![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29imd | Structured version Visualization version GIF version |
Description: Theorem 19.29 of [Margaris] p. 90 with an implication in the hypothesis containing the generalization, deduction version. (Contributed by AV, 19-Jan-2019.) |
Ref | Expression |
---|---|
r19.29imd.1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
r19.29imd.2 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
r19.29imd | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29imd.1 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
2 | r19.29imd.2 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) | |
3 | r19.29r 3283 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐴 (𝜓 ∧ (𝜓 → 𝜒))) | |
4 | 1, 2, 3 | syl2anc 579 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝜓 ∧ (𝜓 → 𝜒))) |
5 | abai 862 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜓 → 𝜒))) | |
6 | 5 | rexbii 3251 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒) ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ (𝜓 → 𝜒))) |
7 | 4, 6 | sylibr 226 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∀wral 3117 ∃wrex 3118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1879 df-ral 3122 df-rex 3123 |
This theorem is referenced by: psgndif 20315 neik0pk1imk0 39184 |
Copyright terms: Public domain | W3C validator |