MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29r Structured version   Visualization version   GIF version

Theorem r19.29r 3097
Description: Restricted quantifier version of 19.29r 1875; variation of r19.29 3096. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.)
Assertion
Ref Expression
r19.29r ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))

Proof of Theorem r19.29r
StepHypRef Expression
1 iba 527 . . 3 (𝜓 → (𝜑 ↔ (𝜑𝜓)))
21ralrexbid 3090 . 2 (∀𝑥𝐴 𝜓 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 (𝜑𝜓)))
32biimpac 478 1 ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wral 3048  wrex 3057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-ral 3049  df-rex 3058
This theorem is referenced by:  r19.29imd  3098  2reu5  3713  rlimuni  15464  rlimno1  15568  neindisj2  23058  lmss  23233  fclsbas  23956  isfcf  23969  ucnima  24215  metcnp3  24475  cfilucfil  24494  bndth  24904  ellimc3  25827  lmxrge0  34037  gsumesum  34144  esumcst  34148  esumfsup  34155  voliune  34314  volfiniune  34315  bnj517  34969  nummin  35176  onvf1odlem1  35219  fvineqsneq  37529  cover2  37828  naddgeoa  43551  prmunb2  44468
  Copyright terms: Public domain W3C validator