![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqrrabd | Structured version Visualization version GIF version |
Description: Deduce equality with a restricted abstraction. (Contributed by Thierry Arnoux, 11-Apr-2024.) |
Ref | Expression |
---|---|
eqrrabd.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
eqrrabd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) |
Ref | Expression |
---|---|
eqrrabd | ⊢ (𝜑 → 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfcv 2904 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | nfrab1 3452 | . 2 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜓} | |
4 | eqrrabd.1 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
5 | 4 | sseld 3982 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) |
6 | 5 | pm4.71rd 564 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
7 | eqrrabd.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) | |
8 | 7 | pm5.32da 580 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓))) |
9 | 6, 8 | bitrd 279 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∧ 𝜓))) |
10 | rabid 3453 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) | |
11 | 9, 10 | bitr4di 289 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) |
12 | 1, 2, 3, 11 | eqrd 4002 | 1 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {crab 3433 ⊆ wss 3949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rab 3434 df-v 3477 df-in 3956 df-ss 3966 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |