![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm3.22 | Structured version Visualization version GIF version |
Description: Theorem *3.22 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Nov-2012.) |
Ref | Expression |
---|---|
pm3.22 | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
2 | 1 | ancoms 460 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: ancom 462 ancom2s 649 ancom1s 652 r19.29rOLD 3118 xpord2pred 8131 infsupprpr 9499 fi1uzind 14458 prmgapprmolem 16994 mat1dimcrng 21979 dmatcrng 22004 cramerlem1 22189 cramer 22193 pmatcollpwscmatlem2 22292 uhgr3cyclex 29466 3cyclfrgrrn 29570 frgrreggt1 29677 grpoidinvlem3 29790 atomli 31666 lfuhgr3 34141 cusgredgex 34143 satfun 34433 elnanelprv 34451 gg-cncrng 35231 arg-ax 35349 bj-prmoore 36044 cnambfre 36584 prter1 37797 prjspersym 41397 rp-oelim2 42106 tfsconcatfv2 42138 tfsconcatrn 42140 oaun3lem2 42173 mnuop3d 43078 eliuniincex 43846 eliincex 43847 dvdsn1add 44703 fourierdlem42 44913 fourierdlem80 44950 etransclem38 45036 prprelprb 46233 reupr 46238 reuopreuprim 46242 gbegt5 46477 c0snmhm 46762 pgrpgt2nabl 47090 |
Copyright terms: Public domain | W3C validator |