Proof of Theorem sgrp2rid2ex
Step | Hyp | Ref
| Expression |
1 | | mgm2nsgrp.s |
. . 3
⊢ 𝑆 = {𝐴, 𝐵} |
2 | 1 | hashprdifel 14158 |
. 2
⊢
((♯‘𝑆) =
2 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵)) |
3 | | simp1 1136 |
. . 3
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝑆) |
4 | | simp2 1137 |
. . 3
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑆) |
5 | | simpl3 1193 |
. . . . 5
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ 𝑦 ∈ 𝑆) → 𝐴 ≠ 𝐵) |
6 | 5 | ralrimiva 3140 |
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ∀𝑦 ∈ 𝑆 𝐴 ≠ 𝐵) |
7 | | mgm2nsgrp.b |
. . . . . . 7
⊢
(Base‘𝑀) =
𝑆 |
8 | | sgrp2nmnd.o |
. . . . . . 7
⊢
(+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) |
9 | | sgrp2nmnd.p |
. . . . . . 7
⊢ ⚬ =
(+g‘𝑀) |
10 | 1, 7, 8, 9 | sgrp2rid2 18610 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝑥) = 𝑦) |
11 | | oveq2 7315 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (𝑦 ⚬ 𝑥) = (𝑦 ⚬ 𝐴)) |
12 | 11 | eqeq1d 2738 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → ((𝑦 ⚬ 𝑥) = 𝑦 ↔ (𝑦 ⚬ 𝐴) = 𝑦)) |
13 | 12 | ralbidv 3171 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝑥) = 𝑦 ↔ ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐴) = 𝑦)) |
14 | 13 | rspcv 3562 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑆 → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝑥) = 𝑦 → ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐴) = 𝑦)) |
15 | 14 | adantr 482 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝑥) = 𝑦 → ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐴) = 𝑦)) |
16 | 10, 15 | mpd 15 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐴) = 𝑦) |
17 | 16 | 3adant3 1132 |
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐴) = 𝑦) |
18 | | oveq2 7315 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐵 → (𝑦 ⚬ 𝑥) = (𝑦 ⚬ 𝐵)) |
19 | 18 | eqeq1d 2738 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → ((𝑦 ⚬ 𝑥) = 𝑦 ↔ (𝑦 ⚬ 𝐵) = 𝑦)) |
20 | 19 | ralbidv 3171 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝑥) = 𝑦 ↔ ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐵) = 𝑦)) |
21 | 20 | rspcv 3562 |
. . . . . . 7
⊢ (𝐵 ∈ 𝑆 → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝑥) = 𝑦 → ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐵) = 𝑦)) |
