![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm3.22 | Structured version Visualization version GIF version |
Description: Theorem *3.22 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Nov-2012.) |
Ref | Expression |
---|---|
pm3.22 | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
2 | 1 | ancoms 446 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 |
This theorem is referenced by: ancom 448 ancom2s 629 ancom1s 632 fi1uzind 13481 cshwlen 13754 prmgapprmolem 15972 setsstructOLD 16106 mat1dimcrng 20501 dmatcrng 20526 cramerlem1 20713 cramer 20717 pmatcollpwscmatlem2 20815 uhgr3cyclex 27362 3cyclfrgrrn 27468 frgrreggt1 27592 grpoidinvlem3 27700 atomli 29581 arg-ax 32752 cnambfre 33789 prter1 34685 eliuniincex 39811 eliincex 39812 dvdsn1add 40667 fourierdlem42 40878 fourierdlem80 40915 etransclem38 41001 gbegt5 42172 c0snmhm 42438 pgrpgt2nabl 42670 |
Copyright terms: Public domain | W3C validator |