| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqi | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted class abstractions. Inference form of rabeqf 3429. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by GG, 3-Jun-2024.) |
| Ref | Expression |
|---|---|
| rabeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rabeqi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqi.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eleq2i 2820 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
| 3 | 2 | anbi1i 624 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
| 4 | 3 | rabbia2 3397 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 |
| This theorem is referenced by: f1ossf1o 7062 hsmex2 10327 iooval2 13281 fzval2 13413 phimullem 16690 pmtrsn 19398 dsmmbas2 21644 qtopres 23583 left1s 27809 right1s 27810 uvtxval 29332 cusgredg 29369 cffldtocusgr 29392 cffldtocusgrOLD 29393 vtxdginducedm1 29489 finsumvtxdg2size 29496 konigsbergiedgw 30192 extwwlkfab 30296 zartopn 33848 satf0 35355 prjspeclsp 42595 k0004val0 44137 smflimlem4 46765 smfliminf 46822 isubgr0uhgr 47867 uspgrlimlem2 47983 uspgrlim 47986 |
| Copyright terms: Public domain | W3C validator |