MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqi Structured version   Visualization version   GIF version

Theorem rabeqi 3419
Description: Equality theorem for restricted class abstractions. Inference form of rabeqf 3440. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by GG, 3-Jun-2024.)
Hypothesis
Ref Expression
rabeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
rabeqi {𝑥𝐴𝜑} = {𝑥𝐵𝜑}

Proof of Theorem rabeqi
StepHypRef Expression
1 rabeqi.1 . . . 4 𝐴 = 𝐵
21eleq2i 2820 . . 3 (𝑥𝐴𝑥𝐵)
32anbi1i 624 . 2 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑))
43rabbia2 3408 1 {𝑥𝐴𝜑} = {𝑥𝐵𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {crab 3405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406
This theorem is referenced by:  f1ossf1o  7100  hsmex2  10386  iooval2  13339  fzval2  13471  phimullem  16749  pmtrsn  19449  dsmmbas2  21646  qtopres  23585  left1s  27806  right1s  27807  uvtxval  29314  cusgredg  29351  cffldtocusgr  29374  cffldtocusgrOLD  29375  vtxdginducedm1  29471  finsumvtxdg2size  29478  konigsbergiedgw  30177  extwwlkfab  30281  zartopn  33865  satf0  35359  prjspeclsp  42600  k0004val0  44143  smflimlem4  46772  smfliminf  46829  isubgr0uhgr  47873  uspgrlimlem2  47988  uspgrlim  47991
  Copyright terms: Public domain W3C validator