Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem60 Structured version   Visualization version   GIF version

Theorem stoweidlem60 46157
Description: This lemma proves that there exists a function g as in the proof in [BrosowskiDeutsh] p. 91 (this parte of the proof actually spans through pages 91-92): g is in the subalgebra, and for all 𝑡 in 𝑇, there is a 𝑗 such that (j-4/3)*ε < f(t) <= (j-1/3)*ε and (j-4/3)*ε < g(t) < (j+1/3)*ε. Here 𝐹 is used to represent f in the paper, and 𝐸 is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem60.1 𝑡𝐹
stoweidlem60.2 𝑡𝜑
stoweidlem60.3 𝐾 = (topGen‘ran (,))
stoweidlem60.4 𝑇 = 𝐽
stoweidlem60.5 𝐶 = (𝐽 Cn 𝐾)
stoweidlem60.6 𝐷 = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
stoweidlem60.7 𝐵 = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
stoweidlem60.8 (𝜑𝐽 ∈ Comp)
stoweidlem60.9 (𝜑𝑇 ≠ ∅)
stoweidlem60.10 (𝜑𝐴𝐶)
stoweidlem60.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem60.12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem60.13 ((𝜑𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
stoweidlem60.14 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem60.15 (𝜑𝐹𝐶)
stoweidlem60.16 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐹𝑡))
stoweidlem60.17 (𝜑𝐸 ∈ ℝ+)
stoweidlem60.18 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem60 (𝜑 → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
Distinct variable groups:   𝑓,𝑔,𝑗,𝑛,𝑡,𝐴,𝑞,𝑟   𝑦,𝑓,𝑗,𝑛,𝑞,𝑟,𝑡,𝐴   𝐵,𝑓,𝑔   𝐷,𝑓,𝑔   𝑓,𝐸,𝑔,𝑗,𝑛,𝑡   𝑓,𝐽,𝑔,𝑟,𝑡   𝑇,𝑓,𝑔,𝑗,𝑛,𝑡   𝜑,𝑓,𝑔,𝑗,𝑛   𝑔,𝐹,𝑗,𝑛   𝐵,𝑞,𝑟,𝑦   𝐷,𝑞,𝑟,𝑦   𝑇,𝑞,𝑟,𝑦   𝜑,𝑞,𝑟,𝑦   𝐸,𝑟,𝑦   𝑡,𝐾
Allowed substitution hints:   𝜑(𝑡)   𝐵(𝑡,𝑗,𝑛)   𝐶(𝑦,𝑡,𝑓,𝑔,𝑗,𝑛,𝑟,𝑞)   𝐷(𝑡,𝑗,𝑛)   𝐸(𝑞)   𝐹(𝑦,𝑡,𝑓,𝑟,𝑞)   𝐽(𝑦,𝑗,𝑛,𝑞)   𝐾(𝑦,𝑓,𝑔,𝑗,𝑛,𝑟,𝑞)

Proof of Theorem stoweidlem60
Dummy variables 𝑖 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnre 12132 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
21adantl 481 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
3 stoweidlem60.17 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ ℝ+)
43rpred 12934 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ)
54adantr 480 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝐸 ∈ ℝ)
63rpne0d 12939 . . . . . . . . . . . . 13 (𝜑𝐸 ≠ 0)
76adantr 480 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝐸 ≠ 0)
82, 5, 7redivcld 11949 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑚 / 𝐸) ∈ ℝ)
9 1red 11113 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 1 ∈ ℝ)
108, 9readdcld 11141 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑚 / 𝐸) + 1) ∈ ℝ)
1110adantr 480 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) → ((𝑚 / 𝐸) + 1) ∈ ℝ)
12 arch 12378 . . . . . . . . 9 (((𝑚 / 𝐸) + 1) ∈ ℝ → ∃𝑛 ∈ ℕ ((𝑚 / 𝐸) + 1) < 𝑛)
1311, 12syl 17 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) → ∃𝑛 ∈ ℕ ((𝑚 / 𝐸) + 1) < 𝑛)
14 stoweidlem60.2 . . . . . . . . . . . . . . 15 𝑡𝜑
15 nfv 1915 . . . . . . . . . . . . . . 15 𝑡 𝑚 ∈ ℕ
1614, 15nfan 1900 . . . . . . . . . . . . . 14 𝑡(𝜑𝑚 ∈ ℕ)
17 nfra1 3256 . . . . . . . . . . . . . 14 𝑡𝑡𝑇 (𝐹𝑡) < 𝑚
1816, 17nfan 1900 . . . . . . . . . . . . 13 𝑡((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚)
19 nfv 1915 . . . . . . . . . . . . 13 𝑡 𝑛 ∈ ℕ
2018, 19nfan 1900 . . . . . . . . . . . 12 𝑡(((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ)
21 nfv 1915 . . . . . . . . . . . 12 𝑡((𝑚 / 𝐸) + 1) < 𝑛
2220, 21nfan 1900 . . . . . . . . . . 11 𝑡((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛)
23 simp-5l 784 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝜑)
24 stoweidlem60.3 . . . . . . . . . . . . . . . 16 𝐾 = (topGen‘ran (,))
25 stoweidlem60.4 . . . . . . . . . . . . . . . 16 𝑇 = 𝐽
26 stoweidlem60.5 . . . . . . . . . . . . . . . 16 𝐶 = (𝐽 Cn 𝐾)
27 stoweidlem60.15 . . . . . . . . . . . . . . . 16 (𝜑𝐹𝐶)
2824, 25, 26, 27fcnre 45121 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑇⟶ℝ)
2928ffvelcdmda 7017 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
3023, 29sylancom 588 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
31 simp-5r 785 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑚 ∈ ℕ)
3231nnred 12140 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑚 ∈ ℝ)
33 simpllr 775 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑛 ∈ ℕ)
3433nnred 12140 . . . . . . . . . . . . . . 15 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑛 ∈ ℝ)
35 1red 11113 . . . . . . . . . . . . . . 15 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 1 ∈ ℝ)
3634, 35resubcld 11545 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → (𝑛 − 1) ∈ ℝ)
3723, 4syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝐸 ∈ ℝ)
3836, 37remulcld 11142 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → ((𝑛 − 1) · 𝐸) ∈ ℝ)
39 simpllr 775 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → ∀𝑡𝑇 (𝐹𝑡) < 𝑚)
4039r19.21bi 3224 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → (𝐹𝑡) < 𝑚)
41 simplr 768 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → ((𝑚 / 𝐸) + 1) < 𝑛)
42 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → ((𝑚 / 𝐸) + 1) < 𝑛)
43 simpl1 1192 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝜑)
44 simpl2 1193 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑚 ∈ ℕ)
4543, 44, 8syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (𝑚 / 𝐸) ∈ ℝ)
46 1red 11113 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 1 ∈ ℝ)
47 simpl3 1194 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑛 ∈ ℕ)
4847nnred 12140 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑛 ∈ ℝ)
4945, 46, 48ltaddsubd 11717 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (((𝑚 / 𝐸) + 1) < 𝑛 ↔ (𝑚 / 𝐸) < (𝑛 − 1)))
5042, 49mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (𝑚 / 𝐸) < (𝑛 − 1))
5113ad2ant2 1134 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℝ)
5251adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑚 ∈ ℝ)
5348, 46resubcld 11545 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (𝑛 − 1) ∈ ℝ)
5443ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝐸 ∈ ℝ)
5554adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝐸 ∈ ℝ)
563rpgt0d 12937 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 𝐸)
5743, 56syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 0 < 𝐸)
58 ltdivmul2 11999 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℝ ∧ (𝑛 − 1) ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → ((𝑚 / 𝐸) < (𝑛 − 1) ↔ 𝑚 < ((𝑛 − 1) · 𝐸)))
5952, 53, 55, 57, 58syl112anc 1376 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → ((𝑚 / 𝐸) < (𝑛 − 1) ↔ 𝑚 < ((𝑛 − 1) · 𝐸)))
6050, 59mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑚 < ((𝑛 − 1) · 𝐸))
6123, 31, 33, 41, 60syl31anc 1375 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑚 < ((𝑛 − 1) · 𝐸))
6230, 32, 38, 40, 61lttrd 11274 . . . . . . . . . . . 12 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
6362ex 412 . . . . . . . . . . 11 (((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (𝑡𝑇 → (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
6422, 63ralrimi 3230 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
6564ex 412 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) → (((𝑚 / 𝐸) + 1) < 𝑛 → ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
6665reximdva 3145 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) → (∃𝑛 ∈ ℕ ((𝑚 / 𝐸) + 1) < 𝑛 → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
6713, 66mpd 15 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
68 stoweidlem60.1 . . . . . . . 8 𝑡𝐹
69 stoweidlem60.8 . . . . . . . 8 (𝜑𝐽 ∈ Comp)
70 stoweidlem60.9 . . . . . . . 8 (𝜑𝑇 ≠ ∅)
7168, 14, 24, 69, 25, 70, 26, 27rfcnnnub 45132 . . . . . . 7 (𝜑 → ∃𝑚 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < 𝑚)
7267, 71r19.29a 3140 . . . . . 6 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
73 df-rex 3057 . . . . . 6 (∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸) ↔ ∃𝑛(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
7472, 73sylib 218 . . . . 5 (𝜑 → ∃𝑛(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
75 simpr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))) → (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
7614, 19nfan 1900 . . . . . . . . . . 11 𝑡(𝜑𝑛 ∈ ℕ)
77 stoweidlem60.6 . . . . . . . . . . 11 𝐷 = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
78 stoweidlem60.7 . . . . . . . . . . 11 𝐵 = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
79 eqid 2731 . . . . . . . . . . 11 {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)} = {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)}
80 eqid 2731 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑛) ↦ {𝑦 ∈ {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)} ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < (𝑦𝑡))}) = (𝑗 ∈ (0...𝑛) ↦ {𝑦 ∈ {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)} ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < (𝑦𝑡))})
8169adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐽 ∈ Comp)
82 stoweidlem60.10 . . . . . . . . . . . 12 (𝜑𝐴𝐶)
8382adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐴𝐶)
84 stoweidlem60.11 . . . . . . . . . . . 12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
85843adant1r 1178 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
86 stoweidlem60.12 . . . . . . . . . . . 12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
87863adant1r 1178 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
88 stoweidlem60.13 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
8988adantlr 715 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
90 stoweidlem60.14 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
9190adantlr 715 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
9227adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐹𝐶)
933adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐸 ∈ ℝ+)
94 stoweidlem60.18 . . . . . . . . . . . 12 (𝜑𝐸 < (1 / 3))
9594adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐸 < (1 / 3))
96 simpr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
9768, 76, 24, 25, 26, 77, 78, 79, 80, 81, 83, 85, 87, 89, 91, 92, 93, 95, 96stoweidlem59 46156 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ∃𝑥(𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
9897adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))) → ∃𝑥(𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
99 19.42v 1954 . . . . . . . . 9 (∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ (𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ↔ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ ∃𝑥(𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
10075, 98, 99sylanbrc 583 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))) → ∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ (𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
101 3anass 1094 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))) ↔ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ (𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
102101exbii 1849 . . . . . . . 8 (∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))) ↔ ∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ (𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
103100, 102sylibr 234 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))) → ∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
104103ex 412 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) → ∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
105104eximdv 1918 . . . . 5 (𝜑 → (∃𝑛(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) → ∃𝑛𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
10674, 105mpd 15 . . . 4 (𝜑 → ∃𝑛𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
107 simpl 482 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝜑)
108 simpr1l 1231 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝑛 ∈ ℕ)
109 simpr2 1196 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝑥:(0...𝑛)⟶𝐴)
110 nfv 1915 . . . . . . . . . 10 𝑡 𝑥:(0...𝑛)⟶𝐴
11114, 19, 110nf3an 1902 . . . . . . . . 9 𝑡(𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴)
112 simp2 1137 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝑛 ∈ ℕ)
113 simp3 1138 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝑥:(0...𝑛)⟶𝐴)
114 simp1 1136 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝜑)
115114, 84syl3an1 1163 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
116114, 86syl3an1 1163 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
117883ad2antl1 1186 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) ∧ 𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
11833ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝐸 ∈ ℝ+)
119118rpred 12934 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝐸 ∈ ℝ)
12082sselda 3929 . . . . . . . . . . 11 ((𝜑𝑓𝐴) → 𝑓𝐶)
12124, 25, 26, 120fcnre 45121 . . . . . . . . . 10 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
1221213ad2antl1 1186 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
123111, 112, 113, 115, 116, 117, 119, 122stoweidlem17 46114 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) ∈ 𝐴)
124107, 108, 109, 123syl3anc 1373 . . . . . . 7 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) ∈ 𝐴)
125 nfv 1915 . . . . . . . . 9 𝑗𝜑
126 nfv 1915 . . . . . . . . . 10 𝑗(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
127 nfv 1915 . . . . . . . . . 10 𝑗 𝑥:(0...𝑛)⟶𝐴
128 nfra1 3256 . . . . . . . . . 10 𝑗𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
129126, 127, 128nf3an 1902 . . . . . . . . 9 𝑗((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
130125, 129nfan 1900 . . . . . . . 8 𝑗(𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
131 nfra1 3256 . . . . . . . . . . 11 𝑡𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)
13219, 131nfan 1900 . . . . . . . . . 10 𝑡(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
133 nfcv 2894 . . . . . . . . . . 11 𝑡(0...𝑛)
134 nfra1 3256 . . . . . . . . . . . 12 𝑡𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1)
135 nfra1 3256 . . . . . . . . . . . 12 𝑡𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛)
136 nfra1 3256 . . . . . . . . . . . 12 𝑡𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)
137134, 135, 136nf3an 1902 . . . . . . . . . . 11 𝑡(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
138133, 137nfralw 3279 . . . . . . . . . 10 𝑡𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
139132, 110, 138nf3an 1902 . . . . . . . . 9 𝑡((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
14014, 139nfan 1900 . . . . . . . 8 𝑡(𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
141 eqid 2731 . . . . . . . 8 (𝑡𝑇 ↦ {𝑗 ∈ (1...𝑛) ∣ 𝑡 ∈ (𝐷𝑗)}) = (𝑡𝑇 ↦ {𝑗 ∈ (1...𝑛) ∣ 𝑡 ∈ (𝐷𝑗)})
14269uniexd 7675 . . . . . . . . . 10 (𝜑 𝐽 ∈ V)
14325, 142eqeltrid 2835 . . . . . . . . 9 (𝜑𝑇 ∈ V)
144143adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝑇 ∈ V)
14528adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝐹:𝑇⟶ℝ)
146 stoweidlem60.16 . . . . . . . . . 10 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐹𝑡))
147146r19.21bi 3224 . . . . . . . . 9 ((𝜑𝑡𝑇) → 0 ≤ (𝐹𝑡))
148147adantlr 715 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑡𝑇) → 0 ≤ (𝐹𝑡))
149 simpr1r 1232 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
150149r19.21bi 3224 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑡𝑇) → (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
1513adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝐸 ∈ ℝ+)
15294adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝐸 < (1 / 3))
153 simpll 766 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛)) → 𝜑)
154 simplr2 1217 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛)) → 𝑥:(0...𝑛)⟶𝐴)
155 simpr 484 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛)) → 𝑗 ∈ (0...𝑛))
156 simp1 1136 . . . . . . . . . 10 ((𝜑𝑥:(0...𝑛)⟶𝐴𝑗 ∈ (0...𝑛)) → 𝜑)
157 ffvelcdm 7014 . . . . . . . . . . 11 ((𝑥:(0...𝑛)⟶𝐴𝑗 ∈ (0...𝑛)) → (𝑥𝑗) ∈ 𝐴)
1581573adant1 1130 . . . . . . . . . 10 ((𝜑𝑥:(0...𝑛)⟶𝐴𝑗 ∈ (0...𝑛)) → (𝑥𝑗) ∈ 𝐴)
15982sselda 3929 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑗) ∈ 𝐴) → (𝑥𝑗) ∈ 𝐶)
16024, 25, 26, 159fcnre 45121 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑗) ∈ 𝐴) → (𝑥𝑗):𝑇⟶ℝ)
161156, 158, 160syl2anc 584 . . . . . . . . 9 ((𝜑𝑥:(0...𝑛)⟶𝐴𝑗 ∈ (0...𝑛)) → (𝑥𝑗):𝑇⟶ℝ)
162153, 154, 155, 161syl3anc 1373 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛)) → (𝑥𝑗):𝑇⟶ℝ)
163 simp1r3 1272 . . . . . . . . . 10 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
164 r19.26-3 3093 . . . . . . . . . . 11 (∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)) ↔ (∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
165164simp1bi 1145 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1))
166 simpl 482 . . . . . . . . . . 11 ((0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) → 0 ≤ ((𝑥𝑗)‘𝑡))
1671662ralimi 3102 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡))
168163, 165, 1673syl 18 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡))
169 simp2 1137 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → 𝑗 ∈ (0...𝑛))
170 simp3 1138 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → 𝑡𝑇)
171 rspa 3221 . . . . . . . . . 10 ((∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡) ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡))
172171r19.21bi 3224 . . . . . . . . 9 (((∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡) ∧ 𝑗 ∈ (0...𝑛)) ∧ 𝑡𝑇) → 0 ≤ ((𝑥𝑗)‘𝑡))
173168, 169, 170, 172syl21anc 837 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → 0 ≤ ((𝑥𝑗)‘𝑡))
174 simpr 484 . . . . . . . . . . 11 ((0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) → ((𝑥𝑗)‘𝑡) ≤ 1)
1751742ralimi 3102 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1)
176163, 165, 1753syl 18 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1)
177 rspa 3221 . . . . . . . . . 10 ((∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1 ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1)
178177r19.21bi 3224 . . . . . . . . 9 (((∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1 ∧ 𝑗 ∈ (0...𝑛)) ∧ 𝑡𝑇) → ((𝑥𝑗)‘𝑡) ≤ 1)
179176, 169, 170, 178syl21anc 837 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → ((𝑥𝑗)‘𝑡) ≤ 1)
180 simp1r3 1272 . . . . . . . . . 10 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
181164simp2bi 1146 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)) → ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
182180, 181syl 17 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
183 simp2 1137 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → 𝑗 ∈ (0...𝑛))
