![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29r | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.29r 1877; variation of r19.29 3114. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.) |
Ref | Expression |
---|---|
r19.29r | ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iba 528 | . . 3 ⊢ (𝜓 → (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
2 | 1 | ralrexbid 3106 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
3 | 2 | biimpac 479 | 1 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wral 3061 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-ral 3062 df-rex 3071 |
This theorem is referenced by: r19.29imd 3118 2reu5 3754 rlimuni 15498 rlimno1 15604 neindisj2 22847 lmss 23022 fclsbas 23745 isfcf 23758 ucnima 24006 metcnp3 24269 cfilucfil 24288 bndth 24698 ellimc3 25620 lmxrge0 33218 gsumesum 33343 esumcst 33347 esumfsup 33354 voliune 33513 volfiniune 33514 bnj517 34182 nummin 34380 fvineqsneq 36596 cover2 36886 naddgeoa 42447 prmunb2 43372 |
Copyright terms: Public domain | W3C validator |