MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqi Structured version   Visualization version   GIF version

Theorem rabeqi 3416
Description: Equality theorem for restricted class abstractions. Inference form of rabeqf 3437. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by GG, 3-Jun-2024.)
Hypothesis
Ref Expression
rabeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
rabeqi {𝑥𝐴𝜑} = {𝑥𝐵𝜑}

Proof of Theorem rabeqi
StepHypRef Expression
1 rabeqi.1 . . . 4 𝐴 = 𝐵
21eleq2i 2820 . . 3 (𝑥𝐴𝑥𝐵)
32anbi1i 624 . 2 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑))
43rabbia2 3405 1 {𝑥𝐴𝜑} = {𝑥𝐵𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {crab 3402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403
This theorem is referenced by:  f1ossf1o  7082  hsmex2  10362  iooval2  13315  fzval2  13447  phimullem  16725  pmtrsn  19433  dsmmbas2  21679  qtopres  23618  left1s  27844  right1s  27845  uvtxval  29367  cusgredg  29404  cffldtocusgr  29427  cffldtocusgrOLD  29428  vtxdginducedm1  29524  finsumvtxdg2size  29531  konigsbergiedgw  30227  extwwlkfab  30331  zartopn  33858  satf0  35352  prjspeclsp  42593  k0004val0  44136  smflimlem4  46765  smfliminf  46822  isubgr0uhgr  47866  uspgrlimlem2  47981  uspgrlim  47984
  Copyright terms: Public domain W3C validator