22 | 21 | adantl 483 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝑥) = 𝑦 → ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐵) = 𝑦)) |
23 | 10, 22 | mpd 15 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐵) = 𝑦) |
24 | 23 | 3adant3 1132 |
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐵) = 𝑦) |
25 | | r19.26-3 3112 |
. . . 4
⊢
(∀𝑦 ∈
𝑆 (𝐴 ≠ 𝐵 ∧ (𝑦 ⚬ 𝐴) = 𝑦 ∧ (𝑦 ⚬ 𝐵) = 𝑦) ↔ (∀𝑦 ∈ 𝑆 𝐴 ≠ 𝐵 ∧ ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐴) = 𝑦 ∧ ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝐵) = 𝑦)) |
26 | 6, 17, 24, 25 | syl3anbrc 1343 |
. . 3
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ∀𝑦 ∈ 𝑆 (𝐴 ≠ 𝐵 ∧ (𝑦 ⚬ 𝐴) = 𝑦 ∧ (𝑦 ⚬ 𝐵) = 𝑦)) |
27 | 3, 4, 26 | 3jca 1128 |
. 2
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (𝐴 ≠ 𝐵 ∧ (𝑦 ⚬ 𝐴) = 𝑦 ∧ (𝑦 ⚬ 𝐵) = 𝑦))) |
28 | | neeq1 3004 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥 ≠ 𝑧 ↔ 𝐴 ≠ 𝑧)) |
29 | | biidd 262 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑦 ⚬ 𝑧) = 𝑦 ↔ (𝑦 ⚬ 𝑧) = 𝑦)) |
30 | 28, 12, 29 | 3anbi123d 1436 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝑥 ≠ 𝑧 ∧ (𝑦 ⚬ 𝑥) = 𝑦 ∧ (𝑦 ⚬ 𝑧) = 𝑦) ↔ (𝐴 ≠ 𝑧 ∧ (𝑦 ⚬ 𝐴) = 𝑦 ∧ (𝑦 ⚬ 𝑧) = 𝑦))) |
31 | 30 | ralbidv 3171 |
. . 3
⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝑆 (𝑥 ≠ 𝑧 ∧ (𝑦 ⚬ 𝑥) = 𝑦 ∧ (𝑦 ⚬ 𝑧) = 𝑦) ↔ ∀𝑦 ∈ 𝑆 (𝐴 ≠ 𝑧 ∧ (𝑦 ⚬ 𝐴) = 𝑦 ∧ (𝑦 ⚬ 𝑧) = 𝑦))) |
32 | | neeq2 3005 |
. . . . 5
⊢ (𝑧 = 𝐵 → (𝐴 ≠ 𝑧 ↔ 𝐴 ≠ 𝐵)) |
33 | | biidd 262 |
. . . . 5
⊢ (𝑧 = 𝐵 → ((𝑦 ⚬ 𝐴) = 𝑦 ↔ (𝑦 ⚬ 𝐴) = 𝑦)) |
34 | | oveq2 7315 |
. . . . . 6
⊢ (𝑧 = 𝐵 → (𝑦 ⚬ 𝑧) = (𝑦 ⚬ 𝐵)) |
35 | 34 | eqeq1d 2738 |
. . . . 5
⊢ (𝑧 = 𝐵 → ((𝑦 ⚬ 𝑧) = 𝑦 ↔ (𝑦 ⚬ 𝐵) = 𝑦)) |
36 | 32, 33, 35 | 3anbi123d 1436 |
. . . 4
⊢ (𝑧 = 𝐵 → ((𝐴 ≠ 𝑧 ∧ (𝑦 ⚬ 𝐴) = 𝑦 ∧ (𝑦 ⚬ 𝑧) = 𝑦) ↔ (𝐴 ≠ 𝐵 ∧ (𝑦 ⚬ 𝐴) = 𝑦 ∧ (𝑦 ⚬ 𝐵) = 𝑦))) |
37 | 36 | ralbidv 3171 |
. . 3
⊢ (𝑧 = 𝐵 → (∀𝑦 ∈ 𝑆 (𝐴 ≠ 𝑧 ∧ (𝑦 ⚬ 𝐴) = 𝑦 ∧ (𝑦 ⚬ 𝑧) = 𝑦) ↔ ∀𝑦 ∈ 𝑆 (𝐴 ≠ 𝐵 ∧ (𝑦 ⚬ 𝐴) = 𝑦 ∧ (𝑦 ⚬ 𝐵) = 𝑦))) |
38 | 31, 37 | rspc2ev 3577 |
. 2
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (𝐴 ≠ 𝐵 ∧ (𝑦 ⚬ 𝐴) = 𝑦 ∧ (𝑦 ⚬ 𝐵) = 𝑦)) → ∃𝑥 ∈ 𝑆 ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ≠ 𝑧 ∧ (𝑦 ⚬ 𝑥) = 𝑦 ∧ (𝑦 ⚬ 𝑧) = 𝑦)) |
39 | 2, 27, 38 | 3syl 18 |
1
⊢
((♯‘𝑆) =
2 → ∃𝑥 ∈
𝑆 ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ≠ 𝑧 ∧ (𝑦 ⚬ 𝑥) = 𝑦 ∧ (𝑦 ⚬ 𝑧) = 𝑦)) |