MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29r Structured version   Visualization version   GIF version

Theorem r19.29r 3122
Description: Restricted quantifier version of 19.29r 1873; variation of r19.29 3120. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.)
Assertion
Ref Expression
r19.29r ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))

Proof of Theorem r19.29r
StepHypRef Expression
1 iba 527 . . 3 (𝜓 → (𝜑 ↔ (𝜑𝜓)))
21ralrexbid 3112 . 2 (∀𝑥𝐴 𝜓 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 (𝜑𝜓)))
32biimpac 478 1 ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wral 3067  wrex 3076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-ral 3068  df-rex 3077
This theorem is referenced by:  r19.29imd  3124  2reu5  3780  rlimuni  15596  rlimno1  15702  neindisj2  23152  lmss  23327  fclsbas  24050  isfcf  24063  ucnima  24311  metcnp3  24574  cfilucfil  24593  bndth  25009  ellimc3  25934  lmxrge0  33898  gsumesum  34023  esumcst  34027  esumfsup  34034  voliune  34193  volfiniune  34194  bnj517  34861  nummin  35067  fvineqsneq  37378  cover2  37675  naddgeoa  43356  prmunb2  44280
  Copyright terms: Public domain W3C validator