| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.22 | Structured version Visualization version GIF version | ||
| Description: Theorem *3.22 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm3.22 | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
| 2 | 1 | ancoms 458 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ancom 460 ancom2s 650 ancom1s 653 r19.29rOLD 3097 xpord2pred 8124 infsupprpr 9457 muladdmod 13877 fi1uzind 14472 prmgapprmolem 17032 c0snmhm 20372 mat1dimcrng 22364 dmatcrng 22389 cramerlem1 22574 cramer 22578 pmatcollpwscmatlem2 22677 uhgr3cyclex 30111 3cyclfrgrrn 30215 frgrreggt1 30322 grpoidinvlem3 30435 atomli 32311 lfuhgr3 35107 cusgredgex 35109 satfun 35398 elnanelprv 35416 arg-ax 36404 bj-prmoore 37103 cnambfre 37662 prter1 38872 prjspersym 42595 rp-oelim2 43297 tfsconcatfv2 43329 tfsconcatrn 43331 oaun3lem2 43364 mnuop3d 44260 eliuniincex 45103 eliincex 45104 dvdsn1add 45937 fourierdlem42 46147 fourierdlem80 46184 etransclem38 46270 modlt0b 47364 prprelprb 47518 reupr 47523 reuopreuprim 47527 gbegt5 47762 uhgrimedg 47891 clnbgrgrim 47934 pgrpgt2nabl 48354 |
| Copyright terms: Public domain | W3C validator |