MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29r Structured version   Visualization version   GIF version

Theorem r19.29r 3093
Description: Restricted quantifier version of 19.29r 1874; variation of r19.29 3092. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.)
Assertion
Ref Expression
r19.29r ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))

Proof of Theorem r19.29r
StepHypRef Expression
1 iba 527 . . 3 (𝜓 → (𝜑 ↔ (𝜑𝜓)))
21ralrexbid 3086 . 2 (∀𝑥𝐴 𝜓 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 (𝜑𝜓)))
32biimpac 478 1 ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wral 3044  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-ral 3045  df-rex 3054
This theorem is referenced by:  r19.29imd  3094  2reu5  3720  rlimuni  15476  rlimno1  15580  neindisj2  23027  lmss  23202  fclsbas  23925  isfcf  23938  ucnima  24185  metcnp3  24445  cfilucfil  24464  bndth  24874  ellimc3  25797  lmxrge0  33938  gsumesum  34045  esumcst  34049  esumfsup  34056  voliune  34215  volfiniune  34216  bnj517  34871  nummin  35077  onvf1odlem1  35095  fvineqsneq  37405  cover2  37714  naddgeoa  43387  prmunb2  44304
  Copyright terms: Public domain W3C validator