Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ddemeas Structured version   Visualization version   GIF version

Theorem ddemeas 33888
Description: The Dirac delta measure is a measure. (Contributed by Thierry Arnoux, 14-Sep-2018.)
Assertion
Ref Expression
ddemeas δ ∈ (measures‘𝒫 ℝ)

Proof of Theorem ddemeas
Dummy variables 𝑘 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1xr 11311 . . . . . 6 1 ∈ ℝ*
2 0le1 11775 . . . . . 6 0 ≤ 1
3 pnfge 13150 . . . . . . 7 (1 ∈ ℝ* → 1 ≤ +∞)
41, 3ax-mp 5 . . . . . 6 1 ≤ +∞
5 0xr 11299 . . . . . . 7 0 ∈ ℝ*
6 pnfxr 11306 . . . . . . 7 +∞ ∈ ℝ*
7 elicc1 13408 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧ 1 ≤ +∞)))
85, 6, 7mp2an 690 . . . . . 6 (1 ∈ (0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧ 1 ≤ +∞))
91, 2, 4, 8mpbir3an 1338 . . . . 5 1 ∈ (0[,]+∞)
10 0e0iccpnf 13476 . . . . 5 0 ∈ (0[,]+∞)
119, 10ifcli 4579 . . . 4 if(0 ∈ 𝑎, 1, 0) ∈ (0[,]+∞)
1211rgenw 3062 . . 3 𝑎 ∈ 𝒫 ℝif(0 ∈ 𝑎, 1, 0) ∈ (0[,]+∞)
13 df-dde 33885 . . . 4 δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈ 𝑎, 1, 0))
1413fmpt 7125 . . 3 (∀𝑎 ∈ 𝒫 ℝif(0 ∈ 𝑎, 1, 0) ∈ (0[,]+∞) ↔ δ:𝒫 ℝ⟶(0[,]+∞))
1512, 14mpbi 229 . 2 δ:𝒫 ℝ⟶(0[,]+∞)
16 0ss 4400 . . 3 ∅ ⊆ ℝ
17 noel 4334 . . 3 ¬ 0 ∈ ∅
18 ddeval0 33887 . . 3 ((∅ ⊆ ℝ ∧ ¬ 0 ∈ ∅) → (δ‘∅) = 0)
1916, 17, 18mp2an 690 . 2 (δ‘∅) = 0
20 rabxm 4390 . . . . . . . . 9 𝑥 = ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎})
21 esumeq1 33686 . . . . . . . . 9 (𝑥 = ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → Σ*𝑦𝑥(δ‘𝑦) = Σ*𝑦 ∈ ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎})(δ‘𝑦))
2220, 21ax-mp 5 . . . . . . . 8 Σ*𝑦𝑥(δ‘𝑦) = Σ*𝑦 ∈ ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎})(δ‘𝑦)
23 nfv 1909 . . . . . . . . 9 𝑦 𝑥 ∈ 𝒫 𝒫 ℝ
24 nfcv 2899 . . . . . . . . 9 𝑦{𝑎𝑥 ∣ 0 ∈ 𝑎}
25 nfcv 2899 . . . . . . . . 9 𝑦{𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}
26 rabexg 5337 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝒫 ℝ → {𝑎𝑥 ∣ 0 ∈ 𝑎} ∈ V)
27 rabexg 5337 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝒫 ℝ → {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} ∈ V)
28 rabnc 4391 . . . . . . . . . 10 ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∩ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) = ∅
2928a1i 11 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝒫 ℝ → ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∩ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) = ∅)
30 elrabi 3678 . . . . . . . . . . . 12 (𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} → 𝑦𝑥)
3130adantl 480 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎}) → 𝑦𝑥)
32 simpl 481 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎}) → 𝑥 ∈ 𝒫 𝒫 ℝ)
33 elelpwi 4616 . . . . . . . . . . 11 ((𝑦𝑥𝑥 ∈ 𝒫 𝒫 ℝ) → 𝑦 ∈ 𝒫 ℝ)
3431, 32, 33syl2anc 582 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎}) → 𝑦 ∈ 𝒫 ℝ)
3515ffvelcdmi 7098 . . . . . . . . . 10 (𝑦 ∈ 𝒫 ℝ → (δ‘𝑦) ∈ (0[,]+∞))
