| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29r | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.29r 1874; variation of r19.29 3095. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.) |
| Ref | Expression |
|---|---|
| r19.29r | ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iba 527 | . . 3 ⊢ (𝜓 → (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
| 2 | 1 | ralrexbid 3088 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
| 3 | 2 | biimpac 478 | 1 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wral 3045 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3046 df-rex 3055 |
| This theorem is referenced by: r19.29imd 3099 2reu5 3732 rlimuni 15523 rlimno1 15627 neindisj2 23017 lmss 23192 fclsbas 23915 isfcf 23928 ucnima 24175 metcnp3 24435 cfilucfil 24454 bndth 24864 ellimc3 25787 lmxrge0 33949 gsumesum 34056 esumcst 34060 esumfsup 34067 voliune 34226 volfiniune 34227 bnj517 34882 nummin 35088 onvf1odlem1 35097 fvineqsneq 37407 cover2 37716 naddgeoa 43390 prmunb2 44307 |
| Copyright terms: Public domain | W3C validator |