| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.22 | Structured version Visualization version GIF version | ||
| Description: Theorem *3.22 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm3.22 | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
| 2 | 1 | ancoms 458 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ancom 460 ancom2s 650 ancom1s 653 xpord2pred 8085 infsupprpr 9415 muladdmod 13837 fi1uzind 14432 prmgapprmolem 16991 c0snmhm 20366 mat1dimcrng 22380 dmatcrng 22405 cramerlem1 22590 cramer 22594 pmatcollpwscmatlem2 22693 uhgr3cyclex 30144 3cyclfrgrrn 30248 frgrreggt1 30355 grpoidinvlem3 30468 atomli 32344 lfuhgr3 35092 cusgredgex 35094 satfun 35383 elnanelprv 35401 arg-ax 36389 bj-prmoore 37088 cnambfre 37647 prter1 38857 prjspersym 42580 rp-oelim2 43281 tfsconcatfv2 43313 tfsconcatrn 43315 oaun3lem2 43348 mnuop3d 44244 eliuniincex 45087 eliincex 45088 dvdsn1add 45921 fourierdlem42 46131 fourierdlem80 46168 etransclem38 46254 modlt0b 47348 prprelprb 47502 reupr 47507 reuopreuprim 47511 gbegt5 47746 uhgrimedg 47876 clnbgrgrim 47919 pgrpgt2nabl 48351 |
| Copyright terms: Public domain | W3C validator |