![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqrrabd | Structured version Visualization version GIF version |
Description: Deduce equality with a restricted abstraction. (Contributed by Thierry Arnoux, 11-Apr-2024.) |
Ref | Expression |
---|---|
eqrrabd.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
eqrrabd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) |
Ref | Expression |
---|---|
eqrrabd | ⊢ (𝜑 → 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1909 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfcv 2899 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | nfrab1 3450 | . 2 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜓} | |
4 | eqrrabd.1 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
5 | 4 | sseld 3981 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) |
6 | 5 | pm4.71rd 561 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
7 | eqrrabd.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) | |
8 | 7 | pm5.32da 577 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓))) |
9 | 6, 8 | bitrd 278 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∧ 𝜓))) |
10 | rabid 3451 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) | |
11 | 9, 10 | bitr4di 288 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) |
12 | 1, 2, 3, 11 | eqrd 4001 | 1 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3430 ⊆ wss 3949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-rab 3431 df-v 3475 df-in 3956 df-ss 3966 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |