MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2rid2ex Structured version   Visualization version   GIF version

Theorem sgrp2rid2ex 18854
Description: A small semigroup (with two elements) with two right identities which are different. (Contributed by AV, 10-Feb-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
sgrp2nmnd.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
sgrp2nmnd.p = (+g𝑀)
Assertion
Ref Expression
sgrp2rid2ex ((♯‘𝑆) = 2 → ∃𝑥𝑆𝑧𝑆𝑦𝑆 (𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦))
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀   𝑥, ,𝑦   𝑧,𝐴   𝑧,𝐵   𝑧,𝑆   𝑧, ,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑦,𝑧)

Proof of Theorem sgrp2rid2ex
StepHypRef Expression
1 mgm2nsgrp.s . . 3 𝑆 = {𝐴, 𝐵}
21hashprdifel 14363 . 2 ((♯‘𝑆) = 2 → (𝐴𝑆𝐵𝑆𝐴𝐵))
3 simp1 1136 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐴𝑆)
4 simp2 1137 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐵𝑆)
5 simpl3 1194 . . . . 5 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ 𝑦𝑆) → 𝐴𝐵)
65ralrimiva 3125 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑦𝑆 𝐴𝐵)
7 mgm2nsgrp.b . . . . . . 7 (Base‘𝑀) = 𝑆
8 sgrp2nmnd.o . . . . . . 7 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
9 sgrp2nmnd.p . . . . . . 7 = (+g𝑀)
101, 7, 8, 9sgrp2rid2 18853 . . . . . 6 ((𝐴𝑆𝐵𝑆) → ∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦)
11 oveq2 7395 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑦 𝑥) = (𝑦 𝐴))
1211eqeq1d 2731 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑦 𝑥) = 𝑦 ↔ (𝑦 𝐴) = 𝑦))
1312ralbidv 3156 . . . . . . . 8 (𝑥 = 𝐴 → (∀𝑦𝑆 (𝑦 𝑥) = 𝑦 ↔ ∀𝑦𝑆 (𝑦 𝐴) = 𝑦))
1413rspcv 3584 . . . . . . 7 (𝐴𝑆 → (∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦 → ∀𝑦𝑆 (𝑦 𝐴) = 𝑦))
1514adantr 480 . . . . . 6 ((𝐴𝑆𝐵𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦 → ∀𝑦𝑆 (𝑦 𝐴) = 𝑦))
1610, 15mpd 15 . . . . 5 ((𝐴𝑆𝐵𝑆) → ∀𝑦𝑆 (𝑦 𝐴) = 𝑦)
17163adant3 1132 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑦𝑆 (𝑦 𝐴) = 𝑦)
18 oveq2 7395 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝑦 𝑥) = (𝑦 𝐵))
1918eqeq1d 2731 . . . . . . . . 9 (𝑥 = 𝐵 → ((𝑦 𝑥) = 𝑦 ↔ (𝑦 𝐵) = 𝑦))
2019ralbidv 3156 . . . . . . . 8 (𝑥 = 𝐵 → (∀𝑦𝑆 (𝑦 𝑥) = 𝑦 ↔ ∀𝑦𝑆 (𝑦 𝐵) = 𝑦))
2120rspcv 3584 . . . . . . 7 (𝐵𝑆 → (∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦 → ∀𝑦𝑆 (𝑦 𝐵) = 𝑦))
2221adantl 481 . . . . . 6 ((𝐴𝑆𝐵𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦 → ∀𝑦𝑆 (𝑦 𝐵) = 𝑦))
2310, 22mpd 15 . . . . 5 ((𝐴𝑆𝐵𝑆) → ∀𝑦𝑆 (𝑦 𝐵) = 𝑦)
24233adant3 1132 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑦𝑆 (𝑦 𝐵) = 𝑦)
25 r19.26-3 3092 . . . 4 (∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦) ↔ (∀𝑦𝑆 𝐴𝐵 ∧ ∀𝑦𝑆 (𝑦 𝐴) = 𝑦 ∧ ∀𝑦𝑆 (𝑦 𝐵) = 𝑦))
266, 17, 24, 25syl3anbrc 1344 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦))
273, 4, 263jca 1128 . 2 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴𝑆𝐵𝑆 ∧ ∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦)))
28 neeq1 2987 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑧𝐴𝑧))
29 biidd 262 . . . . 5 (𝑥 = 𝐴 → ((𝑦 𝑧) = 𝑦 ↔ (𝑦 𝑧) = 𝑦))
3028, 12, 293anbi123d 1438 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦) ↔ (𝐴𝑧 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝑧) = 𝑦)))
3130ralbidv 3156 . . 3 (𝑥 = 𝐴 → (∀𝑦𝑆 (𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦) ↔ ∀𝑦𝑆 (𝐴𝑧 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝑧) = 𝑦)))
32 neeq2 2988 . . . . 5 (𝑧 = 𝐵 → (𝐴𝑧𝐴𝐵))
33 biidd 262 . . . . 5 (𝑧 = 𝐵 → ((𝑦 𝐴) = 𝑦 ↔ (𝑦 𝐴) = 𝑦))
34 oveq2 7395 . . . . . 6 (𝑧 = 𝐵 → (𝑦 𝑧) = (𝑦 𝐵))
3534eqeq1d 2731 . . . . 5 (𝑧 = 𝐵 → ((𝑦 𝑧) = 𝑦 ↔ (𝑦 𝐵) = 𝑦))
3632, 33, 353anbi123d 1438 . . . 4 (𝑧 = 𝐵 → ((𝐴𝑧 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝑧) = 𝑦) ↔ (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦)))
3736ralbidv 3156 . . 3 (𝑧 = 𝐵 → (∀𝑦𝑆 (𝐴𝑧 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝑧) = 𝑦) ↔ ∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦)))
3831, 37rspc2ev 3601 . 2 ((𝐴𝑆𝐵𝑆 ∧ ∀𝑦𝑆 (𝐴𝐵 ∧ (𝑦 𝐴) = 𝑦 ∧ (𝑦 𝐵) = 𝑦)) → ∃𝑥𝑆𝑧𝑆𝑦𝑆 (𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦))
392, 27, 383syl 18 1 ((♯‘𝑆) = 2 → ∃𝑥𝑆𝑧𝑆𝑦𝑆 (𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  ifcif 4488  {cpr 4591  cfv 6511  (class class class)co 7387  cmpo 7389  2c2 12241  chash 14295  Basecbs 17179  +gcplusg 17220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator