| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabrab | Structured version Visualization version GIF version | ||
| Description: Abstract builder restricted to another restricted abstract builder. (Contributed by Thierry Arnoux, 30-Aug-2017.) |
| Ref | Expression |
|---|---|
| rabrab | ⊢ {𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabid 3416 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | 1 | anbi1i 624 | . . . 4 ⊢ ((𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∧ 𝜓) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) |
| 3 | anass 468 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ ((𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) |
| 5 | 4 | abbii 2798 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))} |
| 6 | df-rab 3396 | . 2 ⊢ {𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∧ 𝜓)} | |
| 7 | df-rab 3396 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))} | |
| 8 | 5, 6, 7 | 3eqtr4i 2764 | 1 ⊢ {𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 {crab 3395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 |
| This theorem is referenced by: extwwlkfab 30332 fpwrelmapffs 32717 |
| Copyright terms: Public domain | W3C validator |