MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.22 Structured version   Visualization version   GIF version

Theorem pm3.22 459
Description: Theorem *3.22 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Nov-2012.)
Assertion
Ref Expression
pm3.22 ((𝜑𝜓) → (𝜓𝜑))

Proof of Theorem pm3.22
StepHypRef Expression
1 id 22 . 2 ((𝜓𝜑) → (𝜓𝜑))
21ancoms 458 1 ((𝜑𝜓) → (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  ancom  460  ancom2s  650  ancom1s  653  r19.29rOLD  3115  xpord2pred  8169  infsupprpr  9542  muladdmod  13950  fi1uzind  14543  prmgapprmolem  17095  c0snmhm  20480  mat1dimcrng  22499  dmatcrng  22524  cramerlem1  22709  cramer  22713  pmatcollpwscmatlem2  22812  uhgr3cyclex  30211  3cyclfrgrrn  30315  frgrreggt1  30422  grpoidinvlem3  30535  atomli  32411  lfuhgr3  35104  cusgredgex  35106  satfun  35396  elnanelprv  35414  arg-ax  36399  bj-prmoore  37098  cnambfre  37655  prter1  38861  prjspersym  42594  rp-oelim2  43298  tfsconcatfv2  43330  tfsconcatrn  43332  oaun3lem2  43365  mnuop3d  44267  eliuniincex  45049  eliincex  45050  dvdsn1add  45895  fourierdlem42  46105  fourierdlem80  46142  etransclem38  46228  prprelprb  47442  reupr  47447  reuopreuprim  47451  gbegt5  47686  clnbgrgrim  47840  pgrpgt2nabl  48211
  Copyright terms: Public domain W3C validator