Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabeqi | Structured version Visualization version GIF version |
Description: Equality theorem for restricted class abstractions. Inference form of rabeqf 3415. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Avoid ax-10 2137, ax-11 2154, ax-12 2171. (Revised by Gino Giotto, 3-Jun-2024.) |
Ref | Expression |
---|---|
rabeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
rabeqi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqi.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eleq2i 2830 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
3 | 2 | anbi1i 624 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
4 | 3 | rabbia2 3412 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 {crab 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 |
This theorem is referenced by: rabrabiOLD 3428 f1ossf1o 7000 hsmex2 10189 iooval2 13112 fzval2 13242 phimullem 16480 pmtrsn 19127 dsmmbas2 20944 qtopres 22849 uvtxval 27754 cusgredg 27791 cffldtocusgr 27814 vtxdginducedm1 27910 finsumvtxdg2size 27917 konigsbergiedgw 28612 extwwlkfab 28716 zartopn 31825 satf0 33334 prjspeclsp 40451 k0004val0 41764 smflimlem4 44309 smfliminf 44364 |
Copyright terms: Public domain | W3C validator |