MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29r Structured version   Visualization version   GIF version

Theorem r19.29r 3184
Description: Restricted quantifier version of 19.29r 1878; variation of r19.29 3183. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.)
Assertion
Ref Expression
r19.29r ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))

Proof of Theorem r19.29r
StepHypRef Expression
1 r19.29 3183 . . 3 ((∀𝑥𝐴 𝜓 ∧ ∃𝑥𝐴 𝜑) → ∃𝑥𝐴 (𝜓𝜑))
21ancoms 458 . 2 ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜓𝜑))
3 pm3.22 459 . . 3 ((𝜓𝜑) → (𝜑𝜓))
43reximi 3174 . 2 (∃𝑥𝐴 (𝜓𝜑) → ∃𝑥𝐴 (𝜑𝜓))
52, 4syl 17 1 ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wral 3063  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-ral 3068  df-rex 3069
This theorem is referenced by:  r19.29imd  3185  2reu5  3688  rlimuni  15187  rlimno1  15293  neindisj2  22182  lmss  22357  fclsbas  23080  isfcf  23093  ucnima  23341  metcnp3  23602  cfilucfil  23621  bndth  24027  ellimc3  24948  lmxrge0  31804  gsumesum  31927  esumcst  31931  esumfsup  31938  voliune  32097  volfiniune  32098  bnj517  32765  nummin  32963  fvineqsneq  35510  cover2  35799  prmunb2  41818
  Copyright terms: Public domain W3C validator