Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabeqi | Structured version Visualization version GIF version |
Description: Equality theorem for restricted class abstractions. Inference form of rabeqf 3391. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Avoid ax-10 2141, ax-11 2158, ax-12 2175. (Revised by Gino Giotto, 3-Jun-2024.) |
Ref | Expression |
---|---|
rabeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
rabeqi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqi.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eleq2i 2829 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
3 | 2 | anbi1i 627 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
4 | 3 | rabbia2 3387 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2110 {crab 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 |
This theorem is referenced by: rabrabiOLD 3404 f1ossf1o 6943 hsmex2 10047 iooval2 12968 fzval2 13098 phimullem 16332 pmtrsn 18911 dsmmbas2 20699 qtopres 22595 uvtxval 27475 cusgredg 27512 cffldtocusgr 27535 vtxdginducedm1 27631 finsumvtxdg2size 27638 konigsbergiedgw 28331 extwwlkfab 28435 zartopn 31539 satf0 33047 prjspeclsp 40159 k0004val0 41441 smflimlem4 43981 smfliminf 44036 |
Copyright terms: Public domain | W3C validator |