MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29r Structured version   Visualization version   GIF version

Theorem r19.29r 3096
Description: Restricted quantifier version of 19.29r 1874; variation of r19.29 3094. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.)
Assertion
Ref Expression
r19.29r ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))

Proof of Theorem r19.29r
StepHypRef Expression
1 iba 527 . . 3 (𝜓 → (𝜑 ↔ (𝜑𝜓)))
21ralrexbid 3087 . 2 (∀𝑥𝐴 𝜓 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 (𝜑𝜓)))
32biimpac 478 1 ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wral 3044  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-ral 3045  df-rex 3054
This theorem is referenced by:  r19.29imd  3098  2reu5  3729  rlimuni  15516  rlimno1  15620  neindisj2  23010  lmss  23185  fclsbas  23908  isfcf  23921  ucnima  24168  metcnp3  24428  cfilucfil  24447  bndth  24857  ellimc3  25780  lmxrge0  33942  gsumesum  34049  esumcst  34053  esumfsup  34060  voliune  34219  volfiniune  34220  bnj517  34875  nummin  35081  onvf1odlem1  35090  fvineqsneq  37400  cover2  37709  naddgeoa  43383  prmunb2  44300
  Copyright terms: Public domain W3C validator