| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29rOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of r19.29r 3104 as of 22-Dec-2024. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| r19.29rOLD | ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29 3102 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝜓 ∧ ∃𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) | |
| 2 | 1 | ancoms 458 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) |
| 3 | pm3.22 459 | . . 3 ⊢ ((𝜓 ∧ 𝜑) → (𝜑 ∧ 𝜓)) | |
| 4 | 3 | reximi 3075 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| 5 | 2, 4 | syl 17 | 1 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wral 3052 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |