![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm3.22 | Structured version Visualization version GIF version |
Description: Theorem *3.22 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Nov-2012.) |
Ref | Expression |
---|---|
pm3.22 | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
2 | 1 | ancoms 460 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: ancom 462 ancom2s 649 ancom1s 652 r19.29rOLD 3118 xpord2pred 8131 infsupprpr 9499 fi1uzind 14458 prmgapprmolem 16994 mat1dimcrng 21979 dmatcrng 22004 cramerlem1 22189 cramer 22193 pmatcollpwscmatlem2 22292 uhgr3cyclex 29435 3cyclfrgrrn 29539 frgrreggt1 29646 grpoidinvlem3 29759 atomli 31635 lfuhgr3 34110 cusgredgex 34112 satfun 34402 elnanelprv 34420 arg-ax 35301 bj-prmoore 35996 cnambfre 36536 prter1 37749 prjspersym 41349 rp-oelim2 42058 tfsconcatfv2 42090 tfsconcatrn 42092 oaun3lem2 42125 mnuop3d 43030 eliuniincex 43798 eliincex 43799 dvdsn1add 44655 fourierdlem42 44865 fourierdlem80 44902 etransclem38 44988 prprelprb 46185 reupr 46190 reuopreuprim 46194 gbegt5 46429 c0snmhm 46714 pgrpgt2nabl 47042 |
Copyright terms: Public domain | W3C validator |