MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29r Structured version   Visualization version   GIF version

Theorem r19.29r 3177
Description: Restricted quantifier version of 19.29r 1882; variation of r19.29 3176. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.)
Assertion
Ref Expression
r19.29r ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))

Proof of Theorem r19.29r
StepHypRef Expression
1 r19.29 3176 . . 3 ((∀𝑥𝐴 𝜓 ∧ ∃𝑥𝐴 𝜑) → ∃𝑥𝐴 (𝜓𝜑))
21ancoms 462 . 2 ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜓𝜑))
3 pm3.22 463 . . 3 ((𝜓𝜑) → (𝜑𝜓))
43reximi 3166 . 2 (∃𝑥𝐴 (𝜓𝜑) → ∃𝑥𝐴 (𝜑𝜓))
52, 4syl 17 1 ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wral 3061  wrex 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788  df-ral 3066  df-rex 3067
This theorem is referenced by:  r19.29imd  3178  2reu5  3671  rlimuni  15111  rlimno1  15217  neindisj2  22020  lmss  22195  fclsbas  22918  isfcf  22931  ucnima  23178  metcnp3  23438  cfilucfil  23457  bndth  23855  ellimc3  24776  lmxrge0  31616  gsumesum  31739  esumcst  31743  esumfsup  31750  voliune  31909  volfiniune  31910  bnj517  32578  nummin  32776  fvineqsneq  35320  cover2  35609  prmunb2  41602
  Copyright terms: Public domain W3C validator