 . . . . . . . . . 10 ((∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1 ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1)
178177r19.21bi 3121 . . . . . . . . 9 (((∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1 ∧ 𝑗 ∈ (0...𝑛)) ∧ 𝑡𝑇) → ((𝑥𝑗)‘𝑡) ≤ 1)
179176, 169, 170, 178syl21anc 837 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → ((𝑥𝑗)‘𝑡) ≤ 1)
180 simp1r3 1272 . . . . . . . . . 10 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
181164simp2bi 1147 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)) → ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
182180, 181syl 17 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
183 simp2 1138 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → 𝑗 ∈ (0...𝑛))
184 simp3 1139 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → 𝑡 ∈ (𝐷𝑗))
185 rspa 3119 . . . . . . . . . 10 ((∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
186185r19.21bi 3121 . . . . . . . . 9 (((∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ 𝑗 ∈ (0...𝑛)) ∧ 𝑡 ∈ (𝐷𝑗)) → ((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
187182, 183, 184, 186syl21anc 837 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → ((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
188 simp1r3 1272 . . . . . . . . . 10 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
189164simp3bi 1148 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)) → ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
190188, 189syl 17 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
191 simp2 1138 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → 𝑗 ∈ (0...𝑛))
192 simp3 1139 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → 𝑡 ∈ (𝐵𝑗))
193 rspa 3119 . . . . . . . . . 10 ((∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡) ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
194193r19.21bi 3121 . . . . . . . . 9 (((∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡) ∧ 𝑗 ∈ (0...𝑛)) ∧ 𝑡 ∈ (𝐵𝑗)) → (1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
195190, 191, 192, 194syl21anc 837 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → (1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
19668, 130, 140, 77, 78, 141, 108, 144, 145, 148, 150, 151, 152, 162, 173, 179, 187, 195stoweidlem34 43117 . . . . . . 7 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → ∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡))))
197 nfmpt1 5128 . . . . . . . . . 10 𝑡(𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))
198197nfeq2 2916 . . . . . . . . 9 𝑡 𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))
199 fveq1 6673 . . . . . . . . . . . . 13 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (𝑔𝑡) = ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡))
200199breq1d 5040 . . . . . . . . . . . 12 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ↔ ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸)))
201199breq2d 5042 . . . . . . . . . . . 12 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡) ↔ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))
202200, 201anbi12d 634 . . . . . . . . . . 11 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)) ↔ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡))))
203202anbi2d 632 . . . . . . . . . 10 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) ↔ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))))
204203rexbidv 3207 . . . . . . . . 9 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) ↔ ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))))
205198, 204ralbid 3145 . . . . . . . 8 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) ↔ ∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))))
206205rspcev 3526 . . . . . . 7 (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) ∈ 𝐴 ∧ ∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
207124, 196, 206syl2anc 587 . . . . . 6 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
208207ex 416 . . . . 5 (𝜑 → (((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
2092082eximdv 1926 . . . 4 (𝜑 → (∃𝑛𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))) → ∃𝑛𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
210106, 209mpd 15 . . 3 (𝜑 → ∃𝑛𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
211 idd 24 . . . 4 (𝜑 → (∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
212211exlimdv 1940 . . 3 (𝜑 → (∃𝑛𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
213210, 212mpd 15 . 2 (𝜑 → ∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
214 idd 24 . . 3 (𝜑 → (∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
215214exlimdv 1940 . 2 (𝜑 → (∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
216213, 215mpd 15 1 (𝜑 → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wex 1786  wnf 1790  wcel 2114  wnfc 2879  wne 2934  wral 3053  wrex 3054  {crab 3057  Vcvv 3398  wss 3843  c0 4211   cuni 4796   class class class wbr 5030  cmpt 5110  ran crn 5526  wf 6335  cfv 6339  (class class class)co 7170  cr 10614  0cc0 10615  1c1 10616   + caddc 10618   · cmul 10620   < clt 10753  cle 10754  cmin 10948   / cdiv 11375  cn 11716  3c3 11772  4c4 11773  +crp 12472  (,)cioo 12821  ...cfz 12981  Σcsu 15135  topGenctg 16814   Cn ccn 21975  Compccmp 22137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693  ax-mulf 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-supp 7857  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-2o 8132  df-er 8320  df-map 8439  df-pm 8440  df-ixp 8508  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fsupp 8907  df-fi 8948  df-sup 8979  df-inf 8980  df-oi 9047  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-dec 12180  df-uz 12325  df-q 12431  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-ioo 12825  df-ioc 12826  df-ico 12827  df-icc 12828  df-fz 12982  df-fzo 13125  df-fl 13253  df-seq 13461  df-exp 13522  df-hash 13783  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-clim 14935  df-rlim 14936  df-sum 15136  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-starv 16683  df-sca 16684  df-vsca 16685  df-ip 16686  df-tset 16687  df-ple 16688  df-ds 16690  df-unif 16691  df-hom 16692  df-cco 16693  df-rest 16799  df-topn 16800  df-0g 16818  df-gsum 16819  df-topgen 16820  df-pt 16821  df-prds 16824  df-xrs 16878  df-qtop 16883  df-imas 16884  df-xps 16886  df-mre 16960  df-mrc 16961  df-acs 16963  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-submnd 18073  df-mulg 18343  df-cntz 18565  df-cmn 19026  df-psmet 20209  df-xmet 20210  df-met 20211  df-bl 20212  df-mopn 20213  df-cnfld 20218  df-top 21645  df-topon 21662  df-topsp 21684  df-bases 21697  df-cld 21770  df-cn 21978  df-cnp 21979  df-cmp 22138  df-tx 22313  df-hmeo 22506  df-xms 23073  df-ms 23074  df-tms 23075
This theorem is referenced by:  stoweidlem61  43144
  Copyright terms: Public domain W3C validator