MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2rid2ex Structured version   Visualization version   GIF version

Theorem sgrp2rid2ex 18642
Description: A small semigroup (with two elements) with two right identities which are different. (Contributed by AV, 10-Feb-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
sgrp2nmnd.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
sgrp2nmnd.p = (+g𝑀)
Assertion
Ref Expression
sgrp2rid2ex ((♯‘𝑆) = 2 → ∃𝑥𝑆𝑧𝑆𝑦𝑆 (𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦))
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀   𝑥, ,𝑦   𝑧,𝐴   𝑧,𝐵   𝑧,𝑆   𝑧, ,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑦,𝑧)

Proof of Theorem sgrp2rid2ex
StepHypRef Expression
1 mgm2nsgrp.s . . 3 𝑆 = {𝐴, 𝐵}
21hashprdifel 14192 . 2 ((♯‘𝑆) = 2 → (𝐴𝑆𝐵𝑆𝐴𝐵))
3 simp1 1135 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐴𝑆)
4 simp2 1136 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐵𝑆)
5 simpl3 1192 . . . . 5 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝑦𝑆) → 𝐴𝐵)
65ralrimiva 3140 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑦𝑆 𝐴𝐵)
7 mgm2nsgrp.b . . . . . . 7 (Base‘𝑀) = 𝑆
8 sgrp2nmnd.o . . . . . . 7 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
9 sgrp2nmnd.p . . . . . . 7 = (+g𝑀)
101, 7, 8, 9sgrp2rid2 18641 . . . . . 6 ((𝐴𝑆𝐵𝑆) → ∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦)
11 oveq2 7325 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑦 𝑥) = (𝑦 𝐴))
1211eqeq1d 2739 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑦 𝑥) = 𝑦 ↔ (𝑦 𝐴) = 𝑦))
1312ralbidv 3171 . . . . . . . 8 (𝑥 = 𝐴 → (∀𝑦𝑆 (𝑦 𝑥) = 𝑦 ↔ ∀𝑦𝑆 (𝑦 𝐴) = 𝑦))
1413rspcv 3566 . . . . . . 7 (𝐴𝑆 → (∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦 → ∀𝑦𝑆 (𝑦 𝐴) = 𝑦))
1514adantr 481 . . . . . 6 ((𝐴𝑆𝐵𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦 → ∀𝑦𝑆 (𝑦 𝐴) = 𝑦))
1610, 15mpd 15 . . . . 5 ((𝐴𝑆𝐵𝑆) → ∀𝑦𝑆 (𝑦 𝐴) = 𝑦)
17163adant3 1131 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑦𝑆 (𝑦 𝐴) = 𝑦)
18 oveq2 7325 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝑦 𝑥) = (𝑦 𝐵))
1918eqeq1d 2739 . . . . . . . . 9 (𝑥 = 𝐵 → ((𝑦 𝑥) = 𝑦 ↔ (𝑦 𝐵) = 𝑦))
2019ralbidv 3171 . . . . . . . 8 (𝑥 = 𝐵 → (∀𝑦𝑆 (𝑦 𝑥) = 𝑦 ↔ ∀𝑦𝑆 (𝑦 𝐵) = 𝑦))
2120rspcv 3566 . . . . . . 7 (𝐵𝑆 → (∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦 → ∀𝑦𝑆 (𝑦 𝐵) = 𝑦))
2221adantl 482 . . . . . 6 ((𝐴𝑆𝐵𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦 → ∀𝑦𝑆 (𝑦 𝐵) = 𝑦))
2310, 22mpd 15 . . . . 5 ((𝐴𝑆𝐵𝑆) → ∀𝑦𝑆 (𝑦 𝐵) = 𝑦)
24233adant3 1131 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑦𝑆 (𝑦 𝐵) = 𝑦)
25 r19.26-3 3112 . . . 4 (∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦) ↔ (∀𝑦𝑆 𝐴𝐵 ∧ ∀𝑦𝑆 (𝑦 𝐴) = 𝑦 ∧ ∀𝑦𝑆 (𝑦 𝐵) = 𝑦))
266, 17, 24, 25syl3anbrc 1342 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦))
273, 4, 263jca 1127 . 2 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴𝑆𝐵𝑆 ∧ ∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦)))
28 neeq1 3004 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑧𝐴𝑧))
29 biidd 261 . . . . 5 (𝑥 = 𝐴 → ((𝑦 𝑧) = 𝑦 ↔ (𝑦 𝑧) = 𝑦))
3028, 12, 293anbi123d 1435 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦) ↔ (𝐴𝑧 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝑧) = 𝑦)))
3130ralbidv 3171 . . 3 (𝑥 = 𝐴 → (∀𝑦𝑆 (𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦) ↔ ∀𝑦𝑆 (𝐴𝑧 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝑧) = 𝑦)))
32 neeq2 3005 . . . . 5 (𝑧 = 𝐵 → (𝐴𝑧𝐴𝐵))
33 biidd 261 . . . . 5 (𝑧 = 𝐵 → ((𝑦 𝐴) = 𝑦 ↔ (𝑦 𝐴) = 𝑦))
34 oveq2 7325 . . . . . 6 (𝑧 = 𝐵 → (𝑦 𝑧) = (𝑦 𝐵))
3534eqeq1d 2739 . . . . 5 (𝑧 = 𝐵 → ((𝑦 𝑧) = 𝑦 ↔ (𝑦 𝐵) = 𝑦))
3632, 33, 353anbi123d 1435 . . . 4 (𝑧 = 𝐵 → ((𝐴𝑧 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝑧) = 𝑦) ↔ (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦)))
3736ralbidv 3171 . . 3 (𝑧 = 𝐵 → (∀𝑦𝑆 (𝐴𝑧 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝑧) = 𝑦) ↔ ∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦)))
3831, 37rspc2ev 3581 . 2 ((𝐴𝑆𝐵𝑆 ∧ ∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦)) → ∃𝑥𝑆𝑧𝑆𝑦𝑆 (𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦))
392, 27, 383syl 18 1 ((♯‘𝑆) = 2 → ∃𝑥𝑆𝑧𝑆𝑦𝑆 (𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2941  wral 3062  wrex 3071  ifcif 4471  {cpr 4573  cfv 6466  (class class class)co 7317  cmpo 7319  2c2 12108  chash 14124  Basecbs 16989  +gcplusg 17039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-om 7760  df-1st 7878  df-2nd 7879  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-1o 8346  df-oadd 8350  df-er 8548  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-dju 9737  df-card 9775  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-nn 12054  df-2 12116  df-n0 12314  df-z 12400  df-uz 12663  df-fz 13320  df-hash 14125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator