| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqi | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted class abstractions. Inference form of rabeqf 3437. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by GG, 3-Jun-2024.) |
| Ref | Expression |
|---|---|
| rabeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rabeqi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqi.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eleq2i 2820 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
| 3 | 2 | anbi1i 624 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
| 4 | 3 | rabbia2 3405 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 |
| This theorem is referenced by: f1ossf1o 7082 hsmex2 10362 iooval2 13315 fzval2 13447 phimullem 16725 pmtrsn 19433 dsmmbas2 21679 qtopres 23618 left1s 27844 right1s 27845 uvtxval 29367 cusgredg 29404 cffldtocusgr 29427 cffldtocusgrOLD 29428 vtxdginducedm1 29524 finsumvtxdg2size 29531 konigsbergiedgw 30227 extwwlkfab 30331 zartopn 33858 satf0 35352 prjspeclsp 42593 k0004val0 44136 smflimlem4 46765 smfliminf 46822 isubgr0uhgr 47866 uspgrlimlem2 47981 uspgrlim 47984 |
| Copyright terms: Public domain | W3C validator |