| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.22 | Structured version Visualization version GIF version | ||
| Description: Theorem *3.22 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm3.22 | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
| 2 | 1 | ancoms 458 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ancom 460 ancom2s 650 ancom1s 653 xpord2pred 8075 infsupprpr 9390 muladdmod 13816 fi1uzind 14411 prmgapprmolem 16970 c0snmhm 20379 mat1dimcrng 22390 dmatcrng 22415 cramerlem1 22600 cramer 22604 pmatcollpwscmatlem2 22703 uhgr3cyclex 30157 3cyclfrgrrn 30261 frgrreggt1 30368 grpoidinvlem3 30481 atomli 32357 lfuhgr3 35152 cusgredgex 35154 satfun 35443 elnanelprv 35461 arg-ax 36449 bj-prmoore 37148 cnambfre 37707 prter1 38917 prjspersym 42639 rp-oelim2 43340 tfsconcatfv2 43372 tfsconcatrn 43374 oaun3lem2 43407 mnuop3d 44303 eliuniincex 45145 eliincex 45146 dvdsn1add 45976 fourierdlem42 46186 fourierdlem80 46223 etransclem38 46309 modlt0b 47393 prprelprb 47547 reupr 47552 reuopreuprim 47556 gbegt5 47791 uhgrimedg 47921 clnbgrgrim 47964 pgrpgt2nabl 48396 |
| Copyright terms: Public domain | W3C validator |