![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeqi | Structured version Visualization version GIF version |
Description: Equality theorem for restricted class abstractions. Inference form of rabeqf 3480. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Avoid ax-10 2141, ax-11 2158, ax-12 2178. (Revised by GG, 3-Jun-2024.) |
Ref | Expression |
---|---|
rabeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
rabeqi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqi.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eleq2i 2836 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
3 | 2 | anbi1i 623 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
4 | 3 | rabbia2 3446 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 {crab 3443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 |
This theorem is referenced by: rabrabiOLD 3469 f1ossf1o 7162 hsmex2 10502 iooval2 13440 fzval2 13570 phimullem 16826 pmtrsn 19561 dsmmbas2 21780 qtopres 23727 left1s 27951 right1s 27952 uvtxval 29422 cusgredg 29459 cffldtocusgr 29482 cffldtocusgrOLD 29483 vtxdginducedm1 29579 finsumvtxdg2size 29586 konigsbergiedgw 30280 extwwlkfab 30384 zartopn 33821 satf0 35340 prjspeclsp 42567 k0004val0 44116 smflimlem4 46695 smfliminf 46752 isubgr0uhgr 47743 uspgrlimlem2 47813 uspgrlim 47816 |
Copyright terms: Public domain | W3C validator |