![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeqi | Structured version Visualization version GIF version |
Description: Equality theorem for restricted class abstractions. Inference form of rabeqf 3467. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Avoid ax-10 2138, ax-11 2155, ax-12 2172. (Revised by Gino Giotto, 3-Jun-2024.) |
Ref | Expression |
---|---|
rabeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
rabeqi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqi.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eleq2i 2826 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
3 | 2 | anbi1i 625 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
4 | 3 | rabbia2 3436 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 {crab 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 |
This theorem is referenced by: rabrabiOLD 3457 f1ossf1o 7126 hsmex2 10428 iooval2 13357 fzval2 13487 phimullem 16712 pmtrsn 19387 dsmmbas2 21292 qtopres 23202 left1s 27390 right1s 27391 uvtxval 28675 cusgredg 28712 cffldtocusgr 28735 vtxdginducedm1 28831 finsumvtxdg2size 28838 konigsbergiedgw 29532 extwwlkfab 29636 zartopn 32886 satf0 34394 gg-cffldtocusgr 35230 prjspeclsp 41402 k0004val0 42953 smflimlem4 45538 smfliminf 45595 |
Copyright terms: Public domain | W3C validator |