![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm3.22 | Structured version Visualization version GIF version |
Description: Theorem *3.22 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Nov-2012.) |
Ref | Expression |
---|---|
pm3.22 | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
2 | 1 | ancoms 458 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: ancom 460 ancom2s 650 ancom1s 653 r19.29rOLD 3115 xpord2pred 8169 infsupprpr 9542 muladdmod 13950 fi1uzind 14543 prmgapprmolem 17095 c0snmhm 20480 mat1dimcrng 22499 dmatcrng 22524 cramerlem1 22709 cramer 22713 pmatcollpwscmatlem2 22812 uhgr3cyclex 30211 3cyclfrgrrn 30315 frgrreggt1 30422 grpoidinvlem3 30535 atomli 32411 lfuhgr3 35104 cusgredgex 35106 satfun 35396 elnanelprv 35414 arg-ax 36399 bj-prmoore 37098 cnambfre 37655 prter1 38861 prjspersym 42594 rp-oelim2 43298 tfsconcatfv2 43330 tfsconcatrn 43332 oaun3lem2 43365 mnuop3d 44267 eliuniincex 45049 eliincex 45050 dvdsn1add 45895 fourierdlem42 46105 fourierdlem80 46142 etransclem38 46228 prprelprb 47442 reupr 47447 reuopreuprim 47451 gbegt5 47686 clnbgrgrim 47840 pgrpgt2nabl 48211 |
Copyright terms: Public domain | W3C validator |