Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ddemeas Structured version   Visualization version   GIF version

Theorem ddemeas 31603
Description: The Dirac delta measure is a measure. (Contributed by Thierry Arnoux, 14-Sep-2018.)
Assertion
Ref Expression
ddemeas δ ∈ (measures‘𝒫 ℝ)

Proof of Theorem ddemeas
Dummy variables 𝑘 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1xr 10693 . . . . . 6 1 ∈ ℝ*
2 0le1 11156 . . . . . 6 0 ≤ 1
3 pnfge 12517 . . . . . . 7 (1 ∈ ℝ* → 1 ≤ +∞)
41, 3ax-mp 5 . . . . . 6 1 ≤ +∞
5 0xr 10681 . . . . . . 7 0 ∈ ℝ*
6 pnfxr 10688 . . . . . . 7 +∞ ∈ ℝ*
7 elicc1 12774 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧ 1 ≤ +∞)))
85, 6, 7mp2an 691 . . . . . 6 (1 ∈ (0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧ 1 ≤ +∞))
91, 2, 4, 8mpbir3an 1338 . . . . 5 1 ∈ (0[,]+∞)
10 0e0iccpnf 12841 . . . . 5 0 ∈ (0[,]+∞)
119, 10ifcli 4474 . . . 4 if(0 ∈ 𝑎, 1, 0) ∈ (0[,]+∞)
1211rgenw 3121 . . 3 𝑎 ∈ 𝒫 ℝif(0 ∈ 𝑎, 1, 0) ∈ (0[,]+∞)
13 df-dde 31600 . . . 4 δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈ 𝑎, 1, 0))
1413fmpt 6855 . . 3 (∀𝑎 ∈ 𝒫 ℝif(0 ∈ 𝑎, 1, 0) ∈ (0[,]+∞) ↔ δ:𝒫 ℝ⟶(0[,]+∞))
1512, 14mpbi 233 . 2 δ:𝒫 ℝ⟶(0[,]+∞)
16 0ss 4307 . . 3 ∅ ⊆ ℝ
17 noel 4250 . . 3 ¬ 0 ∈ ∅
18 ddeval0 31602 . . 3 ((∅ ⊆ ℝ ∧ ¬ 0 ∈ ∅) → (δ‘∅) = 0)
1916, 17, 18mp2an 691 . 2 (δ‘∅) = 0
20 rabxm 4297 . . . . . . . . 9 𝑥 = ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎})
21 esumeq1 31401 . . . . . . . . 9 (𝑥 = ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → Σ*𝑦𝑥(δ‘𝑦) = Σ*𝑦 ∈ ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎})(δ‘𝑦))
2220, 21ax-mp 5 . . . . . . . 8 Σ*𝑦𝑥(δ‘𝑦) = Σ*𝑦 ∈ ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎})(δ‘𝑦)
23 nfv 1915 . . . . . . . . 9 𝑦 𝑥 ∈ 𝒫 𝒫 ℝ
24 nfcv 2958 . . . . . . . . 9 𝑦{𝑎𝑥 ∣ 0 ∈ 𝑎}
25 nfcv 2958 . . . . . . . . 9 𝑦{𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}
26 rabexg 5201 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝒫 ℝ → {𝑎𝑥 ∣ 0 ∈ 𝑎} ∈ V)
27 rabexg 5201 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝒫 ℝ → {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} ∈ V)
28 rabnc 4298 . . . . . . . . . 10 ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∩ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) = ∅
2928a1i 11 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝒫 ℝ → ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∩ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) = ∅)
30 elrabi 3626 . . . . . . . . . . . 12 (𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} → 𝑦𝑥)
3130adantl 485 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎}) → 𝑦𝑥)
32 simpl 486 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎}) → 𝑥 ∈ 𝒫 𝒫 ℝ)
33 elelpwi 4512 . . . . . . . . . . 11 ((𝑦𝑥𝑥 ∈ 𝒫 𝒫 ℝ) → 𝑦 ∈ 𝒫 ℝ)
3431, 32, 33syl2anc 587 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎}) → 𝑦 ∈ 𝒫 ℝ)
3515ffvelrni 6831 . . . . . . . . . 10 (𝑦 ∈ 𝒫 ℝ → (δ‘𝑦) ∈ (0[,]+∞))
3634, 35syl 17 . . . . . . . . 9 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎}) → (δ‘𝑦) ∈ (0[,]+∞))
37 elrabi 3626 . . . . . . . . . . . 12 (𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} → 𝑦𝑥)
3837adantl 485 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑦𝑥)
39 simpl 486 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑥 ∈ 𝒫 𝒫 ℝ)
4038, 39, 33syl2anc 587 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑦 ∈ 𝒫 ℝ)
4140, 35syl 17 . . . . . . . . 9 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → (δ‘𝑦) ∈ (0[,]+∞))
4223, 24, 25, 26, 27, 29, 36, 41esumsplit 31420 . . . . . . . 8 (𝑥 ∈ 𝒫 𝒫 ℝ → Σ*𝑦 ∈ ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎})(δ‘𝑦) = (Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒 Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦)))
4322, 42syl5eq 2848 . . . . . . 7 (𝑥 ∈ 𝒫 𝒫 ℝ → Σ*𝑦𝑥(δ‘𝑦) = (Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒 Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦)))
4443adantr 484 . . . . . 6 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → Σ*𝑦𝑥(δ‘𝑦) = (Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒 Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦)))
45 esumeq1 31401 . . . . . . . . . . . 12 ({𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ {𝑘} (δ‘𝑦))
4645adantl 485 . . . . . . . . . . 11 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ {𝑘} (δ‘𝑦))
47 simp-4l 782 . . . . . . . . . . . 12 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → 𝑥 ∈ 𝒫 𝒫 ℝ)
48 vex 3447 . . . . . . . . . . . . . 14 𝑘 ∈ V
4948rabsnel 30273 . . . . . . . . . . . . 13 ({𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → 𝑘𝑥)
5049adantl 485 . . . . . . . . . . . 12 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → 𝑘𝑥)
51 eleq2w 2876 . . . . . . . . . . . . . 14 (𝑎 = 𝑘 → (0 ∈ 𝑎 ↔ 0 ∈ 𝑘))
5248, 51rabsnt 4630 . . . . . . . . . . . . 13 ({𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → 0 ∈ 𝑘)
5352adantl 485 . . . . . . . . . . . 12 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → 0 ∈ 𝑘)
54 elelpwi 4512 . . . . . . . . . . . . . . . 16 ((𝑘𝑥𝑥 ∈ 𝒫 𝒫 ℝ) → 𝑘 ∈ 𝒫 ℝ)
5554ancoms 462 . . . . . . . . . . . . . . 15 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑘𝑥) → 𝑘 ∈ 𝒫 ℝ)
5655adantrr 716 . . . . . . . . . . . . . 14 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → 𝑘 ∈ 𝒫 ℝ)
57 simpr 488 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ 𝒫 ℝ ∧ 𝑦 = 𝑘) → 𝑦 = 𝑘)
5857fveq2d 6653 . . . . . . . . . . . . . . 15 ((𝑘 ∈ 𝒫 ℝ ∧ 𝑦 = 𝑘) → (δ‘𝑦) = (δ‘𝑘))
5948a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ 𝒫 ℝ → 𝑘 ∈ V)
6015ffvelrni 6831 . . . . . . . . . . . . . . 15 (𝑘 ∈ 𝒫 ℝ → (δ‘𝑘) ∈ (0[,]+∞))
6158, 59, 60esumsn 31432 . . . . . . . . . . . . . 14 (𝑘 ∈ 𝒫 ℝ → Σ*𝑦 ∈ {𝑘} (δ‘𝑦) = (δ‘𝑘))
6256, 61syl 17 . . . . . . . . . . . . 13 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → Σ*𝑦 ∈ {𝑘} (δ‘𝑦) = (δ‘𝑘))
6356elpwid 4511 . . . . . . . . . . . . . 14 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → 𝑘 ⊆ ℝ)
64 simprr 772 . . . . . . . . . . . . . 14 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → 0 ∈ 𝑘)
65 ddeval1 31601 . . . . . . . . . . . . . 14 ((𝑘 ⊆ ℝ ∧ 0 ∈ 𝑘) → (δ‘𝑘) = 1)
6663, 64, 65syl2anc 587 . . . . . . . . . . . . 13 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → (δ‘𝑘) = 1)
6762, 66eqtrd 2836 . . . . . . . . . . . 12 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → Σ*𝑦 ∈ {𝑘} (δ‘𝑦) = 1)
6847, 50, 53, 67syl12anc 835 . . . . . . . . . . 11 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → Σ*𝑦 ∈ {𝑘} (δ‘𝑦) = 1)
6946, 68eqtrd 2836 . . . . . . . . . 10 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 1)
70 df-disj 4999 . . . . . . . . . . . . . . 15 (Disj 𝑦𝑥 𝑦 ↔ ∀𝑘∃*𝑦𝑥 𝑘𝑦)
71 c0ex 10628 . . . . . . . . . . . . . . . 16 0 ∈ V
72 eleq1 2880 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑘𝑦 ↔ 0 ∈ 𝑦))
7372rmobidv 3350 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (∃*𝑦𝑥 𝑘𝑦 ↔ ∃*𝑦𝑥 0 ∈ 𝑦))
7471, 73spcv 3557 . . . . . . . . . . . . . . 15 (∀𝑘∃*𝑦𝑥 𝑘𝑦 → ∃*𝑦𝑥 0 ∈ 𝑦)
7570, 74sylbi 220 . . . . . . . . . . . . . 14 (Disj 𝑦𝑥 𝑦 → ∃*𝑦𝑥 0 ∈ 𝑦)
76 rmo5 3382 . . . . . . . . . . . . . . . 16 (∃*𝑦𝑥 0 ∈ 𝑦 ↔ (∃𝑦𝑥 0 ∈ 𝑦 → ∃!𝑦𝑥 0 ∈ 𝑦))
7776biimpi 219 . . . . . . . . . . . . . . 15 (∃*𝑦𝑥 0 ∈ 𝑦 → (∃𝑦𝑥 0 ∈ 𝑦 → ∃!𝑦𝑥 0 ∈ 𝑦))
7877imp 410 . . . . . . . . . . . . . 14 ((∃*𝑦𝑥 0 ∈ 𝑦 ∧ ∃𝑦𝑥 0 ∈ 𝑦) → ∃!𝑦𝑥 0 ∈ 𝑦)
7975, 78sylan 583 . . . . . . . . . . . . 13 ((Disj 𝑦𝑥 𝑦 ∧ ∃𝑦𝑥 0 ∈ 𝑦) → ∃!𝑦𝑥 0 ∈ 𝑦)
80 reusn 4626 . . . . . . . . . . . . 13 (∃!𝑦𝑥 0 ∈ 𝑦 ↔ ∃𝑘{𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘})
8179, 80sylib 221 . . . . . . . . . . . 12 ((Disj 𝑦𝑥 𝑦 ∧ ∃𝑦𝑥 0 ∈ 𝑦) → ∃𝑘{𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘})
82 eleq2w 2876 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑦 → (0 ∈ 𝑎 ↔ 0 ∈ 𝑦))
8382cbvrabv 3442 . . . . . . . . . . . . . . . 16 {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑦𝑥 ∣ 0 ∈ 𝑦}
8483eqeq1i 2806 . . . . . . . . . . . . . . 15 ({𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} ↔ {𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘})
8549ancri 553 . . . . . . . . . . . . . . 15 ({𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → (𝑘𝑥 ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}))
8684, 85sylbir 238 . . . . . . . . . . . . . 14 ({𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘} → (𝑘𝑥 ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}))
8786eximi 1836 . . . . . . . . . . . . 13 (∃𝑘{𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘} → ∃𝑘(𝑘𝑥 ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}))
88 df-rex 3115 . . . . . . . . . . . . 13 (∃𝑘𝑥 {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} ↔ ∃𝑘(𝑘𝑥 ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}))
8987, 88sylibr 237 . . . . . . . . . . . 12 (∃𝑘{𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘} → ∃𝑘𝑥 {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘})
9081, 89syl 17 . . . . . . . . . . 11 ((Disj 𝑦𝑥 𝑦 ∧ ∃𝑦𝑥 0 ∈ 𝑦) → ∃𝑘𝑥 {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘})
9190adantll 713 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) → ∃𝑘𝑥 {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘})
9269, 91r19.29a 3251 . . . . . . . . 9 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 1)
93 elpwi 4509 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 𝒫 ℝ → 𝑥 ⊆ 𝒫 ℝ)
94 sspwuni 4988 . . . . . . . . . . . 12 (𝑥 ⊆ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ)
9593, 94sylib 221 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝒫 ℝ → 𝑥 ⊆ ℝ)
96 eluni2 4807 . . . . . . . . . . . 12 (0 ∈ 𝑥 ↔ ∃𝑦𝑥 0 ∈ 𝑦)
9796biimpri 231 . . . . . . . . . . 11 (∃𝑦𝑥 0 ∈ 𝑦 → 0 ∈ 𝑥)
98 ddeval1 31601 . . . . . . . . . . 11 (( 𝑥 ⊆ ℝ ∧ 0 ∈ 𝑥) → (δ‘ 𝑥) = 1)
9995, 97, 98syl2an 598 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ ∃𝑦𝑥 0 ∈ 𝑦) → (δ‘ 𝑥) = 1)
10099adantlr 714 . . . . . . . . 9 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) → (δ‘ 𝑥) = 1)
10192, 100eqtr4d 2839 . . . . . . . 8 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = (δ‘ 𝑥))
102 nfre1 3268 . . . . . . . . . . . . 13 𝑦𝑦𝑥 0 ∈ 𝑦
103102nfn 1858 . . . . . . . . . . . 12 𝑦 ¬ ∃𝑦𝑥 0 ∈ 𝑦
10482elrab 3631 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} ↔ (𝑦𝑥 ∧ 0 ∈ 𝑦))
105104exbii 1849 . . . . . . . . . . . . . . 15 (∃𝑦 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} ↔ ∃𝑦(𝑦𝑥 ∧ 0 ∈ 𝑦))
106 neq0 4262 . . . . . . . . . . . . . . 15 (¬ {𝑎𝑥 ∣ 0 ∈ 𝑎} = ∅ ↔ ∃𝑦 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎})
107 df-rex 3115 . . . . . . . . . . . . . . 15 (∃𝑦𝑥 0 ∈ 𝑦 ↔ ∃𝑦(𝑦𝑥 ∧ 0 ∈ 𝑦))
108105, 106, 1073bitr4i 306 . . . . . . . . . . . . . 14 (¬ {𝑎𝑥 ∣ 0 ∈ 𝑎} = ∅ ↔ ∃𝑦𝑥 0 ∈ 𝑦)
109108biimpi 219 . . . . . . . . . . . . 13 (¬ {𝑎𝑥 ∣ 0 ∈ 𝑎} = ∅ → ∃𝑦𝑥 0 ∈ 𝑦)
110109con1i 149 . . . . . . . . . . . 12 (¬ ∃𝑦𝑥 0 ∈ 𝑦 → {𝑎𝑥 ∣ 0 ∈ 𝑎} = ∅)
111103, 110esumeq1d 31402 . . . . . . . . . . 11 (¬ ∃𝑦𝑥 0 ∈ 𝑦 → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ ∅(δ‘𝑦))
112 esumnul 31415 . . . . . . . . . . 11 Σ*𝑦 ∈ ∅(δ‘𝑦) = 0
113111, 112eqtrdi 2852 . . . . . . . . . 10 (¬ ∃𝑦𝑥 0 ∈ 𝑦 → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 0)
114113adantl 485 . . . . . . . . 9 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ¬ ∃𝑦𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 0)
