| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29r | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.29r 1874; variation of r19.29 3101. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.) |
| Ref | Expression |
|---|---|
| r19.29r | ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iba 527 | . . 3 ⊢ (𝜓 → (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
| 2 | 1 | ralrexbid 3094 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
| 3 | 2 | biimpac 478 | 1 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wral 3051 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3052 df-rex 3061 |
| This theorem is referenced by: r19.29imd 3105 2reu5 3741 rlimuni 15564 rlimno1 15668 neindisj2 23059 lmss 23234 fclsbas 23957 isfcf 23970 ucnima 24217 metcnp3 24477 cfilucfil 24496 bndth 24906 ellimc3 25830 lmxrge0 33929 gsumesum 34036 esumcst 34040 esumfsup 34047 voliune 34206 volfiniune 34207 bnj517 34862 nummin 35068 fvineqsneq 37376 cover2 37685 naddgeoa 43365 prmunb2 44283 |
| Copyright terms: Public domain | W3C validator |