![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm3.22 | Structured version Visualization version GIF version |
Description: Theorem *3.22 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Nov-2012.) |
Ref | Expression |
---|---|
pm3.22 | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
2 | 1 | ancoms 458 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: ancom 460 ancom2s 649 ancom1s 652 r19.29rOLD 3112 xpord2pred 8144 infsupprpr 9521 fi1uzind 14484 prmgapprmolem 17023 c0snmhm 20395 mat1dimcrng 22372 dmatcrng 22397 cramerlem1 22582 cramer 22586 pmatcollpwscmatlem2 22685 uhgr3cyclex 29985 3cyclfrgrrn 30089 frgrreggt1 30196 grpoidinvlem3 30309 atomli 32185 lfuhgr3 34719 cusgredgex 34721 satfun 35011 elnanelprv 35029 arg-ax 35890 bj-prmoore 36584 cnambfre 37130 prter1 38340 prjspersym 42003 rp-oelim2 42709 tfsconcatfv2 42741 tfsconcatrn 42743 oaun3lem2 42776 mnuop3d 43680 eliuniincex 44447 eliincex 44448 dvdsn1add 45299 fourierdlem42 45509 fourierdlem80 45546 etransclem38 45632 prprelprb 46829 reupr 46834 reuopreuprim 46838 gbegt5 47073 pgrpgt2nabl 47402 |
Copyright terms: Public domain | W3C validator |