![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabrab | Structured version Visualization version GIF version |
Description: Abstract builder restricted to another restricted abstract builder. (Contributed by Thierry Arnoux, 30-Aug-2017.) |
Ref | Expression |
---|---|
rabrab | ⊢ {𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabid 3465 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | 1 | anbi1i 623 | . . . 4 ⊢ ((𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∧ 𝜓) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) |
3 | anass 468 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
4 | 2, 3 | bitri 275 | . . 3 ⊢ ((𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) |
5 | 4 | abbii 2812 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))} |
6 | df-rab 3444 | . 2 ⊢ {𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∧ 𝜓)} | |
7 | df-rab 3444 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))} | |
8 | 5, 6, 7 | 3eqtr4i 2778 | 1 ⊢ {𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 {crab 3443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 |
This theorem is referenced by: rabrabiOLD 3469 extwwlkfab 30384 fpwrelmapffs 32748 |
Copyright terms: Public domain | W3C validator |