11596biimpi 219 . . . . . . . . . . . 12 (0 ∈ 𝑥 → ∃𝑦𝑥 0 ∈ 𝑦)
116115con3i 157 . . . . . . . . . . 11 (¬ ∃𝑦𝑥 0 ∈ 𝑦 → ¬ 0 ∈ 𝑥)
117 ddeval0 31602 . . . . . . . . . . 11 (( 𝑥 ⊆ ℝ ∧ ¬ 0 ∈ 𝑥) → (δ‘ 𝑥) = 0)
11895, 116, 117syl2an 598 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ ¬ ∃𝑦𝑥 0 ∈ 𝑦) → (δ‘ 𝑥) = 0)
119118adantlr 714 . . . . . . . . 9 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ¬ ∃𝑦𝑥 0 ∈ 𝑦) → (δ‘ 𝑥) = 0)
120114, 119eqtr4d 2839 . . . . . . . 8 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ¬ ∃𝑦𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = (δ‘ 𝑥))
121101, 120pm2.61dan 812 . . . . . . 7 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = (δ‘ 𝑥))
12240elpwid 4511 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑦 ⊆ ℝ)
12382notbid 321 . . . . . . . . . . . . . 14 (𝑎 = 𝑦 → (¬ 0 ∈ 𝑎 ↔ ¬ 0 ∈ 𝑦))
124123elrab 3631 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} ↔ (𝑦𝑥 ∧ ¬ 0 ∈ 𝑦))
125124simprbi 500 . . . . . . . . . . . 12 (𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} → ¬ 0 ∈ 𝑦)
126125adantl 485 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → ¬ 0 ∈ 𝑦)
127 ddeval0 31602 . . . . . . . . . . 11 ((𝑦 ⊆ ℝ ∧ ¬ 0 ∈ 𝑦) → (δ‘𝑦) = 0)
128122, 126, 127syl2anc 587 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → (δ‘𝑦) = 0)
129128esumeq2dv 31405 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝒫 ℝ → Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}0)
130 vex 3447 . . . . . . . . . . 11 𝑥 ∈ V
131130rabex 5202 . . . . . . . . . 10 {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} ∈ V
13225esum0 31416 . . . . . . . . . 10 ({𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} ∈ V → Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}0 = 0)
133131, 132ax-mp 5 . . . . . . . . 9 Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}0 = 0
134129, 133eqtrdi 2852 . . . . . . . 8 (𝑥 ∈ 𝒫 𝒫 ℝ → Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦) = 0)
135134adantr 484 . . . . . . 7 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦) = 0)
136121, 135oveq12d 7157 . . . . . 6 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → (Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒 Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦)) = ((δ‘ 𝑥) +𝑒 0))
137 vuniex 7449 . . . . . . . . . 10 𝑥 ∈ V
138137elpw 4504 . . . . . . . . 9 ( 𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ)
139138biimpri 231 . . . . . . . 8 ( 𝑥 ⊆ ℝ → 𝑥 ∈ 𝒫 ℝ)
140 iccssxr 12812 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
14115ffvelrni 6831 . . . . . . . . 9 ( 𝑥 ∈ 𝒫 ℝ → (δ‘ 𝑥) ∈ (0[,]+∞))
142140, 141sseldi 3916 . . . . . . . 8 ( 𝑥 ∈ 𝒫 ℝ → (δ‘ 𝑥) ∈ ℝ*)
143 xaddid1 12626 . . . . . . . 8 ((δ‘ 𝑥) ∈ ℝ* → ((δ‘ 𝑥) +𝑒 0) = (δ‘ 𝑥))
14495, 139, 142, 1434syl 19 . . . . . . 7 (𝑥 ∈ 𝒫 𝒫 ℝ → ((δ‘ 𝑥) +𝑒 0) = (δ‘ 𝑥))
