Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm3.22 | Structured version Visualization version GIF version |
Description: Theorem *3.22 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Nov-2012.) |
Ref | Expression |
---|---|
pm3.22 | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
2 | 1 | ancoms 459 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: ancom 461 ancom2s 647 ancom1s 650 r19.29r 3183 infsupprpr 9251 fi1uzind 14199 prmgapprmolem 16750 mat1dimcrng 21614 dmatcrng 21639 cramerlem1 21824 cramer 21828 pmatcollpwscmatlem2 21927 uhgr3cyclex 28532 3cyclfrgrrn 28636 frgrreggt1 28743 grpoidinvlem3 28854 atomli 30730 lfuhgr3 33067 cusgredgex 33069 satfun 33359 elnanelprv 33377 xpord2pred 33778 xpord3pred 33784 arg-ax 34591 bj-prmoore 35272 cnambfre 35811 prter1 36879 prjspersym 40432 mnuop3d 41848 eliuniincex 42618 eliincex 42619 dvdsn1add 43439 fourierdlem42 43649 fourierdlem80 43686 etransclem38 43772 prprelprb 44925 reupr 44930 reuopreuprim 44934 gbegt5 45169 c0snmhm 45429 pgrpgt2nabl 45658 |
Copyright terms: Public domain | W3C validator |