184 simp3 1138 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → 𝑡 ∈ (𝐷𝑗))
185 rspa 3221 . . . . . . . . . 10 ((∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
186185r19.21bi 3224 . . . . . . . . 9 (((∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ 𝑗 ∈ (0...𝑛)) ∧ 𝑡 ∈ (𝐷𝑗)) → ((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
187182, 183, 184, 186syl21anc 837 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → ((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
188 simp1r3 1272 . . . . . . . . . 10 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
189164simp3bi 1147 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)) → ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
190188, 189syl 17 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
191 simp2 1137 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → 𝑗 ∈ (0...𝑛))
192 simp3 1138 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → 𝑡 ∈ (𝐵𝑗))
193 rspa 3221 . . . . . . . . . 10 ((∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡) ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
194193r19.21bi 3224 . . . . . . . . 9 (((∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡) ∧ 𝑗 ∈ (0...𝑛)) ∧ 𝑡 ∈ (𝐵𝑗)) → (1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
195190, 191, 192, 194syl21anc 837 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → (1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
19668, 130, 140, 77, 78, 141, 108, 144, 145, 148, 150, 151, 152, 162, 173, 179, 187, 195stoweidlem34 46131 . . . . . . 7 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → ∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡))))
197 nfmpt1 5188 . . . . . . . . . 10 𝑡(𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))
198197nfeq2 2912 . . . . . . . . 9 𝑡 𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))
199 fveq1 6821 . . . . . . . . . . . . 13 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (𝑔𝑡) = ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡))
200199breq1d 5099 . . . . . . . . . . . 12 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ↔ ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸)))
201199breq2d 5101 . . . . . . . . . . . 12 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡) ↔ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))
202200, 201anbi12d 632 . . . . . . . . . . 11 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)) ↔ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡))))
203202anbi2d 630 . . . . . . . . . 10 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) ↔ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))))
204203rexbidv 3156 . . . . . . . . 9 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) ↔ ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))))
205198, 204ralbid 3245 . . . . . . . 8 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) ↔ ∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))))
206205rspcev 3572 . . . . . . 7 (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) ∈ 𝐴 ∧ ∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
207124, 196, 206syl2anc 584 . . . . . 6 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
208207ex 412 . . . . 5 (𝜑 → (((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
2092082eximdv 1920 . . . 4 (𝜑 → (∃𝑛𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))) → ∃𝑛𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
210106, 209mpd 15 . . 3 (𝜑 → ∃𝑛𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
211 idd 24 . . . 4 (𝜑 → (∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
212211exlimdv 1934 . . 3 (𝜑 → (∃𝑛𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
213210, 212mpd 15 . 2 (𝜑 → ∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
214 idd 24 . . 3 (𝜑 → (∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
215214exlimdv 1934 . 2 (𝜑 → (∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
216213, 215mpd 15 1 (𝜑 → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wnf 1784  wcel 2111  wnfc 2879  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  c0 4280   cuni 4856   class class class wbr 5089  cmpt 5170  ran crn 5615  wf 6477  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  3c3 12181  4c4 12182  +crp 12890  (,)cioo 13245  ...cfz 13407  Σcsu 15593  topGenctg 17341   Cn ccn 23139  Compccmp 23301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-cn 23142  df-cnp 23143  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-xms 24235  df-ms 24236  df-tms 24237
This theorem is referenced by:  stoweidlem61  46158
  Copyright terms: Public domain W3C validator