![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabeqbii | Structured version Visualization version GIF version |
Description: Equality theorem for restricted class abstractions. Inference version. (Contributed by GG, 1-Sep-2025.) |
Ref | Expression |
---|---|
rabeqbii.1 | ⊢ 𝐴 = 𝐵 |
rabeqbii.2 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
rabeqbii | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqbii.1 | . . . . 5 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eleq2i 2829 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
3 | rabeqbii.2 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
4 | 2, 3 | anbi12i 627 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) |
5 | 4 | abbii 2805 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜓)} |
6 | df-rab 3433 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
7 | df-rab 3433 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜓)} | |
8 | 5, 6, 7 | 3eqtr4i 2771 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1535 ∈ wcel 2104 {cab 2710 {crab 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-ext 2704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1775 df-sb 2061 df-clab 2711 df-cleq 2725 df-clel 2812 df-rab 3433 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |