| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29r | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.29r 1874; variation of r19.29 3094. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.) |
| Ref | Expression |
|---|---|
| r19.29r | ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iba 527 | . . 3 ⊢ (𝜓 → (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
| 2 | 1 | ralrexbid 3087 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
| 3 | 2 | biimpac 478 | 1 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: r19.29imd 3098 2reu5 3726 rlimuni 15492 rlimno1 15596 neindisj2 22986 lmss 23161 fclsbas 23884 isfcf 23897 ucnima 24144 metcnp3 24404 cfilucfil 24423 bndth 24833 ellimc3 25756 lmxrge0 33915 gsumesum 34022 esumcst 34026 esumfsup 34033 voliune 34192 volfiniune 34193 bnj517 34848 nummin 35054 onvf1odlem1 35063 fvineqsneq 37373 cover2 37682 naddgeoa 43356 prmunb2 44273 |
| Copyright terms: Public domain | W3C validator |