| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rabsnel | Structured version Visualization version GIF version | ||
| Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by Thierry Arnoux, 15-Sep-2018.) |
| Ref | Expression |
|---|---|
| rabsnel.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| rabsnel | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabsnel.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 2 | 1 | snid 4642 | . . 3 ⊢ 𝐵 ∈ {𝐵} |
| 3 | eleq2 2822 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → (𝐵 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝐵 ∈ {𝐵})) | |
| 4 | 2, 3 | mpbiri 258 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝐵 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
| 5 | elrabi 3670 | . 2 ⊢ (𝐵 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝐵 ∈ 𝐴) | |
| 6 | 4, 5 | syl 17 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝐵 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3419 Vcvv 3463 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-sn 4607 |
| This theorem is referenced by: ddemeas 34212 |
| Copyright terms: Public domain | W3C validator |