MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqi Structured version   Visualization version   GIF version

Theorem rabeqi 3429
Description: Equality theorem for restricted class abstractions. Inference form of rabeqf 3451. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Avoid ax-10 2141, ax-11 2157, ax-12 2177. (Revised by GG, 3-Jun-2024.)
Hypothesis
Ref Expression
rabeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
rabeqi {𝑥𝐴𝜑} = {𝑥𝐵𝜑}

Proof of Theorem rabeqi
StepHypRef Expression
1 rabeqi.1 . . . 4 𝐴 = 𝐵
21eleq2i 2826 . . 3 (𝑥𝐴𝑥𝐵)
32anbi1i 624 . 2 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑))
43rabbia2 3418 1 {𝑥𝐴𝜑} = {𝑥𝐵𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  {crab 3415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416
This theorem is referenced by:  f1ossf1o  7118  hsmex2  10447  iooval2  13395  fzval2  13527  phimullem  16798  pmtrsn  19500  dsmmbas2  21697  qtopres  23636  left1s  27858  right1s  27859  uvtxval  29366  cusgredg  29403  cffldtocusgr  29426  cffldtocusgrOLD  29427  vtxdginducedm1  29523  finsumvtxdg2size  29530  konigsbergiedgw  30229  extwwlkfab  30333  zartopn  33906  satf0  35394  prjspeclsp  42635  k0004val0  44178  smflimlem4  46803  smfliminf  46860  isubgr0uhgr  47886  uspgrlimlem2  48001  uspgrlim  48004
  Copyright terms: Public domain W3C validator