Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ddemeas Structured version   Visualization version   GIF version

Theorem ddemeas 34196
Description: The Dirac delta measure is a measure. (Contributed by Thierry Arnoux, 14-Sep-2018.)
Assertion
Ref Expression
ddemeas δ ∈ (measures‘𝒫 ℝ)

Proof of Theorem ddemeas
Dummy variables 𝑘 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1xr 11287 . . . . . 6 1 ∈ ℝ*
2 0le1 11753 . . . . . 6 0 ≤ 1
3 pnfge 13139 . . . . . . 7 (1 ∈ ℝ* → 1 ≤ +∞)
41, 3ax-mp 5 . . . . . 6 1 ≤ +∞
5 0xr 11275 . . . . . . 7 0 ∈ ℝ*
6 pnfxr 11282 . . . . . . 7 +∞ ∈ ℝ*
7 elicc1 13398 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧ 1 ≤ +∞)))
85, 6, 7mp2an 692 . . . . . 6 (1 ∈ (0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧ 1 ≤ +∞))
91, 2, 4, 8mpbir3an 1341 . . . . 5 1 ∈ (0[,]+∞)
10 0e0iccpnf 13466 . . . . 5 0 ∈ (0[,]+∞)
119, 10ifcli 4546 . . . 4 if(0 ∈ 𝑎, 1, 0) ∈ (0[,]+∞)
1211rgenw 3054 . . 3 𝑎 ∈ 𝒫 ℝif(0 ∈ 𝑎, 1, 0) ∈ (0[,]+∞)
13 df-dde 34193 . . . 4 δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈ 𝑎, 1, 0))
1413fmpt 7097 . . 3 (∀𝑎 ∈ 𝒫 ℝif(0 ∈ 𝑎, 1, 0) ∈ (0[,]+∞) ↔ δ:𝒫 ℝ⟶(0[,]+∞))
1512, 14mpbi 230 . 2 δ:𝒫 ℝ⟶(0[,]+∞)
16 0ss 4373 . . 3 ∅ ⊆ ℝ
17 noel 4311 . . 3 ¬ 0 ∈ ∅
18 ddeval0 34195 . . 3 ((∅ ⊆ ℝ ∧ ¬ 0 ∈ ∅) → (δ‘∅) = 0)
1916, 17, 18mp2an 692 . 2 (δ‘∅) = 0
20 rabxm 4363 . . . . . . . . 9 𝑥 = ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎})
21 esumeq1 33994 . . . . . . . . 9 (𝑥 = ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → Σ*𝑦𝑥(δ‘𝑦) = Σ*𝑦 ∈ ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎})(δ‘𝑦))
2220, 21ax-mp 5 . . . . . . . 8 Σ*𝑦𝑥(δ‘𝑦) = Σ*𝑦 ∈ ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎})(δ‘𝑦)
23 nfv 1913 . . . . . . . . 9 𝑦 𝑥 ∈ 𝒫 𝒫 ℝ
24 nfcv 2897 . . . . . . . . 9 𝑦{𝑎𝑥 ∣ 0 ∈ 𝑎}
25 nfcv 2897 . . . . . . . . 9 𝑦{𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}
26 rabexg 5305 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝒫 ℝ → {𝑎𝑥 ∣ 0 ∈ 𝑎} ∈ V)
27 rabexg 5305 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝒫 ℝ → {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} ∈ V)
28 rabnc 4364 . . . . . . . . . 10 ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∩ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) = ∅
2928a1i 11 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝒫 ℝ → ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∩ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) = ∅)
30 elrabi 3664 . . . . . . . . . . . 12 (𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} → 𝑦𝑥)
3130adantl 481 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎}) → 𝑦𝑥)
32 simpl 482 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎}) → 𝑥 ∈ 𝒫 𝒫 ℝ)
33 elelpwi 4583 . . . . . . . . . . 11 ((𝑦𝑥𝑥 ∈ 𝒫 𝒫 ℝ) → 𝑦 ∈ 𝒫 ℝ)
3431, 32, 33syl2anc 584 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎}) → 𝑦 ∈ 𝒫 ℝ)
3515ffvelcdmi 7070 . . . . . . . . . 10 (𝑦 ∈ 𝒫 ℝ → (δ‘𝑦) ∈ (0[,]+∞))
3634, 35syl 17 . . . . . . . . 9 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎}) → (δ‘𝑦) ∈ (0[,]+∞))
37 elrabi 3664 . . . . . . . . . . . 12 (𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} → 𝑦𝑥)
