![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm3.22 | Structured version Visualization version GIF version |
Description: Theorem *3.22 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Nov-2012.) |
Ref | Expression |
---|---|
pm3.22 | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
2 | 1 | ancoms 458 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: ancom 460 ancom2s 649 ancom1s 652 r19.29rOLD 3123 xpord2pred 8186 infsupprpr 9573 fi1uzind 14556 prmgapprmolem 17108 c0snmhm 20489 mat1dimcrng 22504 dmatcrng 22529 cramerlem1 22714 cramer 22718 pmatcollpwscmatlem2 22817 uhgr3cyclex 30214 3cyclfrgrrn 30318 frgrreggt1 30425 grpoidinvlem3 30538 atomli 32414 lfuhgr3 35087 cusgredgex 35089 satfun 35379 elnanelprv 35397 arg-ax 36382 bj-prmoore 37081 cnambfre 37628 prter1 38835 prjspersym 42562 rp-oelim2 43270 tfsconcatfv2 43302 tfsconcatrn 43304 oaun3lem2 43337 mnuop3d 44240 eliuniincex 45011 eliincex 45012 dvdsn1add 45860 fourierdlem42 46070 fourierdlem80 46107 etransclem38 46193 prprelprb 47391 reupr 47396 reuopreuprim 47400 gbegt5 47635 clnbgrgrim 47786 pgrpgt2nabl 48091 |
Copyright terms: Public domain | W3C validator |