MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29r Structured version   Visualization version   GIF version

Theorem r19.29r 3116
Description: Restricted quantifier version of 19.29r 1877; variation of r19.29 3114. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.)
Assertion
Ref Expression
r19.29r ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))

Proof of Theorem r19.29r
StepHypRef Expression
1 iba 529 . . 3 (𝜓 → (𝜑 ↔ (𝜑𝜓)))
21ralrexbid 3106 . 2 (∀𝑥𝐴 𝜓 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 (𝜑𝜓)))
32biimpac 480 1 ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wral 3062  wrex 3071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1782  df-ral 3063  df-rex 3072
This theorem is referenced by:  r19.29imd  3118  2reu5  3708  rlimuni  15359  rlimno1  15465  neindisj2  22380  lmss  22555  fclsbas  23278  isfcf  23291  ucnima  23539  metcnp3  23802  cfilucfil  23821  bndth  24227  ellimc3  25149  lmxrge0  32198  gsumesum  32323  esumcst  32327  esumfsup  32334  voliune  32493  volfiniune  32494  bnj517  33162  nummin  33360  fvineqsneq  35737  cover2  36026  prmunb2  42300
  Copyright terms: Public domain W3C validator