3837adantl 481 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑦𝑥)
39 simpl 482 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑥 ∈ 𝒫 𝒫 ℝ)
4038, 39, 33syl2anc 584 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑦 ∈ 𝒫 ℝ)
4140, 35syl 17 . . . . . . . . 9 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → (δ‘𝑦) ∈ (0[,]+∞))
4223, 24, 25, 26, 27, 29, 36, 41esumsplit 34013 . . . . . . . 8 (𝑥 ∈ 𝒫 𝒫 ℝ → Σ*𝑦 ∈ ({𝑎𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎})(δ‘𝑦) = (Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒 Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦)))
4322, 42eqtrid 2781 . . . . . . 7 (𝑥 ∈ 𝒫 𝒫 ℝ → Σ*𝑦𝑥(δ‘𝑦) = (Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒 Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦)))
4443adantr 480 . . . . . 6 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → Σ*𝑦𝑥(δ‘𝑦) = (Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒 Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦)))
45 esumeq1 33994 . . . . . . . . . . . 12 ({𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ {𝑘} (δ‘𝑦))
4645adantl 481 . . . . . . . . . . 11 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ {𝑘} (δ‘𝑦))
47 simp-4l 782 . . . . . . . . . . . 12 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → 𝑥 ∈ 𝒫 𝒫 ℝ)
48 vex 3461 . . . . . . . . . . . . . 14 𝑘 ∈ V
4948rabsnel 32415 . . . . . . . . . . . . 13 ({𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → 𝑘𝑥)
5049adantl 481 . . . . . . . . . . . 12 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → 𝑘𝑥)
51 eleq2w 2817 . . . . . . . . . . . . . 14 (𝑎 = 𝑘 → (0 ∈ 𝑎 ↔ 0 ∈ 𝑘))
5248, 51rabsnt 4705 . . . . . . . . . . . . 13 ({𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → 0 ∈ 𝑘)
5352adantl 481 . . . . . . . . . . . 12 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → 0 ∈ 𝑘)
54 elelpwi 4583 . . . . . . . . . . . . . . . 16 ((𝑘𝑥𝑥 ∈ 𝒫 𝒫 ℝ) → 𝑘 ∈ 𝒫 ℝ)
5554ancoms 458 . . . . . . . . . . . . . . 15 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑘𝑥) → 𝑘 ∈ 𝒫 ℝ)
5655adantrr 717 . . . . . . . . . . . . . 14 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → 𝑘 ∈ 𝒫 ℝ)
57 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ 𝒫 ℝ ∧ 𝑦 = 𝑘) → 𝑦 = 𝑘)
5857fveq2d 6877 . . . . . . . . . . . . . . 15 ((𝑘 ∈ 𝒫 ℝ ∧ 𝑦 = 𝑘) → (δ‘𝑦) = (δ‘𝑘))
5948a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ 𝒫 ℝ → 𝑘 ∈ V)
6015ffvelcdmi 7070 . . . . . . . . . . . . . . 15 (𝑘 ∈ 𝒫 ℝ → (δ‘𝑘) ∈ (0[,]+∞))
6158, 59, 60esumsn 34025 . . . . . . . . . . . . . 14 (𝑘 ∈ 𝒫 ℝ → Σ*𝑦 ∈ {𝑘} (δ‘𝑦) = (δ‘𝑘))
6256, 61syl 17 . . . . . . . . . . . . 13 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → Σ*𝑦 ∈ {𝑘} (δ‘𝑦) = (δ‘𝑘))
6356elpwid 4582 . . . . . . . . . . . . . 14 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → 𝑘 ⊆ ℝ)
64 simprr 772 . . . . . . . . . . . . . 14 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → 0 ∈ 𝑘)
65 ddeval1 34194 . . . . . . . . . . . . . 14 ((𝑘 ⊆ ℝ ∧ 0 ∈ 𝑘) → (δ‘𝑘) = 1)
6663, 64, 65syl2anc 584 . . . . . . . . . . . . 13 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → (δ‘𝑘) = 1)
