MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29OLD Structured version   Visualization version   GIF version

Theorem r19.29OLD 3109
Description: Obsolete version of r19.29 3108 as of 22-Dec-2024. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
r19.29OLD ((∀𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))

Proof of Theorem r19.29OLD
StepHypRef Expression
1 pm3.2 469 . . . 4 (𝜑 → (𝜓 → (𝜑𝜓)))
21ralimi 3077 . . 3 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 (𝜓 → (𝜑𝜓)))
3 rexim 3081 . . 3 (∀𝑥𝐴 (𝜓 → (𝜑𝜓)) → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 (𝜑𝜓)))
42, 3syl 17 . 2 (∀𝑥𝐴 𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 (𝜑𝜓)))
54imp 406 1 ((∀𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wral 3055  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-ral 3056  df-rex 3065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator