MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2rid2ex Structured version   Visualization version   GIF version

Theorem sgrp2rid2ex 18860
Description: A small semigroup (with two elements) with two right identities which are different. (Contributed by AV, 10-Feb-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
sgrp2nmnd.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
sgrp2nmnd.p = (+g𝑀)
Assertion
Ref Expression
sgrp2rid2ex ((♯‘𝑆) = 2 → ∃𝑥𝑆𝑧𝑆𝑦𝑆 (𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦))
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀   𝑥, ,𝑦   𝑧,𝐴   𝑧,𝐵   𝑧,𝑆   𝑧, ,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑦,𝑧)

Proof of Theorem sgrp2rid2ex
StepHypRef Expression
1 mgm2nsgrp.s . . 3 𝑆 = {𝐴, 𝐵}
21hashprdifel 14373 . 2 ((♯‘𝑆) = 2 → (𝐴𝑆𝐵𝑆𝐴𝐵))
3 simp1 1136 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐴𝑆)
4 simp2 1137 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐵𝑆)
5 simpl3 1194 . . . . 5 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝑦𝑆) → 𝐴𝐵)
65ralrimiva 3127 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑦𝑆 𝐴𝐵)
7 mgm2nsgrp.b . . . . . . 7 (Base‘𝑀) = 𝑆
8 sgrp2nmnd.o . . . . . . 7 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
9 sgrp2nmnd.p . . . . . . 7 = (+g𝑀)
101, 7, 8, 9sgrp2rid2 18859 . . . . . 6 ((𝐴𝑆𝐵𝑆) → ∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦)
11 oveq2 7402 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑦 𝑥) = (𝑦 𝐴))
1211eqeq1d 2732 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑦 𝑥) = 𝑦 ↔ (𝑦 𝐴) = 𝑦))
1312ralbidv 3158 . . . . . . . 8 (𝑥 = 𝐴 → (∀𝑦𝑆 (𝑦 𝑥) = 𝑦 ↔ ∀𝑦𝑆 (𝑦 𝐴) = 𝑦))
1413rspcv 3593 . . . . . . 7 (𝐴𝑆 → (∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦 → ∀𝑦𝑆 (𝑦 𝐴) = 𝑦))
1514adantr 480 . . . . . 6 ((𝐴𝑆𝐵𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦 → ∀𝑦𝑆 (𝑦 𝐴) = 𝑦))
1610, 15mpd 15 . . . . 5 ((𝐴𝑆𝐵𝑆) → ∀𝑦𝑆 (𝑦 𝐴) = 𝑦)
17163adant3 1132 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑦𝑆 (𝑦 𝐴) = 𝑦)
18 oveq2 7402 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝑦 𝑥) = (𝑦 𝐵))
1918eqeq1d 2732 . . . . . . . . 9 (𝑥 = 𝐵 → ((𝑦 𝑥) = 𝑦 ↔ (𝑦 𝐵) = 𝑦))
2019ralbidv 3158 . . . . . . . 8 (𝑥 = 𝐵 → (∀𝑦𝑆 (𝑦 𝑥) = 𝑦 ↔ ∀𝑦𝑆 (𝑦 𝐵) = 𝑦))
2120rspcv 3593 . . . . . . 7 (𝐵𝑆 → (∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦 → ∀𝑦𝑆 (𝑦 𝐵) = 𝑦))
2221adantl 481 . . . . . 6 ((𝐴𝑆𝐵𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦 → ∀𝑦𝑆 (𝑦 𝐵) = 𝑦))
2310, 22mpd 15 . . . . 5 ((𝐴𝑆𝐵𝑆) → ∀𝑦𝑆 (𝑦 𝐵) = 𝑦)
24233adant3 1132 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑦𝑆 (𝑦 𝐵) = 𝑦)
25 r19.26-3 3094 . . . 4 (∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦) ↔ (∀𝑦𝑆 𝐴𝐵 ∧ ∀𝑦𝑆 (𝑦 𝐴) = 𝑦 ∧ ∀𝑦𝑆 (𝑦 𝐵) = 𝑦))
266, 17, 24, 25syl3anbrc 1344 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦))
273, 4, 263jca 1128 . 2 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴𝑆𝐵𝑆 ∧ ∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦)))
28 neeq1 2989 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑧𝐴𝑧))
29 biidd 262 . . . . 5 (𝑥 = 𝐴 → ((𝑦 𝑧) = 𝑦 ↔ (𝑦 𝑧) = 𝑦))
3028, 12, 293anbi123d 1438 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦) ↔ (𝐴𝑧 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝑧) = 𝑦)))
3130ralbidv 3158 . . 3 (𝑥 = 𝐴 → (∀𝑦𝑆 (𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦) ↔ ∀𝑦𝑆 (𝐴𝑧 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝑧) = 𝑦)))
32 neeq2 2990 . . . . 5 (𝑧 = 𝐵 → (𝐴𝑧𝐴𝐵))
33 biidd 262 . . . . 5 (𝑧 = 𝐵 → ((𝑦 𝐴) = 𝑦 ↔ (𝑦 𝐴) = 𝑦))
34 oveq2 7402 . . . . . 6 (𝑧 = 𝐵 → (𝑦 𝑧) = (𝑦 𝐵))
3534eqeq1d 2732 . . . . 5 (𝑧 = 𝐵 → ((𝑦 𝑧) = 𝑦 ↔ (𝑦 𝐵) = 𝑦))
3632, 33, 353anbi123d 1438 . . . 4 (𝑧 = 𝐵 → ((𝐴𝑧 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝑧) = 𝑦) ↔ (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦)))
3736ralbidv 3158 . . 3 (𝑧 = 𝐵 → (∀𝑦𝑆 (𝐴𝑧 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝑧) = 𝑦) ↔ ∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦)))
3831, 37rspc2ev 3610 . 2 ((𝐴𝑆𝐵𝑆 ∧ ∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦)) → ∃𝑥𝑆𝑧𝑆𝑦𝑆 (𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦))
392, 27, 383syl 18 1 ((♯‘𝑆) = 2 → ∃𝑥𝑆𝑧𝑆𝑦𝑆 (𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2927  wral 3046  wrex 3055  ifcif 4496  {cpr 4599  cfv 6519  (class class class)co 7394  cmpo 7396  2c2 12252  chash 14305  Basecbs 17185  +gcplusg 17226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-oadd 8447  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-dju 9872  df-card 9910  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-n0 12459  df-z 12546  df-uz 12810  df-fz 13482  df-hash 14306
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator