| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.22 | Structured version Visualization version GIF version | ||
| Description: Theorem *3.22 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm3.22 | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
| 2 | 1 | ancoms 458 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ancom 460 ancom2s 650 ancom1s 653 r19.29rOLD 3098 xpord2pred 8127 infsupprpr 9464 muladdmod 13884 fi1uzind 14479 prmgapprmolem 17039 c0snmhm 20379 mat1dimcrng 22371 dmatcrng 22396 cramerlem1 22581 cramer 22585 pmatcollpwscmatlem2 22684 uhgr3cyclex 30118 3cyclfrgrrn 30222 frgrreggt1 30329 grpoidinvlem3 30442 atomli 32318 lfuhgr3 35114 cusgredgex 35116 satfun 35405 elnanelprv 35423 arg-ax 36411 bj-prmoore 37110 cnambfre 37669 prter1 38879 prjspersym 42602 rp-oelim2 43304 tfsconcatfv2 43336 tfsconcatrn 43338 oaun3lem2 43371 mnuop3d 44267 eliuniincex 45110 eliincex 45111 dvdsn1add 45944 fourierdlem42 46154 fourierdlem80 46191 etransclem38 46277 modlt0b 47368 prprelprb 47522 reupr 47527 reuopreuprim 47531 gbegt5 47766 uhgrimedg 47895 clnbgrgrim 47938 pgrpgt2nabl 48358 |
| Copyright terms: Public domain | W3C validator |