6762, 66eqtrd 2769 . . . . . . . . . . . 12 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑘𝑥 ∧ 0 ∈ 𝑘)) → Σ*𝑦 ∈ {𝑘} (δ‘𝑦) = 1)
6847, 50, 53, 67syl12anc 836 . . . . . . . . . . 11 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → Σ*𝑦 ∈ {𝑘} (δ‘𝑦) = 1)
6946, 68eqtrd 2769 . . . . . . . . . 10 (((((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) ∧ 𝑘𝑥) ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 1)
70 df-disj 5085 . . . . . . . . . . . . . . 15 (Disj 𝑦𝑥 𝑦 ↔ ∀𝑘∃*𝑦𝑥 𝑘𝑦)
71 c0ex 11222 . . . . . . . . . . . . . . . 16 0 ∈ V
72 eleq1 2821 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑘𝑦 ↔ 0 ∈ 𝑦))
7372rmobidv 3374 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (∃*𝑦𝑥 𝑘𝑦 ↔ ∃*𝑦𝑥 0 ∈ 𝑦))
7471, 73spcv 3582 . . . . . . . . . . . . . . 15 (∀𝑘∃*𝑦𝑥 𝑘𝑦 → ∃*𝑦𝑥 0 ∈ 𝑦)
7570, 74sylbi 217 . . . . . . . . . . . . . 14 (Disj 𝑦𝑥 𝑦 → ∃*𝑦𝑥 0 ∈ 𝑦)
76 rmo5 3377 . . . . . . . . . . . . . . . 16 (∃*𝑦𝑥 0 ∈ 𝑦 ↔ (∃𝑦𝑥 0 ∈ 𝑦 → ∃!𝑦𝑥 0 ∈ 𝑦))
7776biimpi 216 . . . . . . . . . . . . . . 15 (∃*𝑦𝑥 0 ∈ 𝑦 → (∃𝑦𝑥 0 ∈ 𝑦 → ∃!𝑦𝑥 0 ∈ 𝑦))
7877imp 406 . . . . . . . . . . . . . 14 ((∃*𝑦𝑥 0 ∈ 𝑦 ∧ ∃𝑦𝑥 0 ∈ 𝑦) → ∃!𝑦𝑥 0 ∈ 𝑦)
7975, 78sylan 580 . . . . . . . . . . . . 13 ((Disj 𝑦𝑥 𝑦 ∧ ∃𝑦𝑥 0 ∈ 𝑦) → ∃!𝑦𝑥 0 ∈ 𝑦)
80 reusn 4701 . . . . . . . . . . . . 13 (∃!𝑦𝑥 0 ∈ 𝑦 ↔ ∃𝑘{𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘})
8179, 80sylib 218 . . . . . . . . . . . 12 ((Disj 𝑦𝑥 𝑦 ∧ ∃𝑦𝑥 0 ∈ 𝑦) → ∃𝑘{𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘})
82 eleq2w 2817 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑦 → (0 ∈ 𝑎 ↔ 0 ∈ 𝑦))
8382cbvrabv 3424 . . . . . . . . . . . . . . . 16 {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑦𝑥 ∣ 0 ∈ 𝑦}
8483eqeq1i 2739 . . . . . . . . . . . . . . 15 ({𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} ↔ {𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘})
8549ancri 549 . . . . . . . . . . . . . . 15 ({𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → (𝑘𝑥 ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}))
8684, 85sylbir 235 . . . . . . . . . . . . . 14 ({𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘} → (𝑘𝑥 ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}))
8786eximi 1834 . . . . . . . . . . . . 13 (∃𝑘{𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘} → ∃𝑘(𝑘𝑥 ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}))
88 df-rex 3060 . . . . . . . . . . . . 13 (∃𝑘𝑥 {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘} ↔ ∃𝑘(𝑘𝑥 ∧ {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘}))
8987, 88sylibr 234 . . . . . . . . . . . 12 (∃𝑘{𝑦𝑥 ∣ 0 ∈ 𝑦} = {𝑘} → ∃𝑘𝑥 {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘})
9081, 89syl 17 . . . . . . . . . . 11 ((Disj 𝑦𝑥 𝑦 ∧ ∃𝑦𝑥 0 ∈ 𝑦) → ∃𝑘𝑥 {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘})
9190adantll 714 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) → ∃𝑘𝑥 {𝑎𝑥 ∣ 0 ∈ 𝑎} = {𝑘})
9269, 91r19.29a 3146 . . . . . . . . 9 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 1)
93 elpwi 4580 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 𝒫 ℝ → 𝑥 ⊆ 𝒫 ℝ)
94 sspwuni 5074 . . . . . . . . . . . 12 (𝑥 ⊆ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ)
9593, 94sylib 218 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝒫 ℝ → 𝑥 ⊆ ℝ)
96 eluni2 4885 . . . . . . . . . . . 12 (0 ∈ 𝑥 ↔ ∃𝑦𝑥 0 ∈ 𝑦)
9796biimpri 228 . . . . . . . . . . 11 (∃𝑦𝑥 0 ∈ 𝑦 → 0 ∈ 𝑥)
98 ddeval1 34194 . . . . . . . . . . 11 (( 𝑥 ⊆ ℝ ∧ 0 ∈ 𝑥) → (δ‘ 𝑥) = 1)
9995, 97, 98syl2an 596 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ ∃𝑦𝑥 0 ∈ 𝑦) → (δ‘ 𝑥) = 1)
10099adantlr 715 . . . . . . . . 9 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) → (δ‘ 𝑥) = 1)
10192, 100eqtr4d 2772 . . . . . . . 8 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ∃𝑦𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = (δ‘ 𝑥))
102 nfre1 3265 . . . . . . . . . . . . 13 𝑦𝑦𝑥 0 ∈ 𝑦
103102nfn 1856 . . . . . . . . . . . 12 𝑦 ¬ ∃𝑦𝑥 0 ∈ 𝑦
10482elrab 3669 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} ↔ (𝑦𝑥 ∧ 0 ∈ 𝑦))
105104exbii 1847 . . . . . . . . . . . . . . 15 (∃𝑦 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} ↔ ∃𝑦(𝑦𝑥 ∧ 0 ∈ 𝑦))
106 neq0 4325 . . . . . . . . . . . . . . 15 (¬ {𝑎𝑥 ∣ 0 ∈ 𝑎} = ∅ ↔ ∃𝑦 𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎})
107 df-rex 3060 . . . . . . . . . . . . . . 15 (∃𝑦𝑥 0 ∈ 𝑦 ↔ ∃𝑦(𝑦𝑥 ∧ 0 ∈ 𝑦))
108105, 106, 1073bitr4i 303 . . . . . . . . . . . . . 14 (¬ {𝑎𝑥 ∣ 0 ∈ 𝑎} = ∅ ↔ ∃𝑦𝑥 0 ∈ 𝑦)
109108biimpi 216 . . . . . . . . . . . . 13 (¬ {𝑎𝑥 ∣ 0 ∈ 𝑎} = ∅ → ∃𝑦𝑥 0 ∈ 𝑦)
110109con1i 147 . . . . . . . . . . . 12 (¬ ∃𝑦𝑥 0 ∈ 𝑦 → {𝑎𝑥 ∣ 0 ∈ 𝑎} = ∅)
111103, 110esumeq1d 33995 . . . . . . . . . . 11 (¬ ∃𝑦𝑥 0 ∈ 𝑦 → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ ∅(δ‘𝑦))
112 esumnul 34008 . . . . . . . . . . 11 Σ*𝑦 ∈ ∅(δ‘𝑦) = 0
113111, 112eqtrdi 2785 . . . . . . . . . 10 (¬ ∃𝑦𝑥 0 ∈ 𝑦 → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 0)
114113adantl 481 . . . . . . . . 9 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ¬ ∃𝑦𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 0)
11596biimpi 216 . . . . . . . . . . . 12 (0 ∈ 𝑥 → ∃𝑦𝑥 0 ∈ 𝑦)
116115con3i 154 . . . . . . . . . . 11 (¬ ∃𝑦𝑥 0 ∈ 𝑦 → ¬ 0 ∈ 𝑥)
117 ddeval0 34195 . . . . . . . . . . 11 (( 𝑥 ⊆ ℝ ∧ ¬ 0 ∈ 𝑥) → (δ‘ 𝑥) = 0)
11895, 116, 117syl2an 596 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ ¬ ∃𝑦𝑥 0 ∈ 𝑦) → (δ‘ 𝑥) = 0)
119118adantlr 715 . . . . . . . . 9 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ¬ ∃𝑦𝑥 0 ∈ 𝑦) → (δ‘ 𝑥) = 0)
120114, 119eqtr4d 2772 . . . . . . . 8 (((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) ∧ ¬ ∃𝑦𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = (δ‘ 𝑥))
121101, 120pm2.61dan 812 . . . . . . 7 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = (δ‘ 𝑥))
12240elpwid 4582 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑦 ⊆ ℝ)
12382notbid 318 . . . . . . . . . . . . . 14 (𝑎 = 𝑦 → (¬ 0 ∈ 𝑎 ↔ ¬ 0 ∈ 𝑦))
124123elrab 3669 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} ↔ (𝑦𝑥 ∧ ¬ 0 ∈ 𝑦))
125124simprbi 496 . . . . . . . . . . . 12 (𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} → ¬ 0 ∈ 𝑦)
126125adantl 481 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → ¬ 0 ∈ 𝑦)
127 ddeval0 34195 . . . . . . . . . . 11 ((𝑦 ⊆ ℝ ∧ ¬ 0 ∈ 𝑦) → (δ‘𝑦) = 0)
128122, 126, 127syl2anc 584 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ 𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}) → (δ‘𝑦) = 0)
129128esumeq2dv 33998 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝒫 ℝ → Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}0)
130 vex 3461 . . . . . . . . . . 11 𝑥 ∈ V
131130rabex 5307 . . . . . . . . . 10 {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} ∈ V
13225esum0 34009 . . . . . . . . . 10 ({𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} ∈ V → Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}0 = 0)
133131, 132ax-mp 5 . . . . . . . . 9 Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎}0 = 0
134129, 133eqtrdi 2785 . . . . . . . 8 (𝑥 ∈ 𝒫 𝒫 ℝ → Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦) = 0)
135134adantr 480 . . . . . . 7 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦) = 0)
136121, 135oveq12d 7418 . . . . . 6 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → (Σ*𝑦 ∈ {𝑎𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒 Σ*𝑦 ∈ {𝑎𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦)) = ((δ‘ 𝑥) +𝑒 0))
137 vuniex 7728 . . . . . . . . . 10 𝑥 ∈ V
138137elpw 4577 . . . . . . . . 9 ( 𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ)
139138biimpri 228 . . . . . . . 8 ( 𝑥 ⊆ ℝ → 𝑥 ∈ 𝒫 ℝ)
140 iccssxr 13437 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
14115ffvelcdmi 7070 . . . . . . . . 9 ( 𝑥 ∈ 𝒫 ℝ → (δ‘ 𝑥) ∈ (0[,]+∞))
142140, 141sselid 3954 . . . . . . . 8 ( 𝑥 ∈ 𝒫 ℝ → (δ‘ 𝑥) ∈ ℝ*)
143 xaddrid 13250 . . . . . . . 8 ((δ‘ 𝑥) ∈ ℝ* → ((δ‘ 𝑥) +𝑒 0) = (δ‘ 𝑥))
14495, 139, 142, 1434syl 19 . . . . . . 7 (𝑥 ∈ 𝒫 𝒫 ℝ → ((δ‘ 𝑥) +𝑒 0) = (δ‘ 𝑥))
145144adantr 480 . . . . . 6 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → ((δ‘ 𝑥) +𝑒 0) = (δ‘ 𝑥))
14644, 136, 1453eqtrrd 2774 . . . . 5 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ Disj 𝑦𝑥 𝑦) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦))
147146adantrl 716 . . . 4 ((𝑥 ∈ 𝒫 𝒫 ℝ ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦))
148147ex 412 . . 3 (𝑥 ∈ 𝒫 𝒫 ℝ → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦)))
149148rgen 3052 . 2 𝑥 ∈ 𝒫 𝒫 ℝ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦))
150 reex 11213 . . . 4 ℝ ∈ V
151 pwsiga 34090 . . . 4 (ℝ ∈ V → 𝒫 ℝ ∈ (sigAlgebra‘ℝ))
152150, 151ax-mp 5 . . 3 𝒫 ℝ ∈ (sigAlgebra‘ℝ)
153 elrnsiga 34086 . . 3 (𝒫 ℝ ∈ (sigAlgebra‘ℝ) → 𝒫 ℝ ∈ ran sigAlgebra)
154 ismeas 34159 . . 3 (𝒫 ℝ ∈ ran sigAlgebra → (δ ∈ (measures‘𝒫 ℝ) ↔ (δ:𝒫 ℝ⟶(0[,]+∞) ∧ (δ‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝒫 ℝ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦)))))
155152, 153, 154mp2b 10 . 2 (δ ∈ (measures‘𝒫 ℝ) ↔ (δ:𝒫 ℝ⟶(0[,]+∞) ∧ (δ‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝒫 ℝ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (δ‘ 𝑥) = Σ*𝑦𝑥(δ‘𝑦))))
