Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqtr3i | Structured version Visualization version GIF version |
Description: An equality transitivity inference. (Contributed by NM, 6-May-1994.) |
Ref | Expression |
---|---|
eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
Ref | Expression |
---|---|
eqtr3i | ⊢ 𝐵 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqcomi 2748 | . 2 ⊢ 𝐵 = 𝐴 |
3 | eqtr3i.2 | . 2 ⊢ 𝐴 = 𝐶 | |
4 | 2, 3 | eqtri 2767 | 1 ⊢ 𝐵 = 𝐶 |
Copyright terms: Public domain | W3C validator |