MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axeuclid Structured version   Visualization version   GIF version

Theorem axeuclid 26755
Description: Euclid's axiom. Take an angle 𝐵𝐴𝐶 and a point 𝐷 between 𝐵 and 𝐶. Now, if you extend the segment 𝐴𝐷 to a point 𝑇, then 𝑇 lies between two points 𝑥 and 𝑦 that lie on the angle. Axiom A10 of [Schwabhauser] p. 13. (Contributed by Scott Fenton, 9-Sep-2013.)
Assertion
Ref Expression
axeuclid ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝑇⟩ ∧ 𝐷 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐴𝐷) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑦⟩ ∧ 𝑇 Btwn ⟨𝑥, 𝑦⟩)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑁,𝑦   𝑥,𝑇,𝑦

Proof of Theorem axeuclid
Dummy variables 𝑖 𝑝 𝑞 𝑟 𝑠 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl21 1248 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → 𝐴 ∈ (𝔼‘𝑁))
2 simpl22 1249 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → 𝐵 ∈ (𝔼‘𝑁))
31, 2jca 515 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
4 simpl23 1250 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → 𝐶 ∈ (𝔼‘𝑁))
5 simpl3r 1226 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → 𝑇 ∈ (𝔼‘𝑁))
64, 5jca 515 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁)))
7 simprll 778 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → 𝑝 ∈ (0[,]1))
8 simprlr 779 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → 𝑞 ∈ (0[,]1))
9 simp21 1203 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
109ad2antrr 725 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) → 𝐴 ∈ (𝔼‘𝑁))
11 fveecn 26694 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
1210, 11sylan 583 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
13 simp3r 1199 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → 𝑇 ∈ (𝔼‘𝑁))
1413ad2antrr 725 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) → 𝑇 ∈ (𝔼‘𝑁))
15 fveecn 26694 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑇𝑖) ∈ ℂ)
1614, 15sylan 583 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → (𝑇𝑖) ∈ ℂ)
17 mulid2 10629 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑖) ∈ ℂ → (1 · (𝐴𝑖)) = (𝐴𝑖))
18 mul02 10807 . . . . . . . . . . . . . . . . . . 19 ((𝑇𝑖) ∈ ℂ → (0 · (𝑇𝑖)) = 0)
1917, 18oveqan12d 7159 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ) → ((1 · (𝐴𝑖)) + (0 · (𝑇𝑖))) = ((𝐴𝑖) + 0))
20 addid1 10809 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑖) ∈ ℂ → ((𝐴𝑖) + 0) = (𝐴𝑖))
2120adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ) → ((𝐴𝑖) + 0) = (𝐴𝑖))
2219, 21eqtrd 2857 . . . . . . . . . . . . . . . . 17 (((𝐴𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ) → ((1 · (𝐴𝑖)) + (0 · (𝑇𝑖))) = (𝐴𝑖))
2312, 16, 22syl2anc 587 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → ((1 · (𝐴𝑖)) + (0 · (𝑇𝑖))) = (𝐴𝑖))
24 oveq2 7148 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 0 → (1 − 𝑝) = (1 − 0))
25 1m0e1 11746 . . . . . . . . . . . . . . . . . . . . 21 (1 − 0) = 1
2624, 25syl6eq 2873 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = 0 → (1 − 𝑝) = 1)
2726oveq1d 7155 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 0 → ((1 − 𝑝) · (𝐴𝑖)) = (1 · (𝐴𝑖)))
28 oveq1 7147 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 0 → (𝑝 · (𝑇𝑖)) = (0 · (𝑇𝑖)))
2927, 28oveq12d 7158 . . . . . . . . . . . . . . . . . 18 (𝑝 = 0 → (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = ((1 · (𝐴𝑖)) + (0 · (𝑇𝑖))))
3029eqeq1d 2824 . . . . . . . . . . . . . . . . 17 (𝑝 = 0 → ((((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (𝐴𝑖) ↔ ((1 · (𝐴𝑖)) + (0 · (𝑇𝑖))) = (𝐴𝑖)))
3130ad2antlr 726 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (𝐴𝑖) ↔ ((1 · (𝐴𝑖)) + (0 · (𝑇𝑖))) = (𝐴𝑖)))
3223, 31mpbird 260 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (𝐴𝑖))
3332eqeq2d 2833 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ↔ (𝐷𝑖) = (𝐴𝑖)))
34 eqcom 2829 . . . . . . . . . . . . . 14 ((𝐷𝑖) = (𝐴𝑖) ↔ (𝐴𝑖) = (𝐷𝑖))
3533, 34syl6bb 290 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ↔ (𝐴𝑖) = (𝐷𝑖)))
3635biimpd 232 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) → (𝐴𝑖) = (𝐷𝑖)))
3736adantrd 495 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) → (𝐴𝑖) = (𝐷𝑖)))
3837ralimdva 3169 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) → (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) → ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐷𝑖)))
3938impancom 455 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))) → (𝑝 = 0 → ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐷𝑖)))
409ad2antrr 725 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))) → 𝐴 ∈ (𝔼‘𝑁))
41 simp3l 1198 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
4241ad2antrr 725 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))) → 𝐷 ∈ (𝔼‘𝑁))
43 eqeefv 26695 . . . . . . . . . 10 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐷 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐷𝑖)))
4440, 42, 43syl2anc 587 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))) → (𝐴 = 𝐷 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐷𝑖)))
4539, 44sylibrd 262 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))) → (𝑝 = 0 → 𝐴 = 𝐷))
4645necon3d 3032 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))) → (𝐴𝐷𝑝 ≠ 0))
4746impr 458 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷)) → 𝑝 ≠ 0)
4847anasss 470 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → 𝑝 ≠ 0)
49 eqtr2 2843 . . . . . . . 8 (((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) → (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))
5049ralimi 3152 . . . . . . 7 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) → ∀𝑖 ∈ (1...𝑁)(((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))
5150adantr 484 . . . . . 6 ((∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷) → ∀𝑖 ∈ (1...𝑁)(((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))
5251ad2antll 728 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → ∀𝑖 ∈ (1...𝑁)(((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))
