Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.29r | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.29r 1877; variation of r19.29 3114. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.) |
Ref | Expression |
---|---|
r19.29r | ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iba 529 | . . 3 ⊢ (𝜓 → (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
2 | 1 | ralrexbid 3106 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
3 | 2 | biimpac 480 | 1 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∀wral 3062 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1782 df-ral 3063 df-rex 3072 |
This theorem is referenced by: r19.29imd 3118 2reu5 3708 rlimuni 15359 rlimno1 15465 neindisj2 22380 lmss 22555 fclsbas 23278 isfcf 23291 ucnima 23539 metcnp3 23802 cfilucfil 23821 bndth 24227 ellimc3 25149 lmxrge0 32198 gsumesum 32323 esumcst 32327 esumfsup 32334 voliune 32493 volfiniune 32494 bnj517 33162 nummin 33360 fvineqsneq 35737 cover2 36026 prmunb2 42300 |
Copyright terms: Public domain | W3C validator |