145144adantr 484 . . . . . 6 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → ((δ‘ 𝑥) +𝑒 0) = (δ‘ 𝑥))
14644, 136, 1453eqtrrd 2841 . . . . 5 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦))
147146adantrl 715 . . . 4 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦))
148147ex 416 . . 3 (𝑥 ∈ 𝒫 𝒫 ℝ → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦)))
149148rgen 3119 . 2 𝑥 ∈ 𝒫 𝒫 ℝ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦))
150 reex 10621 . . . 4 ℝ ∈ V
151 pwsiga 31497 . . . 4 (ℝ ∈ V → 𝒫 ℝ ∈ (sigAlgebra‘ℝ))
152150, 151ax-mp 5 . . 3 𝒫 ℝ ∈ (sigAlgebra‘ℝ)
153 elrnsiga 31493 . . 3 (𝒫 ℝ ∈ (sigAlgebra‘ℝ) → 𝒫 ℝ ∈ ran sigAlgebra)
154 ismeas 31566 . . 3 (𝒫 ℝ ∈ ran sigAlgebra → (δ ∈ (measures‘𝒫 ℝ) ↔ (δ:𝒫 ℝ⟶(0[,]+∞) ∧ (δ‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝒫 ℝ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦)))))
155152, 153, 154mp2b 10 . 2 (δ ∈ (measures‘𝒫 ℝ) ↔ (δ:𝒫 ℝ⟶(0[,]+∞) ∧ (δ‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝒫 ℝ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦))))
15615, 19, 149, 155mpbir3an 1338 1 δ ∈ (measures‘𝒫 ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084  wal 1536   = wceq 1538  wex 1781  wcel 2112  wral 3109  wrex 3110  ∃!wreu 3111  ∃*wrmo 3112  {crab 3113  Vcvv 3444  cun 3882  cin 3883  wss 3884  c0 4246  ifcif 4428  𝒫 cpw 4500  {csn 4528   cuni 4803  Disj wdisj 4998   class class class wbr 5033  ran crn 5524  wf 6324  cfv 6328  (class class class)co 7139  ωcom 7564  cdom 8494  cr 10529  0cc0 10530  1c1 10531  +∞cpnf 10665  *cxr 10667  cle 10669   +𝑒 cxad 12497  [,]cicc 12733  Σ*cesum 31394  sigAlgebracsiga 31475  measurescmeas 31562  δcdde 31599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-disj 4999  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-shft 14421  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-ef 15416  df-sin 15418  df-cos 15419  df-pi 15421  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-ordt 16769  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-ps 17805  df-tsr 17806  df-plusf 17846  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-mulg 18220  df-subg 18271  df-cntz 18442  df-cmn 18903  df-abl 18904  df-mgp 19236  df-ur 19248  df-ring 19295  df-cring 19296  df-subrg 19529  df-abv 19584  df-lmod 19632  df-scaf 19633  df-sra 19940  df-rgmod 19941  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-fbas 20091  df-fg 20092  df-cnfld 20095  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-tmd 22680  df-tgp 22681  df-tsms 22735  df-trg 22768  df-xms 22930  df-ms 22931  df-tms 22932  df-nm 23192  df-ngp 23193  df-nrg 23195  df-nlm 23196  df-ii 23485  df-cncf 23486  df-limc 24472  df-dv 24473  df-log 25151  df-esum 31395  df-siga 31476  df-meas 31563  df-dde 31600
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator