Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm3.22 | Structured version Visualization version GIF version |
Description: Theorem *3.22 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Nov-2012.) |
Ref | Expression |
---|---|
pm3.22 | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
2 | 1 | ancoms 459 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: ancom 461 ancom2s 647 ancom1s 650 r19.29r 3185 infsupprpr 9263 fi1uzind 14211 prmgapprmolem 16762 mat1dimcrng 21626 dmatcrng 21651 cramerlem1 21836 cramer 21840 pmatcollpwscmatlem2 21939 uhgr3cyclex 28546 3cyclfrgrrn 28650 frgrreggt1 28757 grpoidinvlem3 28868 atomli 30744 lfuhgr3 33081 cusgredgex 33083 satfun 33373 elnanelprv 33391 xpord2pred 33792 xpord3pred 33798 arg-ax 34605 bj-prmoore 35286 cnambfre 35825 prter1 36893 prjspersym 40446 mnuop3d 41889 eliuniincex 42659 eliincex 42660 dvdsn1add 43480 fourierdlem42 43690 fourierdlem80 43727 etransclem38 43813 prprelprb 44969 reupr 44974 reuopreuprim 44978 gbegt5 45213 c0snmhm 45473 pgrpgt2nabl 45702 |
Copyright terms: Public domain | W3C validator |