| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqrrabd | Structured version Visualization version GIF version | ||
| Description: Deduce equality with a restricted abstraction. (Contributed by Thierry Arnoux, 11-Apr-2024.) |
| Ref | Expression |
|---|---|
| eqrrabd.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| eqrrabd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| eqrrabd | ⊢ (𝜑 → 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfcv 2894 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | nfrab1 3415 | . 2 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜓} | |
| 4 | eqrrabd.1 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 5 | 4 | sseld 3928 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) |
| 6 | 5 | pm4.71rd 562 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
| 7 | eqrrabd.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) | |
| 8 | 7 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓))) |
| 9 | 6, 8 | bitrd 279 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∧ 𝜓))) |
| 10 | rabid 3416 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 11 | 9, 10 | bitr4di 289 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) |
| 12 | 1, 2, 3, 11 | eqrd 3949 | 1 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-ss 3914 |
| This theorem is referenced by: usgrexmpl2nb0 48062 usgrexmpl2nb1 48063 usgrexmpl2nb2 48064 usgrexmpl2nb3 48065 usgrexmpl2nb4 48066 usgrexmpl2nb5 48067 |
| Copyright terms: Public domain | W3C validator |