3634, 35syl 17 . . . . . . . . 9 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎}) → (δ‘𝑦) ∈ (0[,]+∞))
37 elrabi 3678 . . . . . . . . . . . 12 (𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} → 𝑦𝑥)
3837adantl 480 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑦𝑥)
39 simpl 481 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑥 ∈ 𝒫 𝒫 ℝ)
4038, 39, 33syl2anc 582 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑦 ∈ 𝒫 ℝ)
4140, 35syl 17 . . . . . . . . 9 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → (δ‘𝑦) ∈ (0[,]+∞))
4223, 24, 25, 26, 27, 29, 36, 41esumsplit 33705 . . . . . . . 8 (𝑥 ∈ 𝒫 𝒫 ℝ → Σ*𝑦 ∈ ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎})(δ‘𝑦) = (Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒 Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦)))
4322, 42eqtrid 2780 . . . . . . 7 (𝑥 ∈ 𝒫 𝒫 ℝ → Σ*𝑦𝑥(δ‘𝑦) = (Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒 Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦)))
4443adantr 479 . . . . . 6 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → Σ*𝑦𝑥(δ‘𝑦) = (Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒 Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦)))
45 esumeq1 33686 . . . . . . . . . . . 12 ({𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ {𝑘} (δ‘𝑦))
4645adantl 480 . . . . . . . . . . 11 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ {𝑘} (δ‘𝑦))
47 simp-4l 781 . . . . . . . . . . . 12 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → 𝑥 ∈ 𝒫 𝒫 ℝ)
48 vex 3477 . . . . . . . . . . . . . 14 𝑘 ∈ V
4948rabsnel 32319 . . . . . . . . . . . . 13 ({𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → 𝑘𝑥)
5049adantl 480 . . . . . . . . . . . 12 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → 𝑘𝑥)
51 eleq2w 2813 . . . . . . . . . . . . . 14 (𝑎 = 𝑘 → (0 ∈ 𝑎 ↔ 0 ∈ 𝑘))
5248, 51rabsnt 4740 . . . . . . . . . . . . 13 ({𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → 0 ∈ 𝑘)
5352adantl 480 . . . . . . . . . . . 12 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → 0 ∈ 𝑘)
54 elelpwi 4616 . . . . . . . . . . . . . . . 16 ((𝑘𝑥𝑥 ∈ 𝒫 𝒫 ℝ) → 𝑘 ∈ 𝒫 ℝ)
5554ancoms 457 . . . . . . . . . . . . . . 15 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑘𝑥) → 𝑘 ∈ 𝒫 ℝ)
5655adantrr 715 . . . . . . . . . . . . . 14 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → 𝑘 ∈ 𝒫 ℝ)
57 simpr 483 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ 𝒫 ℝ ∧ 𝑦 = 𝑘) → 𝑦 = 𝑘)
5857fveq2d 6906 . . . . . . . . . . . . . . 15 ((𝑘 ∈ 𝒫 ℝ ∧ 𝑦 = 𝑘) → (δ‘𝑦) = (δ‘𝑘))
5948a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ 𝒫 ℝ → 𝑘 ∈ V)
6015ffvelcdmi 7098 . . . . . . . . . . . . . . 15 (𝑘 ∈ 𝒫 ℝ → (δ‘𝑘) ∈ (0[,]+∞))
6158, 59, 60esumsn 33717 . . . . . . . . . . . . . 14 (𝑘 ∈ 𝒫 ℝ → Σ*𝑦 ∈ {𝑘} (δ‘𝑦) = (δ‘𝑘))
6256, 61syl 17 . . . . . . . . . . . . 13 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → Σ*𝑦 ∈ {𝑘} (δ‘𝑦) = (δ‘𝑘))
6356elpwid 4615 . . . . . . . . . . . . . 14 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → 𝑘 ⊆ ℝ)
64 simprr 771 . . . . . . . . . . . . . 14 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → 0 ∈ 𝑘)
65 ddeval1 33886 . . . . . . . . . . . . . 14 ((𝑘 ⊆ ℝ ∧ 0 ∈ 𝑘) → (δ‘𝑘) = 1)
6663, 64, 65syl2anc 582 . . . . . . . . . . . . 13 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → (δ‘𝑘) = 1)
6762, 66eqtrd 2768 . . . . . . . . . . . 12 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → Σ*𝑦 ∈ {𝑘} (δ‘𝑦) = 1)
6847, 50, 53, 67syl12anc 835 . . . . . . . . . . 11 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → Σ*𝑦 ∈ {𝑘} (δ‘𝑦) = 1)
6946, 68eqtrd 2768 . . . . . . . . . 10 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 1)
70 df-disj 5118 . . . . . . . . . . . . . . 15 (Disj 𝑦𝑥 𝑦 ↔ ∀𝑘∃*𝑦𝑥 𝑘𝑦)
71 c0ex 11246 . . . . . . . . . . . . . . . 16 0 ∈ V
72 eleq1 2817 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑘𝑦 ↔ 0 ∈ 𝑦))
7372rmobidv 3391 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (∃*𝑦𝑥 𝑘𝑦 ↔ ∃*𝑦𝑥 0 ∈ 𝑦))
7471, 73spcv 3594 . . . . . . . . . . . . . . 15 (∀𝑘∃*𝑦𝑥 𝑘𝑦 → ∃*𝑦𝑥 0 ∈ 𝑦)
7570, 74sylbi 216 . . . . . . . . . . . . . 14 (Disj 𝑦𝑥 𝑦 → ∃*𝑦𝑥 0 ∈ 𝑦)
76 rmo5 3394 . . . . . . . . . . . . . . . 16 (∃*𝑦𝑥 0 ∈ 𝑦 ↔ (∃𝑦𝑥 0 ∈ 𝑦 → ∃!𝑦𝑥 0 ∈ 𝑦))
7776biimpi 215 . . . . . . . . . . . . . . 15 (∃*𝑦𝑥 0 ∈ 𝑦 → (∃𝑦𝑥 0 ∈ 𝑦 → ∃!𝑦𝑥 0 ∈ 𝑦))
7877imp 405 . . . . . . . . . . . . . 14 ((∃*𝑦𝑥 0 ∈ 𝑦 ∧ ∃𝑦𝑥 0 ∈ 𝑦) → ∃!𝑦𝑥 0 ∈ 𝑦)
7975, 78sylan 578 . . . . . . . . . . . . 13 ((Disj 𝑦𝑥 𝑦 ∧ ∃𝑦𝑥 0 ∈ 𝑦) → ∃!𝑦𝑥 0 ∈ 𝑦)
80 reusn 4736 . . . . . . . . . . . . 13 (∃!𝑦𝑥 0 ∈ 𝑦 ↔ ∃𝑘{𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘})
8179, 80sylib 217 . . . . . . . . . . . 12 ((Disj 𝑦𝑥 𝑦 ∧ ∃𝑦𝑥 0 ∈ 𝑦) → ∃𝑘{𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘})
82 eleq2w 2813 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑦 → (0 ∈ 𝑎 ↔ 0 ∈ 𝑦))
8382cbvrabv 3441 . . . . . . . . . . . . . . . 16 {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑦𝑥 ∣ 0 ∈ 𝑦}
8483eqeq1i 2733 . . . . . . . . . . . . . . 15 ({𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} ↔ {𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘})
8549ancri 548 . . . . . . . . . . . . . . 15 ({𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → (𝑘𝑥 ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}))
8684, 85sylbir 234 . . . . . . . . . . . . . 14 ({𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘} → (𝑘𝑥 ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}))
8786eximi 1829 . . . . . . . . . . . . 13 (∃𝑘{𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘} → ∃𝑘(𝑘𝑥 ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}))
88 df-rex 3068 . . . . . . . . . . . . 13 (∃𝑘𝑥 {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} ↔ ∃𝑘(𝑘𝑥 ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}))
8987, 88sylibr 233 . . . . . . . . . . . 12 (∃𝑘{𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘} → ∃𝑘𝑥 {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘})
9081, 89syl 17 . . . . . . . . . . 11 ((Disj 𝑦𝑥 𝑦 ∧ ∃𝑦𝑥 0 ∈ 𝑦) → ∃𝑘𝑥 {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘})
9190adantll 712 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) → ∃𝑘𝑥 {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘})
9269, 91r19.29a 3159 . . . . . . . . 9 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 1)
93 elpwi 4613 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 𝒫 ℝ → 𝑥 ⊆ 𝒫 ℝ)
94 sspwuni 5107 . . . . . . . . . . . 12 (𝑥 ⊆ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ)
9593, 94sylib 217 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝒫 ℝ → 𝑥 ⊆ ℝ)
96 eluni2 4916 . . . . . . . . . . . 12 (0 ∈ 𝑥 ↔ ∃𝑦𝑥 0 ∈ 𝑦)
9796biimpri 227 . . . . . . . . . . 11 (∃𝑦𝑥 0 ∈ 𝑦 → 0 ∈ 𝑥)
98 ddeval1 33886 . . . . . . . . . . 11 (( 𝑥 ⊆ ℝ ∧ 0 ∈ 𝑥) → (δ‘ 𝑥) = 1)
9995, 97, 98syl2an 594 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ ∃𝑦𝑥 0 ∈ 𝑦) → (δ‘ 𝑥) = 1)
10099adantlr 713 . . . . . . . . 9 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) → (δ‘ 𝑥) = 1)
10192, 100eqtr4d 2771 . . . . . . . 8 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = (δ‘ 𝑥))
102 nfre1 3280 . . . . . . . . . . . . 13 𝑦𝑦𝑥 0 ∈ 𝑦
103102nfn 1852 . . . . . . . . . . . 12 𝑦 ¬ ∃𝑦𝑥 0 ∈ 𝑦
10482elrab 3684 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} ↔ (𝑦𝑥 ∧ 0 ∈ 𝑦))
105104exbii 1842 . . . . . . . . . . . . . . 15 (∃𝑦 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} ↔ ∃𝑦(𝑦𝑥 ∧ 0 ∈ 𝑦))
106 neq0 4349 . . . . . . . . . . . . . . 15 (¬ {𝑎𝑥 ∣ 0 ∈ 𝑎} = ∅ ↔ ∃𝑦 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎})
107 df-rex 3068 . . . . . . . . . . . . . . 15 (∃𝑦𝑥 0 ∈ 𝑦 ↔ ∃𝑦(𝑦𝑥 ∧ 0 ∈ 𝑦))
108105, 106, 1073bitr4i 302 . . . . . . . . . . . . . 14 (¬ {𝑎𝑥 ∣ 0 ∈ 𝑎} = ∅ ↔ ∃𝑦𝑥 0 ∈ 𝑦)
109108biimpi 215 . . . . . . . . . . . . 13 (¬ {𝑎𝑥 ∣ 0 ∈ 𝑎} = ∅ → ∃𝑦𝑥 0 ∈ 𝑦)
110109con1i 147 . . . . . . . . . . . 12 (¬ ∃𝑦𝑥 0 ∈ 𝑦 → {𝑎𝑥 ∣ 0 ∈ 𝑎} = ∅)
111103, 110esumeq1d 33687 . . . . . . . . . . 11 (¬ ∃𝑦𝑥 0 ∈ 𝑦 → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ ∅(δ‘𝑦))
112 esumnul 33700 . . . . . . . . . . 11 Σ*𝑦 ∈ ∅(δ‘𝑦) = 0
113111, 112eqtrdi 2784 . . . . . . . . . 10 (¬ ∃𝑦𝑥 0 ∈ 𝑦 → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 0)
114113adantl 480 . . . . . . . . 9 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ¬ ∃𝑦𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 0)
11596biimpi 215 . . . . . . . . . . . 12 (0 ∈ 𝑥 → ∃𝑦𝑥 0 ∈ 𝑦)
116115con3i 154 . . . . . . . . . . 11 (¬ ∃𝑦𝑥 0 ∈ 𝑦 → ¬ 0 ∈ 𝑥)
117 ddeval0 33887 . . . . . . . . . . 11 (( 𝑥 ⊆ ℝ ∧ ¬ 0 ∈ 𝑥) → (δ‘ 𝑥) = 0)
11895, 116, 117syl2an 594 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ ¬ ∃𝑦𝑥 0 ∈ 𝑦) → (δ‘ 𝑥) = 0)
119118adantlr 713 . . . . . . . . 9 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ¬ ∃𝑦𝑥 0 ∈ 𝑦) → (δ‘ 𝑥) = 0)
120114, 119eqtr4d 2771 . . . . . . . 8 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ¬ ∃𝑦𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = (δ‘ 𝑥))
121101, 120pm2.61dan 811 . . . . . . 7 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = (δ‘ 𝑥))
12240elpwid 4615 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑦 ⊆ ℝ)
12382notbid 317 . . . . . . . . . . . . . 14 (𝑎 = 𝑦 → (¬ 0 ∈ 𝑎 ↔ ¬ 0 ∈ 𝑦))
124123elrab 3684 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} ↔ (𝑦𝑥 ∧ ¬ 0 ∈ 𝑦))
125124simprbi 495 . . . . . . . . . . . 12 (𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} → ¬ 0 ∈ 𝑦)
126125adantl 480 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → ¬ 0 ∈ 𝑦)
127 ddeval0 33887 . . . . . . . . . . 11 ((𝑦 ⊆ ℝ ∧ ¬ 0 ∈ 𝑦) → (δ‘𝑦) = 0)
128122, 126, 127syl2anc 582 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → (δ‘𝑦) = 0)
129128esumeq2dv 33690 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝒫 ℝ → Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}0)
130 vex 3477 . . . . . . . . . . 11 𝑥 ∈ V
131130rabex 5338 . . . . . . . . . 10 {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} ∈ V
13225esum0 33701 . . . . . . . . . 10 ({𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} ∈ V → Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}0 = 0)
133131, 132ax-mp 5 . . . . . . . . 9 Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}0 = 0
134129, 133eqtrdi 2784 . . . . . . . 8 (𝑥 ∈ 𝒫 𝒫 ℝ → Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦) = 0)
135134adantr 479 . . . . . . 7 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦) = 0)
136121, 135oveq12d 7444 . . . . . 6 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → (Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒 Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦)) = ((δ‘ 𝑥) +𝑒 0))
137 vuniex 7750 . . . . . . . . . 10 𝑥 ∈ V
138137elpw 4610 . . . . . . . . 9 ( 𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ)
139138biimpri 227 . . . . . . . 8 ( 𝑥 ⊆ ℝ → 𝑥 ∈ 𝒫 ℝ)
140 iccssxr 13447 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
14115ffvelcdmi 7098 . . . . . . . . 9 ( 𝑥 ∈ 𝒫 ℝ → (δ‘ 𝑥) ∈ (0[,]+∞))
142140, 141sselid 3980 . . . . . . . 8 ( 𝑥 ∈ 𝒫 ℝ → (δ‘ 𝑥) ∈ ℝ*)
143 xaddrid 13260 . . . . . . . 8 ((δ‘ 𝑥) ∈ ℝ* → ((δ‘ 𝑥) +𝑒 0) = (δ‘ 𝑥))
14495, 139, 142, 1434syl 19 . . . . . . 7 (𝑥 ∈ 𝒫 𝒫 ℝ → ((δ‘ 𝑥) +𝑒 0) = (δ‘ 𝑥))
145144adantr 479 . . . . . 6 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → ((δ‘ 𝑥) +𝑒 0) = (δ‘ 𝑥))
14644, 136, 1453eqtrrd 2773 . . . . 5 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦))
147146adantrl 714 . . . 4 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦))
148147ex 411 . . 3 (𝑥 ∈ 𝒫 𝒫 ℝ → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦)))
149148rgen 3060 . 2 𝑥 ∈ 𝒫 𝒫 ℝ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦))
150 reex 11237 . . . 4 ℝ ∈ V
151 pwsiga 33782 . . . 4 (ℝ ∈ V → 𝒫 ℝ ∈ (sigAlgebra‘ℝ))
152150, 151ax-mp 5 . . 3 𝒫 ℝ ∈ (sigAlgebra‘ℝ)
153 elrnsiga 33778 . . 3 (𝒫 ℝ ∈ (sigAlgebra‘ℝ) → 𝒫 ℝ ∈ ran sigAlgebra)
154 ismeas 33851 . . 3 (𝒫 ℝ ∈ ran sigAlgebra → (δ ∈ (measures‘𝒫 ℝ) ↔ (δ:𝒫 ℝ⟶(0[,]+∞) ∧ (δ‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝒫 ℝ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦)))))
