| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqi | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted class abstractions. Inference form of rabeqf 3429. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Avoid ax-10 2144, ax-11 2160, ax-12 2180. (Revised by GG, 3-Jun-2024.) |
| Ref | Expression |
|---|---|
| rabeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rabeqi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqi.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eleq2i 2823 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
| 3 | 2 | anbi1i 624 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
| 4 | 3 | rabbia2 3398 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {crab 3395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 |
| This theorem is referenced by: f1ossf1o 7061 hsmex2 10324 iooval2 13278 fzval2 13410 phimullem 16690 pmtrsn 19431 dsmmbas2 21674 qtopres 23613 left1s 27840 right1s 27841 uvtxval 29365 cusgredg 29402 cffldtocusgr 29425 cffldtocusgrOLD 29426 vtxdginducedm1 29522 finsumvtxdg2size 29529 konigsbergiedgw 30228 extwwlkfab 30332 zartopn 33888 satf0 35416 prjspeclsp 42715 k0004val0 44257 smflimlem4 46882 smfliminf 46939 isubgr0uhgr 47983 uspgrlimlem2 48099 uspgrlim 48102 |
| Copyright terms: Public domain | W3C validator |