MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2rid2ex Structured version   Visualization version   GIF version

Theorem sgrp2rid2ex 18092
Description: A small semigroup (with two elements) with two right identities which are different. (Contributed by AV, 10-Feb-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
sgrp2nmnd.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
sgrp2nmnd.p = (+g𝑀)
Assertion
Ref Expression
sgrp2rid2ex ((♯‘𝑆) = 2 → ∃𝑥𝑆𝑧𝑆𝑦𝑆 (𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦))
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀   𝑥, ,𝑦   𝑧,𝐴   𝑧,𝐵   𝑧,𝑆   𝑧, ,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑦,𝑧)

Proof of Theorem sgrp2rid2ex
StepHypRef Expression
1 mgm2nsgrp.s . . 3 𝑆 = {𝐴, 𝐵}
21hashprdifel 13760 . 2 ((♯‘𝑆) = 2 → (𝐴𝑆𝐵𝑆𝐴𝐵))
3 simp1 1132 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐴𝑆)
4 simp2 1133 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐵𝑆)
5 simpl3 1189 . . . . 5 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝑦𝑆) → 𝐴𝐵)
65ralrimiva 3182 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑦𝑆 𝐴𝐵)
7 mgm2nsgrp.b . . . . . . 7 (Base‘𝑀) = 𝑆
8 sgrp2nmnd.o . . . . . . 7 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
9 sgrp2nmnd.p . . . . . . 7 = (+g𝑀)
101, 7, 8, 9sgrp2rid2 18091 . . . . . 6 ((𝐴𝑆𝐵𝑆) → ∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦)
11 oveq2 7164 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑦 𝑥) = (𝑦 𝐴))
1211eqeq1d 2823 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑦 𝑥) = 𝑦 ↔ (𝑦 𝐴) = 𝑦))
1312ralbidv 3197 . . . . . . . 8 (𝑥 = 𝐴 → (∀𝑦𝑆 (𝑦 𝑥) = 𝑦 ↔ ∀𝑦𝑆 (𝑦 𝐴) = 𝑦))
1413rspcv 3618 . . . . . . 7 (𝐴𝑆 → (∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦 → ∀𝑦𝑆 (𝑦 𝐴) = 𝑦))
1514adantr 483 . . . . . 6 ((𝐴𝑆𝐵𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦 → ∀𝑦𝑆 (𝑦 𝐴) = 𝑦))
1610, 15mpd 15 . . . . 5 ((𝐴𝑆𝐵𝑆) → ∀𝑦𝑆 (𝑦 𝐴) = 𝑦)
17163adant3 1128 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑦𝑆 (𝑦 𝐴) = 𝑦)
18 oveq2 7164 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝑦 𝑥) = (𝑦 𝐵))
1918eqeq1d 2823 . . . . . . . . 9 (𝑥 = 𝐵 → ((𝑦 𝑥) = 𝑦 ↔ (𝑦 𝐵) = 𝑦))
2019ralbidv 3197 . . . . . . . 8 (𝑥 = 𝐵 → (∀𝑦𝑆 (𝑦 𝑥) = 𝑦 ↔ ∀𝑦𝑆 (𝑦 𝐵) = 𝑦))
2120rspcv 3618 . . . . . . 7 (𝐵𝑆 → (∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦 → ∀𝑦𝑆 (𝑦 𝐵) = 𝑦))
2221adantl 484 . . . . . 6 ((𝐴𝑆𝐵𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦 → ∀𝑦𝑆 (𝑦 𝐵) = 𝑦))
2310, 22mpd 15 . . . . 5 ((𝐴𝑆𝐵𝑆) → ∀𝑦𝑆 (𝑦 𝐵) = 𝑦)
24233adant3 1128 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑦𝑆 (𝑦 𝐵) = 𝑦)
25 r19.26-3 3172 . . . 4 (∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦) ↔ (∀𝑦𝑆 𝐴𝐵 ∧ ∀𝑦𝑆 (𝑦 𝐴) = 𝑦 ∧ ∀𝑦𝑆 (𝑦 𝐵) = 𝑦))
266, 17, 24, 25syl3anbrc 1339 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦))
273, 4, 263jca 1124 . 2 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴𝑆𝐵𝑆 ∧ ∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦)))
28 neeq1 3078 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑧𝐴𝑧))
29 biidd 264 . . . . 5 (𝑥 = 𝐴 → ((𝑦 𝑧) = 𝑦 ↔ (𝑦 𝑧) = 𝑦))
3028, 12, 293anbi123d 1432 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦) ↔ (𝐴𝑧 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝑧) = 𝑦)))
3130ralbidv 3197 . . 3 (𝑥 = 𝐴 → (∀𝑦𝑆 (𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦) ↔ ∀𝑦𝑆 (𝐴𝑧 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝑧) = 𝑦)))
32 neeq2 3079 . . . . 5 (𝑧 = 𝐵 → (𝐴𝑧𝐴𝐵))
33 biidd 264 . . . . 5 (𝑧 = 𝐵 → ((𝑦 𝐴) = 𝑦 ↔ (𝑦 𝐴) = 𝑦))
34 oveq2 7164 . . . . . 6 (𝑧 = 𝐵 → (𝑦 𝑧) = (𝑦 𝐵))
3534eqeq1d 2823 . . . . 5 (𝑧 = 𝐵 → ((𝑦 𝑧) = 𝑦 ↔ (𝑦 𝐵) = 𝑦))
3632, 33, 353anbi123d 1432 . . . 4 (𝑧 = 𝐵 → ((𝐴𝑧 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝑧) = 𝑦) ↔ (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦)))
3736ralbidv 3197 . . 3 (𝑧 = 𝐵 → (∀𝑦𝑆 (𝐴𝑧 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝑧) = 𝑦) ↔ ∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦)))
3831, 37rspc2ev 3635 . 2 ((𝐴𝑆𝐵𝑆 ∧ ∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦)) → ∃𝑥𝑆𝑧𝑆𝑦𝑆 (𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦))
392, 27, 383syl 18 1 ((♯‘𝑆) = 2 → ∃𝑥𝑆𝑧𝑆𝑦𝑆 (𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  ifcif 4467  {cpr 4569  cfv 6355  (class class class)co 7156  cmpo 7158  2c2 11693  chash 13691  Basecbs 16483  +gcplusg 16565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-hash 13692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator