![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29r | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.29r 1974; variation of r19.29 3251. (Contributed by NM, 31-Aug-1999.) |
Ref | Expression |
---|---|
r19.29r | ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29 3251 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜓 ∧ ∃𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) | |
2 | ancom 453 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜓 ∧ ∃𝑥 ∈ 𝐴 𝜑)) | |
3 | ancom 453 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
4 | 3 | rexbii 3220 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) |
5 | 1, 2, 4 | 3imtr4i 284 | 1 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∀wral 3087 ∃wrex 3088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ex 1876 df-ral 3092 df-rex 3093 |
This theorem is referenced by: r19.29imd 3253 2reu5 3612 rlimuni 14618 rlimno1 14721 neindisj2 21252 lmss 21427 fclsbas 22149 isfcf 22162 ucnima 22409 metcnp3 22669 cfilucfil 22688 bndth 23081 ellimc3 23980 lmxrge0 30505 gsumesum 30628 esumcst 30632 esumfsup 30639 voliune 30799 volfiniune 30800 bnj517 31463 cover2 33987 prmunb2 39279 |
Copyright terms: Public domain | W3C validator |