Proof of Theorem sgrp2rid2ex
| Step | Hyp | Ref
 | Expression | 
| 1 |   | mgm2nsgrp.s | 
. . 3
⊢ 𝑆 = {𝐴, 𝐵} | 
| 2 | 1 | hashprdifel 14418 | 
. 2
⊢
((♯‘𝑆) =
2 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵)) | 
| 3 |   | simp1 1136 | 
. . 3
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝑆) | 
| 4 |   | simp2 1137 | 
. . 3
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑆) | 
| 5 |   | simpl3 1193 | 
. . . . 5
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝑦 ∈ 𝑆) → 𝐴 ≠ 𝐵) | 
| 6 | 5 | ralrimiva 3133 | 
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ∀𝑦 ∈ 𝑆 𝐴 ≠ 𝐵) | 
| 7 |   | mgm2nsgrp.b | 
. . . . . . 7
⊢
(Base‘𝑀) =
𝑆 | 
| 8 |   | sgrp2nmnd.o | 
. . . . . . 7
⊢
(+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) | 
| 9 |   | sgrp2nmnd.p | 
. . . . . . 7
⊢  ⚬ =
(+g‘𝑀) | 
| 10 | 1, 7, 8, 9 | sgrp2rid2 18907 | 
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝑥) = 𝑦) | 
| 11 |   | oveq2 7420 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (𝑦 ⚬ 𝑥) = (𝑦 ⚬ 𝐴)) | 
| 12 | 11 | eqeq1d 2736 | 
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → ((𝑦 ⚬ 𝑥) = 𝑦 ↔ (𝑦 ⚬ 𝐴) = 𝑦)) | 
| 13 | 12 | ralbidv 3165 | 
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝑥) = 𝑦 ↔ ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐴) = 𝑦)) | 
| 14 | 13 | rspcv 3601 | 
. . . . . . 7
⊢ (𝐴 ∈ 𝑆 → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝑥) = 𝑦 → ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐴) = 𝑦)) | 
| 15 | 14 | adantr 480 | 
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝑥) = 𝑦 → ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐴) = 𝑦)) | 
| 16 | 10, 15 | mpd 15 | 
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐴) = 𝑦) | 
| 17 | 16 | 3adant3 1132 | 
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐴) = 𝑦) | 
| 18 |   | oveq2 7420 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝐵 → (𝑦 ⚬ 𝑥) = (𝑦 ⚬ 𝐵)) | 
| 19 | 18 | eqeq1d 2736 | 
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → ((𝑦 ⚬ 𝑥) = 𝑦 ↔ (𝑦 ⚬ 𝐵) = 𝑦)) | 
| 20 | 19 | ralbidv 3165 | 
. . . . . . . 8
⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝑥) = 𝑦 ↔ ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐵) = 𝑦)) | 
| 21 | 20 | rspcv 3601 | 
. . . . . . 7
⊢ (𝐵 ∈ 𝑆 → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝑥) = 𝑦 → ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐵) = 𝑦)) | 
| 22 | 21 | adantl 481 | 
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝑥) = 𝑦 → ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐵) = 𝑦)) | 
| 23 | 10, 22 | mpd 15 | 
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐵) = 𝑦) | 
| 24 | 23 | 3adant3 1132 | 
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐵) = 𝑦) | 
| 25 |   | r19.26-3 3099 | 
. . . 4
⊢
(∀𝑦 ∈
𝑆 (𝐴 ≠ 𝐵 ∧ (𝑦 ⚬ 𝐴) = 𝑦 ∧ (𝑦 ⚬ 𝐵) = 𝑦) ↔ (∀𝑦 ∈ 𝑆 𝐴 ≠ 𝐵 ∧ ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐴) = 𝑦 ∧ ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐵) = 𝑦)) | 
| 26 | 6, 17, 24, 25 | syl3anbrc 1343 | 
. . 3
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ∀𝑦 ∈ 𝑆 (𝐴 ≠ 𝐵 ∧ (𝑦 ⚬ 𝐴) = 𝑦 ∧ (𝑦 ⚬ 𝐵) = 𝑦)) | 
| 27 | 3, 4, 26 | 3jca 1128 | 
. 2
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (𝐴 ≠ 𝐵 ∧ (𝑦 ⚬ 𝐴) = 𝑦 ∧ (𝑦 ⚬ 𝐵) = 𝑦))) | 
| 28 |   | neeq1 2993 | 
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥 ≠ 𝑧 ↔ 𝐴 ≠ 𝑧)) | 
| 29 |   | biidd 262 | 
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑦 ⚬ 𝑧) = 𝑦 ↔ (𝑦 ⚬ 𝑧) = 𝑦)) | 
| 30 | 28, 12, 29 | 3anbi123d 1437 | 
. . . 4
⊢ (𝑥 = 𝐴 → ((𝑥 ≠ 𝑧 ∧ (𝑦 ⚬ 𝑥) = 𝑦 ∧ (𝑦 ⚬ 𝑧) = 𝑦) ↔ (𝐴 ≠ 𝑧 ∧ (𝑦 ⚬ 𝐴) = 𝑦 ∧ (𝑦 ⚬ 𝑧) = 𝑦))) | 
| 31 | 30 | ralbidv 3165 | 
. . 3
⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝑆 (𝑥 ≠ 𝑧 ∧ (𝑦 ⚬ 𝑥) = 𝑦 ∧ (𝑦 ⚬ 𝑧) = 𝑦) ↔ ∀𝑦 ∈ 𝑆 (𝐴 ≠ 𝑧 ∧ (𝑦 ⚬ 𝐴) = 𝑦 ∧ (𝑦 ⚬ 𝑧) = 𝑦))) | 
| 32 |   | neeq2 2994 | 
. . . . 5
⊢ (𝑧 = 𝐵 → (𝐴 ≠ 𝑧 ↔ 𝐴 ≠ 𝐵)) | 
| 33 |   | biidd 262 | 
. . . . 5
⊢ (𝑧 = 𝐵 → ((𝑦 ⚬ 𝐴) = 𝑦 ↔ (𝑦 ⚬ 𝐴) = 𝑦)) | 
| 34 |   | oveq2 7420 | 
. . . . . 6
⊢ (𝑧 = 𝐵 → (𝑦 ⚬ 𝑧) = (𝑦 ⚬ 𝐵)) | 
| 35 | 34 | eqeq1d 2736 | 
. . . . 5
⊢ (𝑧 = 𝐵 → ((𝑦 ⚬ 𝑧) = 𝑦 ↔ (𝑦 ⚬ 𝐵) = 𝑦)) | 
| 36 | 32, 33, 35 | 3anbi123d 1437 | 
. . . 4
⊢ (𝑧 = 𝐵 → ((𝐴 ≠ 𝑧 ∧ (𝑦 ⚬ 𝐴) = 𝑦 ∧ (𝑦 ⚬ 𝑧) = 𝑦) ↔ (𝐴 ≠ 𝐵 ∧ (𝑦 ⚬ 𝐴) = 𝑦 ∧ (𝑦 ⚬ 𝐵) = 𝑦))) | 
| 37 | 36 | ralbidv 3165 | 
. . 3
⊢ (𝑧 = 𝐵 → (∀𝑦 ∈ 𝑆 (𝐴 ≠ 𝑧 ∧ (𝑦 ⚬ 𝐴) = 𝑦 ∧ (𝑦 ⚬ 𝑧) = 𝑦) ↔ ∀𝑦 ∈ 𝑆 (𝐴 ≠ 𝐵 ∧ (𝑦 ⚬ 𝐴) = 𝑦 ∧ (𝑦 ⚬ 𝐵) = 𝑦))) | 
| 38 | 31, 37 | rspc2ev 3618 | 
. 2
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (𝐴 ≠ 𝐵 ∧ (𝑦 ⚬ 𝐴) = 𝑦 ∧ (𝑦 ⚬ 𝐵) = 𝑦)) → ∃𝑥 ∈ 𝑆 ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ≠ 𝑧 ∧ (𝑦 ⚬ 𝑥) = 𝑦 ∧ (𝑦 ⚬ 𝑧) = 𝑦)) | 
| 39 | 2, 27, 38 | 3syl 18 | 
1
⊢
((♯‘𝑆) =
2 → ∃𝑥 ∈
𝑆 ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ≠ 𝑧 ∧ (𝑦 ⚬ 𝑥) = 𝑦 ∧ (𝑦 ⚬ 𝑧) = 𝑦)) |