MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabrab Structured version   Visualization version   GIF version

Theorem rabrab 3433
Description: Abstract builder restricted to another restricted abstract builder. (Contributed by Thierry Arnoux, 30-Aug-2017.)
Assertion
Ref Expression
rabrab {𝑥 ∈ {𝑥𝐴𝜑} ∣ 𝜓} = {𝑥𝐴 ∣ (𝜑𝜓)}

Proof of Theorem rabrab
StepHypRef Expression
1 rabid 3430 . . . . 5 (𝑥 ∈ {𝑥𝐴𝜑} ↔ (𝑥𝐴𝜑))
21anbi1i 624 . . . 4 ((𝑥 ∈ {𝑥𝐴𝜑} ∧ 𝜓) ↔ ((𝑥𝐴𝜑) ∧ 𝜓))
3 anass 468 . . . 4 (((𝑥𝐴𝜑) ∧ 𝜓) ↔ (𝑥𝐴 ∧ (𝜑𝜓)))
42, 3bitri 275 . . 3 ((𝑥 ∈ {𝑥𝐴𝜑} ∧ 𝜓) ↔ (𝑥𝐴 ∧ (𝜑𝜓)))
54abbii 2797 . 2 {𝑥 ∣ (𝑥 ∈ {𝑥𝐴𝜑} ∧ 𝜓)} = {𝑥 ∣ (𝑥𝐴 ∧ (𝜑𝜓))}
6 df-rab 3409 . 2 {𝑥 ∈ {𝑥𝐴𝜑} ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ {𝑥𝐴𝜑} ∧ 𝜓)}
7 df-rab 3409 . 2 {𝑥𝐴 ∣ (𝜑𝜓)} = {𝑥 ∣ (𝑥𝐴 ∧ (𝜑𝜓))}
85, 6, 73eqtr4i 2763 1 {𝑥 ∈ {𝑥𝐴𝜑} ∣ 𝜓} = {𝑥𝐴 ∣ (𝜑𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {cab 2708  {crab 3408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409
This theorem is referenced by:  extwwlkfab  30288  fpwrelmapffs  32664
  Copyright terms: Public domain W3C validator