MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabrabi Structured version   Visualization version   GIF version

Theorem rabrabi 3453
Description: Abstract builder restricted to another restricted abstract builder with implicit substitution. (Contributed by AV, 2-Aug-2022.) Avoid ax-10 2139, ax-11 2155 and ax-12 2175. (Revised by GG, 12-Oct-2024.)
Hypothesis
Ref Expression
rabrabi.1 (𝑥 = 𝑦 → (𝜒𝜑))
Assertion
Ref Expression
rabrabi {𝑥 ∈ {𝑦𝐴𝜑} ∣ 𝜓} = {𝑥𝐴 ∣ (𝜒𝜓)}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem rabrabi
StepHypRef Expression
1 df-rab 3434 . . . . . 6 {𝑦𝐴𝜑} = {𝑦 ∣ (𝑦𝐴𝜑)}
21eleq2i 2831 . . . . 5 (𝑥 ∈ {𝑦𝐴𝜑} ↔ 𝑥 ∈ {𝑦 ∣ (𝑦𝐴𝜑)})
3 df-clab 2713 . . . . 5 (𝑥 ∈ {𝑦 ∣ (𝑦𝐴𝜑)} ↔ [𝑥 / 𝑦](𝑦𝐴𝜑))
4 eleq1w 2822 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
5 rabrabi.1 . . . . . . . . 9 (𝑥 = 𝑦 → (𝜒𝜑))
65bicomd 223 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜒))
76equcoms 2017 . . . . . . 7 (𝑦 = 𝑥 → (𝜑𝜒))
84, 7anbi12d 632 . . . . . 6 (𝑦 = 𝑥 → ((𝑦𝐴𝜑) ↔ (𝑥𝐴𝜒)))
98sbievw 2091 . . . . 5 ([𝑥 / 𝑦](𝑦𝐴𝜑) ↔ (𝑥𝐴𝜒))
102, 3, 93bitri 297 . . . 4 (𝑥 ∈ {𝑦𝐴𝜑} ↔ (𝑥𝐴𝜒))
1110anbi1i 624 . . 3 ((𝑥 ∈ {𝑦𝐴𝜑} ∧ 𝜓) ↔ ((𝑥𝐴𝜒) ∧ 𝜓))
12 anass 468 . . 3 (((𝑥𝐴𝜒) ∧ 𝜓) ↔ (𝑥𝐴 ∧ (𝜒𝜓)))
1311, 12bitri 275 . 2 ((𝑥 ∈ {𝑦𝐴𝜑} ∧ 𝜓) ↔ (𝑥𝐴 ∧ (𝜒𝜓)))
1413rabbia2 3436 1 {𝑥 ∈ {𝑦𝐴𝜑} ∣ 𝜓} = {𝑥𝐴 ∣ (𝜒𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  [wsb 2062  wcel 2106  {cab 2712  {crab 3433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434
This theorem is referenced by:  wlksnwwlknvbij  29938
  Copyright terms: Public domain W3C validator