155152, 153, 154mp2b 10 . 2 (δ ∈ (measures‘𝒫 ℝ) ↔ (δ:𝒫 ℝ⟶(0[,]+∞) ∧ (δ‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝒫 ℝ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦))))
15615, 19, 149, 155mpbir3an 1338 1 δ ∈ (measures‘𝒫 ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084  wal 1531   = wceq 1533  wex 1773  wcel 2098  wral 3058  wrex 3067  ∃!wreu 3372  ∃*wrmo 3373  {crab 3430  Vcvv 3473  cun 3947  cin 3948  wss 3949  c0 4326  ifcif 4532  𝒫 cpw 4606  {csn 4632   cuni 4912  Disj wdisj 5117   class class class wbr 5152  ran crn 5683  wf 6549  cfv 6553  (class class class)co 7426  ωcom 7876  cdom 8968  cr 11145  0cc0 11146  1c1 11147  +∞cpnf 11283  *cxr 11285  cle 11287   +𝑒 cxad 13130  [,]cicc 13367  Σ*cesum 33679  sigAlgebracsiga 33760  measurescmeas 33847  δcdde 33884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225  ax-mulf 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-disj 5118  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-er 8731  df-map 8853  df-pm 8854  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-fi 9442  df-sup 9473  df-inf 9474  df-oi 9541  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-ioo 13368  df-ioc 13369  df-ico 13370  df-icc 13371  df-fz 13525  df-fzo 13668  df-fl 13797  df-mod 13875  df-seq 14007  df-exp 14067  df-fac 14273  df-bc 14302  df-hash 14330  df-shft 15054  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-limsup 15455  df-clim 15472  df-rlim 15473  df-sum 15673  df-ef 16051  df-sin 16053  df-cos 16054  df-pi 16056  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-starv 17255  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-unif 17263  df-hom 17264  df-cco 17265  df-rest 17411  df-topn 17412  df-0g 17430  df-gsum 17431  df-topgen 17432  df-pt 17433  df-prds 17436  df-ordt 17490  df-xrs 17491  df-qtop 17496  df-imas 17497  df-xps 17499  df-mre 17573  df-mrc 17574  df-acs 17576  df-ps 18565  df-tsr 18566  df-plusf 18606  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-mhm 18747  df-submnd 18748  df-grp 18900  df-minusg 18901  df-sbg 18902  df-mulg 19031  df-subg 19085  df-cntz 19275  df-cmn 19744  df-abl 19745  df-mgp 20082  df-rng 20100  df-ur 20129  df-ring 20182  df-cring 20183  df-subrng 20490  df-subrg 20515  df-abv 20704  df-lmod 20752  df-scaf 20753  df-sra 21065  df-rgmod 21066  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22816  df-topon 22833  df-topsp 22855  df-bases 22869  df-cld 22943  df-ntr 22944  df-cls 22945  df-nei 23022  df-lp 23060  df-perf 23061  df-cn 23151  df-cnp 23152  df-haus 23239  df-tx 23486  df-hmeo 23679  df-fil 23770  df-fm 23862  df-flim 23863  df-flf 23864  df-tmd 23996  df-tgp 23997  df-tsms 24051  df-trg 24084  df-xms 24246  df-ms 24247  df-tms 24248  df-nm 24511  df-ngp 24512  df-nrg 24514  df-nlm 24515  df-ii 24817  df-cncf 24818  df-limc 25815  df-dv 25816  df-log 26510  df-esum 33680  df-siga 33761  df-meas 33848  df-dde 33885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator