MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabrabiOLD Structured version   Visualization version   GIF version

Theorem rabrabiOLD 3428
Description: Obsolete version of rabrabi 3427 as of 12-Oct-2024. (Contributed by AV, 2-Aug-2022.) Avoid ax-10 2137 and ax-11 2154. (Revised by Gino Giotto, 20-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
rabrabiOLD.1 (𝑥 = 𝑦 → (𝜒𝜑))
Assertion
Ref Expression
rabrabiOLD {𝑥 ∈ {𝑦𝐴𝜑} ∣ 𝜓} = {𝑥𝐴 ∣ (𝜒𝜓)}
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑥   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥)

Proof of Theorem rabrabiOLD
StepHypRef Expression
1 rabrabiOLD.1 . . . 4 (𝑥 = 𝑦 → (𝜒𝜑))
21cbvrabv 3426 . . 3 {𝑥𝐴𝜒} = {𝑦𝐴𝜑}
32rabeqi 3416 . 2 {𝑥 ∈ {𝑥𝐴𝜒} ∣ 𝜓} = {𝑥 ∈ {𝑦𝐴𝜑} ∣ 𝜓}
4 rabrab 3311 . 2 {𝑥 ∈ {𝑥𝐴𝜒} ∣ 𝜓} = {𝑥𝐴 ∣ (𝜒𝜓)}
53, 4eqtr3i 2768 1 {𝑥 ∈ {𝑦𝐴𝜑} ∣ 𝜓} = {𝑥𝐴 ∣ (𝜒𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  {crab 3068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator