Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabeqi | Structured version Visualization version GIF version |
Description: Equality theorem for restricted class abstractions. Inference form of rabeqf 3405. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Avoid ax-10 2139, ax-11 2156, ax-12 2173. (Revised by Gino Giotto, 3-Jun-2024.) |
Ref | Expression |
---|---|
rabeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
rabeqi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqi.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eleq2i 2830 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
3 | 2 | anbi1i 623 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
4 | 3 | rabbia2 3401 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 {crab 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 |
This theorem is referenced by: rabrabiOLD 3418 f1ossf1o 6982 hsmex2 10120 iooval2 13041 fzval2 13171 phimullem 16408 pmtrsn 19042 dsmmbas2 20854 qtopres 22757 uvtxval 27657 cusgredg 27694 cffldtocusgr 27717 vtxdginducedm1 27813 finsumvtxdg2size 27820 konigsbergiedgw 28513 extwwlkfab 28617 zartopn 31727 satf0 33234 prjspeclsp 40372 k0004val0 41653 smflimlem4 44196 smfliminf 44251 |
Copyright terms: Public domain | W3C validator |