MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29r Structured version   Visualization version   GIF version

Theorem r19.29r 3116
Description: Restricted quantifier version of 19.29r 1877; variation of r19.29 3114. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.)
Assertion
Ref Expression
r19.29r ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))

Proof of Theorem r19.29r
StepHypRef Expression
1 iba 528 . . 3 (𝜓 → (𝜑 ↔ (𝜑𝜓)))
21ralrexbid 3106 . 2 (∀𝑥𝐴 𝜓 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 (𝜑𝜓)))
32biimpac 479 1 ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wral 3061  wrex 3070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-ral 3062  df-rex 3071
This theorem is referenced by:  r19.29imd  3118  2reu5  3754  rlimuni  15498  rlimno1  15604  neindisj2  22847  lmss  23022  fclsbas  23745  isfcf  23758  ucnima  24006  metcnp3  24269  cfilucfil  24288  bndth  24698  ellimc3  25620  lmxrge0  33218  gsumesum  33343  esumcst  33347  esumfsup  33354  voliune  33513  volfiniune  33514  bnj517  34182  nummin  34380  fvineqsneq  36596  cover2  36886  naddgeoa  42447  prmunb2  43372
  Copyright terms: Public domain W3C validator