| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29r | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.29r 1874; variation of r19.29 3092. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.) |
| Ref | Expression |
|---|---|
| r19.29r | ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iba 527 | . . 3 ⊢ (𝜓 → (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
| 2 | 1 | ralrexbid 3086 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
| 3 | 2 | biimpac 478 | 1 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: r19.29imd 3094 2reu5 3720 rlimuni 15476 rlimno1 15580 neindisj2 23027 lmss 23202 fclsbas 23925 isfcf 23938 ucnima 24185 metcnp3 24445 cfilucfil 24464 bndth 24874 ellimc3 25797 lmxrge0 33938 gsumesum 34045 esumcst 34049 esumfsup 34056 voliune 34215 volfiniune 34216 bnj517 34871 nummin 35077 onvf1odlem1 35095 fvineqsneq 37405 cover2 37714 naddgeoa 43387 prmunb2 44304 |
| Copyright terms: Public domain | W3C validator |