| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqi | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted class abstractions. Inference form of rabeqf 3440. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by GG, 3-Jun-2024.) |
| Ref | Expression |
|---|---|
| rabeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rabeqi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqi.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eleq2i 2820 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
| 3 | 2 | anbi1i 624 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
| 4 | 3 | rabbia2 3408 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 |
| This theorem is referenced by: f1ossf1o 7100 hsmex2 10386 iooval2 13339 fzval2 13471 phimullem 16749 pmtrsn 19449 dsmmbas2 21646 qtopres 23585 left1s 27806 right1s 27807 uvtxval 29314 cusgredg 29351 cffldtocusgr 29374 cffldtocusgrOLD 29375 vtxdginducedm1 29471 finsumvtxdg2size 29478 konigsbergiedgw 30177 extwwlkfab 30281 zartopn 33865 satf0 35359 prjspeclsp 42600 k0004val0 44143 smflimlem4 46772 smfliminf 46829 isubgr0uhgr 47873 uspgrlimlem2 47988 uspgrlim 47991 |
| Copyright terms: Public domain | W3C validator |