53 axeuclidlem 26754 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1) ∧ 𝑝 ≠ 0) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
543, 6, 7, 8, 48, 52, 53syl231anc 1387 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
5554exp32 424 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) → ((∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))))
5655rexlimdvv 3279 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → (∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖))))))
57 brbtwn 26691 . . . . 5 ((𝐷 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁)) → (𝐷 Btwn ⟨𝐴, 𝑇⟩ ↔ ∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖)))))
5841, 9, 13, 57syl3anc 1368 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → (𝐷 Btwn ⟨𝐴, 𝑇⟩ ↔ ∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖)))))
59 simp22 1204 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
60 simp23 1205 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
61 brbtwn 26691 . . . . 5 ((𝐷 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐷 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))))
6241, 59, 60, 61syl3anc 1368 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → (𝐷 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))))
6358, 623anbi12d 1434 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝑇⟩ ∧ 𝐷 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐴𝐷) ↔ (∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))) ∧ 𝐴𝐷)))
64 r19.26 3162 . . . . . . 7 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))))
65642rexbii 3236 . . . . . 6 (∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ↔ ∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))))
66 reeanv 3348 . . . . . 6 (∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ↔ (∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))))
6765, 66bitri 278 . . . . 5 (∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ↔ (∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))))
6867anbi1i 626 . . . 4 ((∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷) ↔ ((∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))
69 r19.41vv 3330 . . . 4 (∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷) ↔ (∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))
70 df-3an 1086 . . . 4 ((∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))) ∧ 𝐴𝐷) ↔ ((∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))
7168, 69, 703bitr4i 306 . . 3 (∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷) ↔ (∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))) ∧ 𝐴𝐷))
7263, 71syl6bbr 292 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝑇⟩ ∧ 𝐷 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐴𝐷) ↔ ∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷)))
73 simpl22 1249 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
74 simpl21 1248 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
75 simprl 770 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝑥 ∈ (𝔼‘𝑁))
76 brbtwn 26691 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ↔ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖)))))
7773, 74, 75, 76syl3anc 1368 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ↔ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖)))))
78 simpl23 1250 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
79 simprr 772 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝑦 ∈ (𝔼‘𝑁))
80 brbtwn 26691 . . . . . 6 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝐶 Btwn ⟨𝐴, 𝑦⟩ ↔ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖)))))
8178, 74, 79, 80syl3anc 1368 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝑦⟩ ↔ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖)))))
82 simpl3r 1226 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝑇 ∈ (𝔼‘𝑁))
83 brbtwn 26691 . . . . . 6 ((𝑇 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝑇 Btwn ⟨𝑥, 𝑦⟩ ↔ ∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
8482, 75, 79, 83syl3anc 1368 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (𝑇 Btwn ⟨𝑥, 𝑦⟩ ↔ ∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
8577, 81, 843anbi123d 1433 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑦⟩ ∧ 𝑇 Btwn ⟨𝑥, 𝑦⟩) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ ∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖))))))
86 r19.26-3 3164 . . . . . . 7 (∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
8786rexbii 3235 . . . . . 6 (∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑢 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
88872rexbii 3236 . . . . 5 (∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
89 3reeanv 3349 . . . . 5 (∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ ∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
9088, 89bitri 278 . . . 4 (∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ ∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
9185, 90syl6bbr 292 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑦⟩ ∧ 𝑇 Btwn ⟨𝑥, 𝑦⟩) ↔ ∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖))))))
92912rexbidva 3285 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → (∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑦⟩ ∧ 𝑇 Btwn ⟨𝑥, 𝑦⟩) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖))))))
9356, 72, 923imtr4d 297 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝑇⟩ ∧ 𝐷 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐴𝐷) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑦⟩ ∧ 𝑇 Btwn ⟨𝑥, 𝑦⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114  wne 3011  wral 3130  wrex 3131  cop 4545   class class class wbr 5042  cfv 6334  (class class class)co 7140  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859  cn 11625  [,]cicc 12729  ...cfz 12885  𝔼cee 26680   Btwn cbtwn 26681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-z 11970  df-uz 12232  df-icc 12733  df-fz 12886  df-ee 26683  df-btwn 26684
This theorem is referenced by:  eengtrkge  26779
  Copyright terms: Public domain W3C validator