|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > r19.29imd | Structured version Visualization version GIF version | ||
| Description: Theorem 19.29 of [Margaris] p. 90 with an implication in the hypothesis containing the generalization, deduction version. (Contributed by AV, 19-Jan-2019.) | 
| Ref | Expression | 
|---|---|
| r19.29imd.1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | 
| r19.29imd.2 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) | 
| Ref | Expression | 
|---|---|
| r19.29imd | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | r19.29imd.1 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
| 2 | r19.29imd.2 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) | |
| 3 | r19.29r 3115 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐴 (𝜓 ∧ (𝜓 → 𝜒))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝜓 ∧ (𝜓 → 𝜒))) | 
| 5 | abai 826 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜓 → 𝜒))) | |
| 6 | 5 | rexbii 3093 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒) ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ (𝜓 → 𝜒))) | 
| 7 | 4, 6 | sylibr 234 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∀wral 3060 ∃wrex 3069 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-ral 3061 df-rex 3070 | 
| This theorem is referenced by: psgndif 21621 neik0pk1imk0 44065 | 
| Copyright terms: Public domain | W3C validator |