Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqrrabd Structured version   Visualization version   GIF version

Theorem eqrrabd 30828
Description: Deduce equality with a restricted abstraction. (Contributed by Thierry Arnoux, 11-Apr-2024.)
Hypotheses
Ref Expression
eqrrabd.1 (𝜑𝐵𝐴)
eqrrabd.2 ((𝜑𝑥𝐴) → (𝑥𝐵𝜓))
Assertion
Ref Expression
eqrrabd (𝜑𝐵 = {𝑥𝐴𝜓})
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem eqrrabd
StepHypRef Expression
1 nfv 1920 . 2 𝑥𝜑
2 nfcv 2908 . 2 𝑥𝐵
3 nfrab1 3315 . 2 𝑥{𝑥𝐴𝜓}
4 eqrrabd.1 . . . . . 6 (𝜑𝐵𝐴)
54sseld 3924 . . . . 5 (𝜑 → (𝑥𝐵𝑥𝐴))
65pm4.71rd 562 . . . 4 (𝜑 → (𝑥𝐵 ↔ (𝑥𝐴𝑥𝐵)))
7 eqrrabd.2 . . . . 5 ((𝜑𝑥𝐴) → (𝑥𝐵𝜓))
87pm5.32da 578 . . . 4 (𝜑 → ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴𝜓)))
96, 8bitrd 278 . . 3 (𝜑 → (𝑥𝐵 ↔ (𝑥𝐴𝜓)))
10 rabid 3308 . . 3 (𝑥 ∈ {𝑥𝐴𝜓} ↔ (𝑥𝐴𝜓))
119, 10bitr4di 288 . 2 (𝜑 → (𝑥𝐵𝑥 ∈ {𝑥𝐴𝜓}))
121, 2, 3, 11eqrd 3944 1 (𝜑𝐵 = {𝑥𝐴𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  {crab 3069  wss 3891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-rab 3074  df-v 3432  df-in 3898  df-ss 3908
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator