| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqrrabd | Structured version Visualization version GIF version | ||
| Description: Deduce equality with a restricted abstraction. (Contributed by Thierry Arnoux, 11-Apr-2024.) |
| Ref | Expression |
|---|---|
| eqrrabd.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| eqrrabd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| eqrrabd | ⊢ (𝜑 → 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1913 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfcv 2897 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | nfrab1 3441 | . 2 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜓} | |
| 4 | eqrrabd.1 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 5 | 4 | sseld 3964 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) |
| 6 | 5 | pm4.71rd 562 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
| 7 | eqrrabd.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) | |
| 8 | 7 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓))) |
| 9 | 6, 8 | bitrd 279 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∧ 𝜓))) |
| 10 | rabid 3442 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 11 | 9, 10 | bitr4di 289 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) |
| 12 | 1, 2, 3, 11 | eqrd 3985 | 1 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3420 ⊆ wss 3933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rab 3421 df-ss 3950 |
| This theorem is referenced by: usgrexmpl2nb0 47936 usgrexmpl2nb1 47937 usgrexmpl2nb2 47938 usgrexmpl2nb3 47939 usgrexmpl2nb4 47940 usgrexmpl2nb5 47941 |
| Copyright terms: Public domain | W3C validator |