Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm3.22 | Structured version Visualization version GIF version |
Description: Theorem *3.22 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Nov-2012.) |
Ref | Expression |
---|---|
pm3.22 | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
2 | 1 | ancoms 458 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: ancom 460 ancom2s 646 ancom1s 649 r19.29r 3184 infsupprpr 9193 fi1uzind 14139 prmgapprmolem 16690 mat1dimcrng 21534 dmatcrng 21559 cramerlem1 21744 cramer 21748 pmatcollpwscmatlem2 21847 uhgr3cyclex 28447 3cyclfrgrrn 28551 frgrreggt1 28658 grpoidinvlem3 28769 atomli 30645 lfuhgr3 32981 cusgredgex 32983 satfun 33273 elnanelprv 33291 xpord2pred 33719 xpord3pred 33725 arg-ax 34532 bj-prmoore 35213 cnambfre 35752 prter1 36820 prjspersym 40367 mnuop3d 41778 eliuniincex 42548 eliincex 42549 dvdsn1add 43370 fourierdlem42 43580 fourierdlem80 43617 etransclem38 43703 prprelprb 44857 reupr 44862 reuopreuprim 44866 gbegt5 45101 c0snmhm 45361 pgrpgt2nabl 45590 |
Copyright terms: Public domain | W3C validator |