![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeqi | Structured version Visualization version GIF version |
Description: Equality theorem for restricted class abstractions. Inference form of rabeqf 3470. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Avoid ax-10 2139, ax-11 2155, ax-12 2175. (Revised by GG, 3-Jun-2024.) |
Ref | Expression |
---|---|
rabeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
rabeqi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqi.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eleq2i 2831 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
3 | 2 | anbi1i 624 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
4 | 3 | rabbia2 3436 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 {crab 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 |
This theorem is referenced by: rabrabiOLD 3459 f1ossf1o 7148 hsmex2 10471 iooval2 13417 fzval2 13547 phimullem 16813 pmtrsn 19552 dsmmbas2 21775 qtopres 23722 left1s 27948 right1s 27949 uvtxval 29419 cusgredg 29456 cffldtocusgr 29479 cffldtocusgrOLD 29480 vtxdginducedm1 29576 finsumvtxdg2size 29583 konigsbergiedgw 30277 extwwlkfab 30381 zartopn 33836 satf0 35357 prjspeclsp 42599 k0004val0 44144 smflimlem4 46730 smfliminf 46787 isubgr0uhgr 47797 uspgrlimlem2 47892 uspgrlim 47895 |
Copyright terms: Public domain | W3C validator |