MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqi Structured version   Visualization version   GIF version

Theorem rabeqi 3408
Description: Equality theorem for restricted class abstractions. Inference form of rabeqf 3429. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Avoid ax-10 2144, ax-11 2160, ax-12 2180. (Revised by GG, 3-Jun-2024.)
Hypothesis
Ref Expression
rabeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
rabeqi {𝑥𝐴𝜑} = {𝑥𝐵𝜑}

Proof of Theorem rabeqi
StepHypRef Expression
1 rabeqi.1 . . . 4 𝐴 = 𝐵
21eleq2i 2823 . . 3 (𝑥𝐴𝑥𝐵)
32anbi1i 624 . 2 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑))
43rabbia2 3398 1 {𝑥𝐴𝜑} = {𝑥𝐵𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  {crab 3395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396
This theorem is referenced by:  f1ossf1o  7061  hsmex2  10324  iooval2  13278  fzval2  13410  phimullem  16690  pmtrsn  19431  dsmmbas2  21674  qtopres  23613  left1s  27840  right1s  27841  uvtxval  29365  cusgredg  29402  cffldtocusgr  29425  cffldtocusgrOLD  29426  vtxdginducedm1  29522  finsumvtxdg2size  29529  konigsbergiedgw  30228  extwwlkfab  30332  zartopn  33888  satf0  35416  prjspeclsp  42715  k0004val0  44257  smflimlem4  46882  smfliminf  46939  isubgr0uhgr  47983  uspgrlimlem2  48099  uspgrlim  48102
  Copyright terms: Public domain W3C validator