Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ddemeas Structured version   Visualization version   GIF version

Theorem ddemeas 32213
Description: The Dirac delta measure is a measure. (Contributed by Thierry Arnoux, 14-Sep-2018.)
Assertion
Ref Expression
ddemeas δ ∈ (measures‘𝒫 ℝ)

Proof of Theorem ddemeas
Dummy variables 𝑘 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1xr 11043 . . . . . 6 1 ∈ ℝ*
2 0le1 11507 . . . . . 6 0 ≤ 1
3 pnfge 12875 . . . . . . 7 (1 ∈ ℝ* → 1 ≤ +∞)
41, 3ax-mp 5 . . . . . 6 1 ≤ +∞
5 0xr 11031 . . . . . . 7 0 ∈ ℝ*
6 pnfxr 11038 . . . . . . 7 +∞ ∈ ℝ*
7 elicc1 13132 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧ 1 ≤ +∞)))
85, 6, 7mp2an 689 . . . . . 6 (1 ∈ (0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧ 1 ≤ +∞))
91, 2, 4, 8mpbir3an 1340 . . . . 5 1 ∈ (0[,]+∞)
10 0e0iccpnf 13200 . . . . 5 0 ∈ (0[,]+∞)
119, 10ifcli 4507 . . . 4 if(0 ∈ 𝑎, 1, 0) ∈ (0[,]+∞)
1211rgenw 3077 . . 3 𝑎 ∈ 𝒫 ℝif(0 ∈ 𝑎, 1, 0) ∈ (0[,]+∞)
13 df-dde 32210 . . . 4 δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈ 𝑎, 1, 0))
1413fmpt 6993 . . 3 (∀𝑎 ∈ 𝒫 ℝif(0 ∈ 𝑎, 1, 0) ∈ (0[,]+∞) ↔ δ:𝒫 ℝ⟶(0[,]+∞))
1512, 14mpbi 229 . 2 δ:𝒫 ℝ⟶(0[,]+∞)
16 0ss 4331 . . 3 ∅ ⊆ ℝ
17 noel 4265 . . 3 ¬ 0 ∈ ∅
18 ddeval0 32212 . . 3 ((∅ ⊆ ℝ ∧ ¬ 0 ∈ ∅) → (δ‘∅) = 0)
1916, 17, 18mp2an 689 . 2 (δ‘∅) = 0
20 rabxm 4321 . . . . . . . . 9 𝑥 = ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎})
21 esumeq1 32011 . . . . . . . . 9 (𝑥 = ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → Σ*𝑦𝑥(δ‘𝑦) = Σ*𝑦 ∈ ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎})(δ‘𝑦))
2220, 21ax-mp 5 . . . . . . . 8 Σ*𝑦𝑥(δ‘𝑦) = Σ*𝑦 ∈ ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎})(δ‘𝑦)
23 nfv 1918 . . . . . . . . 9 𝑦 𝑥 ∈ 𝒫 𝒫 ℝ
24 nfcv 2908 . . . . . . . . 9 𝑦{𝑎𝑥 ∣ 0 ∈ 𝑎}
25 nfcv 2908 . . . . . . . . 9 𝑦{𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}
26 rabexg 5256 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝒫 ℝ → {𝑎𝑥 ∣ 0 ∈ 𝑎} ∈ V)
27 rabexg 5256 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝒫 ℝ → {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} ∈ V)
28 rabnc 4322 . . . . . . . . . 10 ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∩ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) = ∅
2928a1i 11 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝒫 ℝ → ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∩ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) = ∅)
30 elrabi 3619 . . . . . . . . . . . 12 (𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} → 𝑦𝑥)
3130adantl 482 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎}) → 𝑦𝑥)
32 simpl 483 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎}) → 𝑥 ∈ 𝒫 𝒫 ℝ)
33 elelpwi 4546 . . . . . . . . . . 11 ((𝑦𝑥𝑥 ∈ 𝒫 𝒫 ℝ) → 𝑦 ∈ 𝒫 ℝ)
3431, 32, 33syl2anc 584 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎}) → 𝑦 ∈ 𝒫 ℝ)
