![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29rOLD | Structured version Visualization version GIF version |
Description: Obsolete version of r19.29r 3116 as of 22-Dec-2024. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
r19.29rOLD | ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29 3114 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝜓 ∧ ∃𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) | |
2 | 1 | ancoms 459 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) |
3 | pm3.22 460 | . . 3 ⊢ ((𝜓 ∧ 𝜑) → (𝜑 ∧ 𝜓)) | |
4 | 3 | reximi 3084 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
5 | 2, 4 | syl 17 | 1 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wral 3061 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-ral 3062 df-rex 3071 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |