Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabsnel Structured version   Visualization version   GIF version

Theorem rabsnel 30847
Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by Thierry Arnoux, 15-Sep-2018.)
Hypothesis
Ref Expression
rabsnel.1 𝐵 ∈ V
Assertion
Ref Expression
rabsnel ({𝑥𝐴𝜑} = {𝐵} → 𝐵𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabsnel
StepHypRef Expression
1 rabsnel.1 . . . 4 𝐵 ∈ V
21snid 4597 . . 3 𝐵 ∈ {𝐵}
3 eleq2 2827 . . 3 ({𝑥𝐴𝜑} = {𝐵} → (𝐵 ∈ {𝑥𝐴𝜑} ↔ 𝐵 ∈ {𝐵}))
42, 3mpbiri 257 . 2 ({𝑥𝐴𝜑} = {𝐵} → 𝐵 ∈ {𝑥𝐴𝜑})
5 elrabi 3618 . 2 (𝐵 ∈ {𝑥𝐴𝜑} → 𝐵𝐴)
64, 5syl 17 1 ({𝑥𝐴𝜑} = {𝐵} → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  {csn 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-sn 4562
This theorem is referenced by:  ddemeas  32204
  Copyright terms: Public domain W3C validator