3515ffvelrni 6969 . . . . . . . . . 10 (𝑦 ∈ 𝒫 ℝ → (δ‘𝑦) ∈ (0[,]+∞))
3634, 35syl 17 . . . . . . . . 9 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎}) → (δ‘𝑦) ∈ (0[,]+∞))
37 elrabi 3619 . . . . . . . . . . . 12 (𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} → 𝑦𝑥)
3837adantl 482 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑦𝑥)
39 simpl 483 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑥 ∈ 𝒫 𝒫 ℝ)
4038, 39, 33syl2anc 584 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑦 ∈ 𝒫 ℝ)
4140, 35syl 17 . . . . . . . . 9 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → (δ‘𝑦) ∈ (0[,]+∞))
4223, 24, 25, 26, 27, 29, 36, 41esumsplit 32030 . . . . . . . 8 (𝑥 ∈ 𝒫 𝒫 ℝ → Σ*𝑦 ∈ ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎})(δ‘𝑦) = (Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒 Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦)))
4322, 42eqtrid 2791 . . . . . . 7 (𝑥 ∈ 𝒫 𝒫 ℝ → Σ*𝑦𝑥(δ‘𝑦) = (Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒 Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦)))
4443adantr 481 . . . . . 6 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → Σ*𝑦𝑥(δ‘𝑦) = (Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒 Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦)))
45 esumeq1 32011 . . . . . . . . . . . 12 ({𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ {𝑘} (δ‘𝑦))
4645adantl 482 . . . . . . . . . . 11 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ {𝑘} (δ‘𝑦))
47 simp-4l 780 . . . . . . . . . . . 12 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → 𝑥 ∈ 𝒫 𝒫 ℝ)
48 vex 3437 . . . . . . . . . . . . . 14 𝑘 ∈ V
4948rabsnel 30856 . . . . . . . . . . . . 13 ({𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → 𝑘𝑥)
5049adantl 482 . . . . . . . . . . . 12 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → 𝑘𝑥)
51 eleq2w 2823 . . . . . . . . . . . . . 14 (𝑎 = 𝑘 → (0 ∈ 𝑎 ↔ 0 ∈ 𝑘))
5248, 51rabsnt 4668 . . . . . . . . . . . . 13 ({𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → 0 ∈ 𝑘)
5352adantl 482 . . . . . . . . . . . 12 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → 0 ∈ 𝑘)
54 elelpwi 4546 . . . . . . . . . . . . . . . 16 ((𝑘𝑥𝑥 ∈ 𝒫 𝒫 ℝ) → 𝑘 ∈ 𝒫 ℝ)
5554ancoms 459 . . . . . . . . . . . . . . 15 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑘𝑥) → 𝑘 ∈ 𝒫 ℝ)
5655adantrr 714 . . . . . . . . . . . . . 14 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → 𝑘 ∈ 𝒫 ℝ)
57 simpr 485 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ 𝒫 ℝ ∧ 𝑦 = 𝑘) → 𝑦 = 𝑘)
5857fveq2d 6787 . . . . . . . . . . . . . . 15 ((𝑘 ∈ 𝒫 ℝ ∧ 𝑦 = 𝑘) → (δ‘𝑦) = (δ‘𝑘))
5948a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ 𝒫 ℝ → 𝑘 ∈ V)
6015ffvelrni 6969 . . . . . . . . . . . . . . 15 (𝑘 ∈ 𝒫 ℝ → (δ‘𝑘) ∈ (0[,]+∞))
6158, 59, 60esumsn 32042 . . . . . . . . . . . . . 14 (𝑘 ∈ 𝒫 ℝ → Σ*𝑦 ∈ {𝑘} (δ‘𝑦) = (δ‘𝑘))
6256, 61syl 17 . . . . . . . . . . . . 13 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → Σ*𝑦 ∈ {𝑘} (δ‘𝑦) = (δ‘𝑘))
6356elpwid 4545 . . . . . . . . . . . . . 14 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → 𝑘 ⊆ ℝ)
64 simprr 770 . . . . . . . . . . . . . 14 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → 0 ∈ 𝑘)
65 ddeval1 32211 . . . . . . . . . . . . . 14 ((𝑘 ⊆ ℝ ∧ 0 ∈ 𝑘) → (δ‘𝑘) = 1)
6663, 64, 65syl2anc 584 . . . . . . . . . . . . 13 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → (δ‘𝑘) = 1)
6762, 66eqtrd 2779 . . . . . . . . . . . 12 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → Σ*𝑦 ∈ {𝑘} (δ‘𝑦) = 1)
6847, 50, 53, 67syl12anc 834 . . . . . . . . . . 11 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → Σ*𝑦 ∈ {𝑘} (δ‘𝑦) = 1)
6946, 68eqtrd 2779 . . . . . . . . . 10 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 1)
70 df-disj 5041 . . . . . . . . . . . . . . 15 (Disj 𝑦𝑥 𝑦 ↔ ∀𝑘∃*𝑦𝑥 𝑘𝑦)
71 c0ex 10978 . . . . . . . . . . . . . . . 16 0 ∈ V
72 eleq1 2827 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑘𝑦 ↔ 0 ∈ 𝑦))
7372rmobidv 3330 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (∃*𝑦𝑥 𝑘𝑦 ↔ ∃*𝑦𝑥 0 ∈ 𝑦))
7471, 73spcv 3545 . . . . . . . . . . . . . . 15 (∀𝑘∃*𝑦𝑥 𝑘𝑦 → ∃*𝑦𝑥 0 ∈ 𝑦)
7570, 74sylbi 216 . . . . . . . . . . . . . 14 (Disj 𝑦𝑥 𝑦 → ∃*𝑦𝑥 0 ∈ 𝑦)
76 rmo5 3366 . . . . . . . . . . . . . . . 16 (∃*𝑦𝑥 0 ∈ 𝑦 ↔ (∃𝑦𝑥 0 ∈ 𝑦 → ∃!𝑦𝑥 0 ∈ 𝑦))
7776biimpi 215 . . . . . . . . . . . . . . 15 (∃*𝑦𝑥 0 ∈ 𝑦 → (∃𝑦𝑥 0 ∈ 𝑦 → ∃!𝑦𝑥 0 ∈ 𝑦))
7877imp 407 . . . . . . . . . . . . . 14 ((∃*𝑦𝑥 0 ∈ 𝑦 ∧ ∃𝑦𝑥 0 ∈ 𝑦) → ∃!𝑦𝑥 0 ∈ 𝑦)
7975, 78sylan 580 . . . . . . . . . . . . 13 ((Disj 𝑦𝑥 𝑦 ∧ ∃𝑦𝑥 0 ∈ 𝑦) → ∃!𝑦𝑥 0 ∈ 𝑦)
80 reusn 4664 . . . . . . . . . . . . 13 (∃!𝑦𝑥 0 ∈ 𝑦 ↔ ∃𝑘{𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘})
8179, 80sylib 217 . . . . . . . . . . . 12 ((Disj 𝑦𝑥 𝑦 ∧ ∃𝑦𝑥 0 ∈ 𝑦) → ∃𝑘{𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘})
82 eleq2w 2823 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑦 → (0 ∈ 𝑎 ↔ 0 ∈ 𝑦))
8382cbvrabv 3427 . . . . . . . . . . . . . . . 16 {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑦𝑥 ∣ 0 ∈ 𝑦}
8483eqeq1i 2744 . . . . . . . . . . . . . . 15 ({𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} ↔ {𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘})
8549ancri 550 . . . . . . . . . . . . . . 15 ({𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → (𝑘𝑥 ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}))
8684, 85sylbir 234 . . . . . . . . . . . . . 14 ({𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘} → (𝑘𝑥 ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}))
8786eximi 1838 . . . . . . . . . . . . 13 (∃𝑘{𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘} → ∃𝑘(𝑘𝑥 ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}))
88 df-rex 3071 . . . . . . . . . . . . 13 (∃𝑘𝑥 {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} ↔ ∃𝑘(𝑘𝑥 ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}))
8987, 88sylibr 233 . . . . . . . . . . . 12 (∃𝑘{𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘} → ∃𝑘𝑥 {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘})
9081, 89syl 17 . . . . . . . . . . 11 ((Disj 𝑦𝑥 𝑦 ∧ ∃𝑦𝑥 0 ∈ 𝑦) → ∃𝑘𝑥 {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘})
9190adantll 711 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) → ∃𝑘𝑥 {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘})
9269, 91r19.29a 3219 . . . . . . . . 9 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 1)
93 elpwi 4543 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 𝒫 ℝ → 𝑥 ⊆ 𝒫 ℝ)
94 sspwuni 5030 . . . . . . . . . . . 12 (𝑥 ⊆ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ)
9593, 94sylib 217 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝒫 ℝ → 𝑥 ⊆ ℝ)
96 eluni2 4844 . . . . . . . . . . . 12 (0 ∈ 𝑥 ↔ ∃𝑦𝑥 0 ∈ 𝑦)
9796biimpri 227 . . . . . . . . . . 11 (∃𝑦𝑥 0 ∈ 𝑦 → 0 ∈ 𝑥)
98 ddeval1 32211 . . . . . . . . . . 11 (( 𝑥 ⊆ ℝ ∧ 0 ∈ 𝑥) → (δ‘ 𝑥) = 1)
9995, 97, 98syl2an 596 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ ∃𝑦𝑥 0 ∈ 𝑦) → (δ‘ 𝑥) = 1)
10099adantlr 712 . . . . . . . . 9 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) → (δ‘ 𝑥) = 1)
10192, 100eqtr4d 2782 . . . . . . . 8 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = (δ‘ 𝑥))
102 nfre1 3240 . . . . . . . . . . . . 13 𝑦𝑦𝑥 0 ∈ 𝑦
103102nfn 1861 . . . . . . . . . . . 12 𝑦 ¬ ∃𝑦𝑥 0 ∈ 𝑦
10482elrab 3625 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} ↔ (𝑦𝑥 ∧ 0 ∈ 𝑦))
105104exbii 1851 . . . . . . . . . . . . . . 15 (∃𝑦 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} ↔ ∃𝑦(𝑦𝑥 ∧ 0 ∈ 𝑦))
106 neq0 4280 . . . . . . . . . . . . . . 15 (¬ {𝑎𝑥 ∣ 0 ∈ 𝑎} = ∅ ↔ ∃𝑦 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎})
107 df-rex 3071 . . . . . . . . . . . . . . 15 (∃𝑦𝑥 0 ∈ 𝑦 ↔ ∃𝑦(𝑦𝑥 ∧ 0 ∈ 𝑦))
108105, 106, 1073bitr4i 303 . . . . . . . . . . . . . 14 (¬ {𝑎𝑥 ∣ 0 ∈ 𝑎} = ∅ ↔ ∃𝑦𝑥 0 ∈ 𝑦)
109108biimpi 215 . . . . . . . . . . . . 13 (¬ {𝑎𝑥 ∣ 0 ∈ 𝑎} = ∅ → ∃𝑦𝑥 0 ∈ 𝑦)
110109con1i 147 . . . . . . . . . . . 12 (¬ ∃𝑦𝑥 0 ∈ 𝑦 → {𝑎𝑥 ∣ 0 ∈ 𝑎} = ∅)
111103, 110esumeq1d 32012 . . . . . . . . . . 11 (¬ ∃𝑦𝑥 0 ∈ 𝑦 → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ ∅(δ‘𝑦))
112 esumnul 32025 . . . . . . . . . . 11 Σ*𝑦 ∈ ∅(δ‘𝑦) = 0
113111, 112eqtrdi 2795 . . . . . . . . . 10 (¬ ∃𝑦𝑥 0 ∈ 𝑦 → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 0)
114113adantl 482 . . . . . . . . 9 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ¬ ∃𝑦𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 0)
11596biimpi 215 . . . . . . . . . . . 12 (0 ∈ 𝑥 → ∃𝑦𝑥 0 ∈ 𝑦)
116115con3i 154 . . . . . . . . . . 11 (¬ ∃𝑦𝑥 0 ∈ 𝑦 → ¬ 0 ∈ 𝑥)
117 ddeval0 32212 . . . . . . . . . . 11 (( 𝑥 ⊆ ℝ ∧ ¬ 0 ∈ 𝑥) → (δ‘ 𝑥) = 0)
11895, 116, 117syl2an 596 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ ¬ ∃𝑦𝑥 0 ∈ 𝑦) → (δ‘ 𝑥) = 0)
119118adantlr 712 . . . . . . . . 9 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ¬ ∃𝑦𝑥 0 ∈ 𝑦) → (δ‘ 𝑥) = 0)
120114, 119eqtr4d 2782 . . . . . . . 8 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ¬ ∃𝑦𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = (δ‘ 𝑥))
121101, 120pm2.61dan 810 . . . . . . 7 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = (δ‘ 𝑥))
12240elpwid 4545 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑦 ⊆ ℝ)
12382notbid 318 . . . . . . . . . . . . . 14 (𝑎 = 𝑦 → (¬ 0 ∈ 𝑎 ↔ ¬ 0 ∈ 𝑦))
124123elrab 3625 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} ↔ (𝑦𝑥 ∧ ¬ 0 ∈ 𝑦))
125124simprbi 497 . . . . . . . . . . . 12 (𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} → ¬ 0 ∈ 𝑦)
126125adantl 482 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → ¬ 0 ∈ 𝑦)
127 ddeval0 32212 . . . . . . . . . . 11 ((𝑦 ⊆ ℝ ∧ ¬ 0 ∈ 𝑦) → (δ‘𝑦) = 0)
128122, 126, 127syl2anc 584 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → (δ‘𝑦) = 0)
129128esumeq2dv 32015 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝒫 ℝ → Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}0)
130 vex 3437 . . . . . . . . . . 11 𝑥 ∈ V
131130rabex 5257 . . . . . . . . . 10 {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} ∈ V
13225esum0 32026 . . . . . . . . . 10 ({𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} ∈ V → Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}0 = 0)
133131, 132ax-mp 5 . . . . . . . . 9 Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}0 = 0
134129, 133eqtrdi 2795 . . . . . . . 8 (𝑥 ∈ 𝒫 𝒫 ℝ → Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦) = 0)
135134adantr 481 . . . . . . 7 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦) = 0)
136121, 135oveq12d 7302 . . . . . 6 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → (Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒 Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦)) = ((δ‘ 𝑥) +𝑒 0))
137 vuniex 7601 . . . . . . . . . 10 𝑥 ∈ V
138137elpw 4538 . . . . . . . . 9 ( 𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ)
139138biimpri 227 . . . . . . . 8 ( 𝑥 ⊆ ℝ → 𝑥 ∈ 𝒫 ℝ)
140 iccssxr 13171 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
14115ffvelrni 6969 . . . . . . . . 9 ( 𝑥 ∈ 𝒫 ℝ → (δ‘ 𝑥) ∈ (0[,]+∞))
142140, 141sselid 3920 . . . . . . . 8 ( 𝑥 ∈ 𝒫 ℝ → (δ‘ 𝑥) ∈ ℝ*)
143 xaddid1 12984 . . . . . . . 8 ((δ‘ 𝑥) ∈ ℝ* → ((δ‘ 𝑥) +𝑒 0) = (δ‘ 𝑥))
14495, 139, 142, 1434syl 19 . . . . . . 7 (𝑥 ∈ 𝒫 𝒫 ℝ → ((δ‘ 𝑥) +𝑒 0) = (δ‘ 𝑥))
145144adantr 481 . . . . . 6 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → ((δ‘ 𝑥) +𝑒 0) = (δ‘ 𝑥))
14644, 136, 1453eqtrrd 2784 . . . . 5 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦))
147146adantrl 713 . . . 4 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦))
148147ex 413 . . 3 (𝑥 ∈ 𝒫 𝒫 ℝ → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦)))
149148rgen 3075 . 2 𝑥 ∈ 𝒫 𝒫 ℝ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦))
150 reex 10971 . . . 4 ℝ ∈ V
151 pwsiga 32107 . . . 4 (ℝ ∈ V → 𝒫 ℝ ∈ (sigAlgebra‘ℝ))
152150, 151ax-mp 5 . . 3 𝒫 ℝ ∈ (sigAlgebra‘ℝ)
153 elrnsiga 32103 . . 3 (𝒫 ℝ ∈ (sigAlgebra‘ℝ) → 𝒫 ℝ ∈ ran sigAlgebra)
154 ismeas 32176 . . 3 (𝒫 ℝ ∈ ran sigAlgebra → (δ ∈ (measures‘𝒫 ℝ) ↔ (δ:𝒫 ℝ⟶(0[,]+∞) ∧ (δ‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝒫 ℝ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦)))))
155152, 153, 154mp2b 10 . 2 (δ ∈ (measures‘𝒫 ℝ) ↔ (δ:𝒫 ℝ⟶(0[,]+∞) ∧ (δ‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝒫 ℝ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦))))
15615, 19, 149, 155mpbir3an 1340 1 δ ∈ (measures‘𝒫 ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086  wal 1537   = wceq 1539  wex 1782  wcel 2107  wral 3065  wrex 3066  ∃!wreu 3067  ∃*wrmo 3068  {crab 3069  Vcvv 3433  cun 3886  cin 3887  wss 3888  c0 4257  ifcif 4460  𝒫 cpw 4534  {csn 4562   cuni 4840  Disj wdisj 5040   class class class wbr 5075  ran crn 5591  wf 6433  cfv 6437  (class class class)co 7284  ωcom 7721  cdom 8740  cr 10879  0cc0 10880  1c1 10881  +∞cpnf 11015  *cxr 11017  cle 11019   +𝑒 cxad 12855  [,]cicc 13091  Σ*cesum 32004  sigAlgebracsiga 32085  measurescmeas 32172  δcdde 32209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-disj 5041  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ioc 13093  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-mod 13599  df-seq 13731  df-exp 13792  df-fac 13997  df-bc 14026  df-hash 14054  df-shft 14787  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-limsup 15189  df-clim 15206  df-rlim 15207  df-sum 15407  df-ef 15786  df-sin 15788  df-cos 15789  df-pi 15791  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-ordt 17221  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-ps 18293  df-tsr 18294  df-plusf 18334  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-mhm 18439  df-submnd 18440  df-grp 18589  df-minusg 18590  df-sbg 18591  df-mulg 18710  df-subg 18761  df-cntz 18932  df-cmn 19397  df-abl 19398  df-mgp 19730  df-ur 19747  df-ring 19794  df-cring 19795  df-subrg 20031  df-abv 20086  df-lmod 20134  df-scaf 20135  df-sra 20443  df-rgmod 20444  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cn 22387  df-cnp 22388  df-haus 22475  df-tx 22722  df-hmeo 22915  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-tmd 23232  df-tgp 23233  df-tsms 23287  df-trg 23320  df-xms 23482  df-ms 23483  df-tms 23484  df-nm 23747  df-ngp 23748  df-nrg 23750  df-nlm 23751  df-ii 24049  df-cncf 24050  df-limc 25039  df-dv 25040  df-log 25721  df-esum 32005  df-siga 32086  df-meas 32173  df-dde 32210
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator