| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqi | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted class abstractions. Inference form of rabeqf 3451. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Avoid ax-10 2141, ax-11 2157, ax-12 2177. (Revised by GG, 3-Jun-2024.) |
| Ref | Expression |
|---|---|
| rabeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rabeqi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqi.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eleq2i 2826 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
| 3 | 2 | anbi1i 624 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
| 4 | 3 | rabbia2 3418 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 {crab 3415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 |
| This theorem is referenced by: f1ossf1o 7118 hsmex2 10447 iooval2 13395 fzval2 13527 phimullem 16798 pmtrsn 19500 dsmmbas2 21697 qtopres 23636 left1s 27858 right1s 27859 uvtxval 29366 cusgredg 29403 cffldtocusgr 29426 cffldtocusgrOLD 29427 vtxdginducedm1 29523 finsumvtxdg2size 29530 konigsbergiedgw 30229 extwwlkfab 30333 zartopn 33906 satf0 35394 prjspeclsp 42635 k0004val0 44178 smflimlem4 46803 smfliminf 46860 isubgr0uhgr 47886 uspgrlimlem2 48001 uspgrlim 48004 |
| Copyright terms: Public domain | W3C validator |