Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabeqbii Structured version   Visualization version   GIF version

Theorem rabeqbii 36136
Description: Equality theorem for restricted class abstractions. Inference version. (Contributed by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
rabeqbii.1 𝐴 = 𝐵
rabeqbii.2 (𝜑𝜓)
Assertion
Ref Expression
rabeqbii {𝑥𝐴𝜑} = {𝑥𝐵𝜓}

Proof of Theorem rabeqbii
StepHypRef Expression
1 rabeqbii.1 . . . . 5 𝐴 = 𝐵
21eleq2i 2829 . . . 4 (𝑥𝐴𝑥𝐵)
3 rabeqbii.2 . . . 4 (𝜑𝜓)
42, 3anbi12i 627 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
54abbii 2805 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑥 ∣ (𝑥𝐵𝜓)}
6 df-rab 3433 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
7 df-rab 3433 . 2 {𝑥𝐵𝜓} = {𝑥 ∣ (𝑥𝐵𝜓)}
85, 6, 73eqtr4i 2771 1 {𝑥𝐴𝜑} = {𝑥𝐵𝜓}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1535  wcel 2104  {cab 2710  {crab 3432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-ext 2704
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1775  df-sb 2061  df-clab 2711  df-cleq 2725  df-clel 2812  df-rab 3433
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator