![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabrab | Structured version Visualization version GIF version |
Description: Abstract builder restricted to another restricted abstract builder. (Contributed by Thierry Arnoux, 30-Aug-2017.) |
Ref | Expression |
---|---|
rabrab | ⊢ {𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabid 3455 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | 1 | anbi1i 624 | . . . 4 ⊢ ((𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∧ 𝜓) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) |
3 | anass 468 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
4 | 2, 3 | bitri 275 | . . 3 ⊢ ((𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) |
5 | 4 | abbii 2807 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))} |
6 | df-rab 3434 | . 2 ⊢ {𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∧ 𝜓)} | |
7 | df-rab 3434 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))} | |
8 | 5, 6, 7 | 3eqtr4i 2773 | 1 ⊢ {𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 {crab 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 |
This theorem is referenced by: rabrabiOLD 3459 extwwlkfab 30381 fpwrelmapffs 32752 |
Copyright terms: Public domain | W3C validator |