Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.29r | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.29r 1878; variation of r19.29 3183. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.) |
Ref | Expression |
---|---|
r19.29r | ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29 3183 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝜓 ∧ ∃𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) | |
2 | 1 | ancoms 458 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) |
3 | pm3.22 459 | . . 3 ⊢ ((𝜓 ∧ 𝜑) → (𝜑 ∧ 𝜓)) | |
4 | 3 | reximi 3174 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
5 | 2, 4 | syl 17 | 1 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wral 3063 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-ral 3068 df-rex 3069 |
This theorem is referenced by: r19.29imd 3185 2reu5 3688 rlimuni 15187 rlimno1 15293 neindisj2 22182 lmss 22357 fclsbas 23080 isfcf 23093 ucnima 23341 metcnp3 23602 cfilucfil 23621 bndth 24027 ellimc3 24948 lmxrge0 31804 gsumesum 31927 esumcst 31931 esumfsup 31938 voliune 32097 volfiniune 32098 bnj517 32765 nummin 32963 fvineqsneq 35510 cover2 35799 prmunb2 41818 |
Copyright terms: Public domain | W3C validator |