| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.22 | Structured version Visualization version GIF version | ||
| Description: Theorem *3.22 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm3.22 | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
| 2 | 1 | ancoms 458 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ancom 460 ancom2s 650 ancom1s 653 xpord2pred 8081 infsupprpr 9397 muladdmod 13821 fi1uzind 14416 prmgapprmolem 16975 c0snmhm 20383 mat1dimcrng 22393 dmatcrng 22418 cramerlem1 22603 cramer 22607 pmatcollpwscmatlem2 22706 uhgr3cyclex 30164 3cyclfrgrrn 30268 frgrreggt1 30375 grpoidinvlem3 30488 atomli 32364 lfuhgr3 35185 cusgredgex 35187 satfun 35476 elnanelprv 35494 arg-ax 36481 bj-prmoore 37180 cnambfre 37728 prter1 38998 prjspersym 42725 rp-oelim2 43425 tfsconcatfv2 43457 tfsconcatrn 43459 oaun3lem2 43492 mnuop3d 44388 eliuniincex 45230 eliincex 45231 dvdsn1add 46061 fourierdlem42 46271 fourierdlem80 46308 etransclem38 46394 modlt0b 47487 prprelprb 47641 reupr 47646 reuopreuprim 47650 gbegt5 47885 uhgrimedg 48015 clnbgrgrim 48058 pgrpgt2nabl 48490 |
| Copyright terms: Public domain | W3C validator |