| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.22 | Structured version Visualization version GIF version | ||
| Description: Theorem *3.22 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm3.22 | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
| 2 | 1 | ancoms 458 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ancom 460 ancom2s 650 ancom1s 653 r19.29rOLD 3105 xpord2pred 8149 infsupprpr 9523 muladdmod 13935 fi1uzind 14530 prmgapprmolem 17086 c0snmhm 20428 mat1dimcrng 22420 dmatcrng 22445 cramerlem1 22630 cramer 22634 pmatcollpwscmatlem2 22733 uhgr3cyclex 30168 3cyclfrgrrn 30272 frgrreggt1 30379 grpoidinvlem3 30492 atomli 32368 lfuhgr3 35147 cusgredgex 35149 satfun 35438 elnanelprv 35456 arg-ax 36439 bj-prmoore 37138 cnambfre 37697 prter1 38902 prjspersym 42597 rp-oelim2 43299 tfsconcatfv2 43331 tfsconcatrn 43333 oaun3lem2 43366 mnuop3d 44262 eliuniincex 45100 eliincex 45101 dvdsn1add 45935 fourierdlem42 46145 fourierdlem80 46182 etransclem38 46268 prprelprb 47498 reupr 47503 reuopreuprim 47507 gbegt5 47742 uhgrimedg 47871 clnbgrgrim 47914 pgrpgt2nabl 48308 |
| Copyright terms: Public domain | W3C validator |