Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabsnel Structured version   Visualization version   GIF version

Theorem rabsnel 32448
Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by Thierry Arnoux, 15-Sep-2018.)
Hypothesis
Ref Expression
rabsnel.1 𝐵 ∈ V
Assertion
Ref Expression
rabsnel ({𝑥𝐴𝜑} = {𝐵} → 𝐵𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabsnel
StepHypRef Expression
1 rabsnel.1 . . . 4 𝐵 ∈ V
21snid 4642 . . 3 𝐵 ∈ {𝐵}
3 eleq2 2822 . . 3 ({𝑥𝐴𝜑} = {𝐵} → (𝐵 ∈ {𝑥𝐴𝜑} ↔ 𝐵 ∈ {𝐵}))
42, 3mpbiri 258 . 2 ({𝑥𝐴𝜑} = {𝐵} → 𝐵 ∈ {𝑥𝐴𝜑})
5 elrabi 3670 . 2 (𝐵 ∈ {𝑥𝐴𝜑} → 𝐵𝐴)
64, 5syl 17 1 ({𝑥𝐴𝜑} = {𝐵} → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {crab 3419  Vcvv 3463  {csn 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-sn 4607
This theorem is referenced by:  ddemeas  34212
  Copyright terms: Public domain W3C validator