MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axeuclid Structured version   Visualization version   GIF version

Theorem axeuclid 26442
Description: Euclid's axiom. Take an angle 𝐵𝐴𝐶 and a point 𝐷 between 𝐵 and 𝐶. Now, if you extend the segment 𝐴𝐷 to a point 𝑇, then 𝑇 lies between two points 𝑥 and 𝑦 that lie on the angle. Axiom A10 of [Schwabhauser] p. 13. (Contributed by Scott Fenton, 9-Sep-2013.)
Assertion
Ref Expression
axeuclid ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝑇⟩ ∧ 𝐷 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐴𝐷) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑦⟩ ∧ 𝑇 Btwn ⟨𝑥, 𝑦⟩)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑁,𝑦   𝑥,𝑇,𝑦

Proof of Theorem axeuclid
Dummy variables 𝑖 𝑝 𝑞 𝑟 𝑠 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl21 1231 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → 𝐴 ∈ (𝔼‘𝑁))
2 simpl22 1232 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → 𝐵 ∈ (𝔼‘𝑁))
31, 2jca 504 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
4 simpl23 1233 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → 𝐶 ∈ (𝔼‘𝑁))
5 simpl3r 1209 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → 𝑇 ∈ (𝔼‘𝑁))
64, 5jca 504 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁)))
7 simprll 766 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → 𝑝 ∈ (0[,]1))
8 simprlr 767 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → 𝑞 ∈ (0[,]1))
9 simp21 1186 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
109ad2antrr 713 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) → 𝐴 ∈ (𝔼‘𝑁))
11 fveecn 26381 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
1210, 11sylan 572 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
13 simp3r 1182 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → 𝑇 ∈ (𝔼‘𝑁))
1413ad2antrr 713 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) → 𝑇 ∈ (𝔼‘𝑁))
15 fveecn 26381 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑇𝑖) ∈ ℂ)
1614, 15sylan 572 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → (𝑇𝑖) ∈ ℂ)
17 mulid2 10430 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑖) ∈ ℂ → (1 · (𝐴𝑖)) = (𝐴𝑖))
18 mul02 10610 . . . . . . . . . . . . . . . . . . 19 ((𝑇𝑖) ∈ ℂ → (0 · (𝑇𝑖)) = 0)
1917, 18oveqan12d 6989 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ) → ((1 · (𝐴𝑖)) + (0 · (𝑇𝑖))) = ((𝐴𝑖) + 0))
20 addid1 10612 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑖) ∈ ℂ → ((𝐴𝑖) + 0) = (𝐴𝑖))
2120adantr 473 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ) → ((𝐴𝑖) + 0) = (𝐴𝑖))
2219, 21eqtrd 2808 . . . . . . . . . . . . . . . . 17 (((𝐴𝑖) ∈ ℂ ∧ (𝑇𝑖) ∈ ℂ) → ((1 · (𝐴𝑖)) + (0 · (𝑇𝑖))) = (𝐴𝑖))
2312, 16, 22syl2anc 576 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → ((1 · (𝐴𝑖)) + (0 · (𝑇𝑖))) = (𝐴𝑖))
24 oveq2 6978 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 0 → (1 − 𝑝) = (1 − 0))
25 1m0e1 11561 . . . . . . . . . . . . . . . . . . . . 21 (1 − 0) = 1
2624, 25syl6eq 2824 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = 0 → (1 − 𝑝) = 1)
2726oveq1d 6985 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 0 → ((1 − 𝑝) · (𝐴𝑖)) = (1 · (𝐴𝑖)))
28 oveq1 6977 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 0 → (𝑝 · (𝑇𝑖)) = (0 · (𝑇𝑖)))
2927, 28oveq12d 6988 . . . . . . . . . . . . . . . . . 18 (𝑝 = 0 → (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = ((1 · (𝐴𝑖)) + (0 · (𝑇𝑖))))
3029eqeq1d 2774 . . . . . . . . . . . . . . . . 17 (𝑝 = 0 → ((((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (𝐴𝑖) ↔ ((1 · (𝐴𝑖)) + (0 · (𝑇𝑖))) = (𝐴𝑖)))
3130ad2antlr 714 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (𝐴𝑖) ↔ ((1 · (𝐴𝑖)) + (0 · (𝑇𝑖))) = (𝐴𝑖)))
3223, 31mpbird 249 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (𝐴𝑖))
3332eqeq2d 2782 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ↔ (𝐷𝑖) = (𝐴𝑖)))
34 eqcom 2779 . . . . . . . . . . . . . 14 ((𝐷𝑖) = (𝐴𝑖) ↔ (𝐴𝑖) = (𝐷𝑖))
3533, 34syl6bb 279 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ↔ (𝐴𝑖) = (𝐷𝑖)))
3635biimpd 221 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) → (𝐴𝑖) = (𝐷𝑖)))
3736adantrd 484 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) → (𝐴𝑖) = (𝐷𝑖)))
3837ralimdva 3121 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑝 = 0) → (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) → ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐷𝑖)))
3938impancom 444 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))) → (𝑝 = 0 → ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐷𝑖)))
409ad2antrr 713 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))) → 𝐴 ∈ (𝔼‘𝑁))
41 simp3l 1181 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
4241ad2antrr 713 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))) → 𝐷 ∈ (𝔼‘𝑁))
43 eqeefv 26382 . . . . . . . . . 10 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐷 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐷𝑖)))
4440, 42, 43syl2anc 576 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))) → (𝐴 = 𝐷 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐷𝑖)))
4539, 44sylibrd 251 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))) → (𝑝 = 0 → 𝐴 = 𝐷))
4645necon3d 2982 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ ∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))) → (𝐴𝐷𝑝 ≠ 0))
4746impr 447 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷)) → 𝑝 ≠ 0)
4847anasss 459 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → 𝑝 ≠ 0)
49 eqtr2 2794 . . . . . . . 8 (((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) → (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))
5049ralimi 3104 . . . . . . 7 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) → ∀𝑖 ∈ (1...𝑁)(((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))
5150adantr 473 . . . . . 6 ((∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷) → ∀𝑖 ∈ (1...𝑁)(((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))
5251ad2antll 716 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → ∀𝑖 ∈ (1...𝑁)(((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))))
53 axeuclidlem 26441 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1) ∧ 𝑝 ≠ 0) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
543, 6, 7, 8, 48, 52, 53syl231anc 1370 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
5554exp32 413 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → ((𝑝 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) → ((∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))))
5655rexlimdvv 3232 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → (∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖))))))
57 brbtwn 26378 . . . . 5 ((𝐷 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁)) → (𝐷 Btwn ⟨𝐴, 𝑇⟩ ↔ ∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖)))))
5841, 9, 13, 57syl3anc 1351 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → (𝐷 Btwn ⟨𝐴, 𝑇⟩ ↔ ∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖)))))
59 simp22 1187 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
60 simp23 1188 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
61 brbtwn 26378 . . . . 5 ((𝐷 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐷 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))))
6241, 59, 60, 61syl3anc 1351 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → (𝐷 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))))
6358, 623anbi12d 1416 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝑇⟩ ∧ 𝐷 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐴𝐷) ↔ (∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))) ∧ 𝐴𝐷)))
64 r19.26 3114 . . . . . . 7 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))))
65642rexbii 3189 . . . . . 6 (∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ↔ ∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))))
66 reeanv 3302 . . . . . 6 (∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ↔ (∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))))
6765, 66bitri 267 . . . . 5 (∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ↔ (∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))))
6867anbi1i 614 . . . 4 ((∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷) ↔ ((∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))
69 r19.41vv 3284 . . . 4 (∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷) ↔ (∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))
70 df-3an 1070 . . . 4 ((∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))) ∧ 𝐴𝐷) ↔ ((∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷))
7168, 69, 703bitr4i 295 . . 3 (∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷) ↔ (∃𝑝 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖))) ∧ 𝐴𝐷))
7263, 71syl6bbr 281 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝑇⟩ ∧ 𝐷 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐴𝐷) ↔ ∃𝑝 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑝) · (𝐴𝑖)) + (𝑝 · (𝑇𝑖))) ∧ (𝐷𝑖) = (((1 − 𝑞) · (𝐵𝑖)) + (𝑞 · (𝐶𝑖)))) ∧ 𝐴𝐷)))
73 simpl22 1232 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
74 simpl21 1231 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
75 simprl 758 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝑥 ∈ (𝔼‘𝑁))
76 brbtwn 26378 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ↔ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖)))))
7773, 74, 75, 76syl3anc 1351 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ↔ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖)))))
78 simpl23 1233 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
79 simprr 760 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝑦 ∈ (𝔼‘𝑁))
80 brbtwn 26378 . . . . . 6 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝐶 Btwn ⟨𝐴, 𝑦⟩ ↔ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖)))))
8178, 74, 79, 80syl3anc 1351 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝑦⟩ ↔ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖)))))
82 simpl3r 1209 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝑇 ∈ (𝔼‘𝑁))
83 brbtwn 26378 . . . . . 6 ((𝑇 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝑇 Btwn ⟨𝑥, 𝑦⟩ ↔ ∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
8482, 75, 79, 83syl3anc 1351 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (𝑇 Btwn ⟨𝑥, 𝑦⟩ ↔ ∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
8577, 81, 843anbi123d 1415 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑦⟩ ∧ 𝑇 Btwn ⟨𝑥, 𝑦⟩) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ ∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖))))))
86 r19.26-3 3116 . . . . . . 7 (∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
8786rexbii 3188 . . . . . 6 (∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑢 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
88872rexbii 3189 . . . . 5 (∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ ∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
89 3reeanv 3303 . . . . 5 (∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ ∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
9088, 89bitri 267 . . . 4 (∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ ∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
9185, 90syl6bbr 281 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑦⟩ ∧ 𝑇 Btwn ⟨𝑥, 𝑦⟩) ↔ ∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖))))))
92912rexbidva 3238 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → (∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑦⟩ ∧ 𝑇 Btwn ⟨𝑥, 𝑦⟩) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖))))))
9356, 72, 923imtr4d 286 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝑇⟩ ∧ 𝐷 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐴𝐷) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑦⟩ ∧ 𝑇 Btwn ⟨𝑥, 𝑦⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2048  wne 2961  wral 3082  wrex 3083  cop 4441   class class class wbr 4923  cfv 6182  (class class class)co 6970  cc 10325  0cc0 10327  1c1 10328   + caddc 10330   · cmul 10332  cmin 10662  cn 11431  [,]cicc 12550  ...cfz 12701  𝔼cee 26367   Btwn cbtwn 26368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-map 8200  df-en 8299  df-dom 8300  df-sdom 8301  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-z 11787  df-uz 12052  df-icc 12554  df-fz 12702  df-ee 26370  df-btwn 26371
This theorem is referenced by:  eengtrkge  26466
  Copyright terms: Public domain W3C validator