15615, 19, 149, 155mpbir3an 1341 1 δ ∈ (measures‘𝒫 ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1537   = wceq 1539  wex 1778  wcel 2107  wral 3050  wrex 3059  ∃!wreu 3355  ∃*wrmo 3356  {crab 3413  Vcvv 3457  cun 3922  cin 3923  wss 3924  c0 4306  ifcif 4498  𝒫 cpw 4573  {csn 4599   cuni 4881  Disj wdisj 5084   class class class wbr 5117  ran crn 5653  wf 6524  cfv 6528  (class class class)co 7400  ωcom 7856  cdom 8952  cr 11121  0cc0 11122  1c1 11123  +∞cpnf 11259  *cxr 11261  cle 11263   +𝑒 cxad 13119  [,]cicc 13357  Σ*cesum 33987  sigAlgebracsiga 34068  measurescmeas 34155  δcdde 34192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-inf2 9648  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200  ax-addf 11201  ax-mulf 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-iin 4968  df-disj 5085  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-of 7666  df-om 7857  df-1st 7983  df-2nd 7984  df-supp 8155  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-2o 8476  df-er 8714  df-map 8837  df-pm 8838  df-ixp 8907  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-fsupp 9369  df-fi 9418  df-sup 9449  df-inf 9450  df-oi 9517  df-card 9946  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-z 12582  df-dec 12702  df-uz 12846  df-q 12958  df-rp 13002  df-xneg 13121  df-xadd 13122  df-xmul 13123  df-ioo 13358  df-ioc 13359  df-ico 13360  df-icc 13361  df-fz 13515  df-fzo 13662  df-fl 13799  df-mod 13877  df-seq 14010  df-exp 14070  df-fac 14282  df-bc 14311  df-hash 14339  df-shft 15075  df-cj 15107  df-re 15108  df-im 15109  df-sqrt 15243  df-abs 15244  df-limsup 15476  df-clim 15493  df-rlim 15494  df-sum 15692  df-ef 16072  df-sin 16074  df-cos 16075  df-pi 16077  df-struct 17153  df-sets 17170  df-slot 17188  df-ndx 17200  df-base 17216  df-ress 17239  df-plusg 17271  df-mulr 17272  df-starv 17273  df-sca 17274  df-vsca 17275  df-ip 17276  df-tset 17277  df-ple 17278  df-ds 17280  df-unif 17281  df-hom 17282  df-cco 17283  df-rest 17423  df-topn 17424  df-0g 17442  df-gsum 17443  df-topgen 17444  df-pt 17445  df-prds 17448  df-ordt 17502  df-xrs 17503  df-qtop 17508  df-imas 17509  df-xps 17511  df-mre 17585  df-mrc 17586  df-acs 17588  df-ps 18563  df-tsr 18564  df-plusf 18604  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-mhm 18748  df-submnd 18749  df-grp 18906  df-minusg 18907  df-sbg 18908  df-mulg 19038  df-subg 19093  df-cntz 19287  df-cmn 19750  df-abl 19751  df-mgp 20088  df-rng 20100  df-ur 20129  df-ring 20182  df-cring 20183  df-subrng 20493  df-subrg 20517  df-abv 20756  df-lmod 20806  df-scaf 20807  df-sra 21118  df-rgmod 21119  df-psmet 21294  df-xmet 21295  df-met 21296  df-bl 21297  df-mopn 21298  df-fbas 21299  df-fg 21300  df-cnfld 21303  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-cld 22944  df-ntr 22945  df-cls 22946  df-nei 23023  df-lp 23061  df-perf 23062  df-cn 23152  df-cnp 23153  df-haus 23240  df-tx 23487  df-hmeo 23680  df-fil 23771  df-fm 23863  df-flim 23864  df-flf 23865  df-tmd 23997  df-tgp 23998  df-tsms 24052  df-trg 24085  df-xms 24246  df-ms 24247  df-tms 24248  df-nm 24508  df-ngp 24509  df-nrg 24511  df-nlm 24512  df-ii 24808  df-cncf 24809  df-limc 25806  df-dv 25807  df-log 26503  df-esum 33988  df-siga 34069  df-meas 34156  df-dde 34193
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator