Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.29r | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.29r 1878; variation of r19.29 3185. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.) |
Ref | Expression |
---|---|
r19.29r | ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29 3185 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝜓 ∧ ∃𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) | |
2 | 1 | ancoms 459 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) |
3 | pm3.22 460 | . . 3 ⊢ ((𝜓 ∧ 𝜑) → (𝜑 ∧ 𝜓)) | |
4 | 3 | reximi 3179 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
5 | 2, 4 | syl 17 | 1 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wral 3065 ∃wrex 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-ral 3070 df-rex 3071 |
This theorem is referenced by: r19.29imd 3187 2reu5 3694 rlimuni 15268 rlimno1 15374 neindisj2 22283 lmss 22458 fclsbas 23181 isfcf 23194 ucnima 23442 metcnp3 23705 cfilucfil 23724 bndth 24130 ellimc3 25052 lmxrge0 31911 gsumesum 32036 esumcst 32040 esumfsup 32047 voliune 32206 volfiniune 32207 bnj517 32874 nummin 33072 fvineqsneq 35592 cover2 35881 prmunb2 41936 |
Copyright terms: Public domain | W3C validator |