Step | Hyp | Ref
| Expression |
1 | | 1xr 10965 |
. . . . . 6
⊢ 1 ∈
ℝ* |
2 | | 0le1 11428 |
. . . . . 6
⊢ 0 ≤
1 |
3 | | pnfge 12795 |
. . . . . . 7
⊢ (1 ∈
ℝ* → 1 ≤ +∞) |
4 | 1, 3 | ax-mp 5 |
. . . . . 6
⊢ 1 ≤
+∞ |
5 | | 0xr 10953 |
. . . . . . 7
⊢ 0 ∈
ℝ* |
6 | | pnfxr 10960 |
. . . . . . 7
⊢ +∞
∈ ℝ* |
7 | | elicc1 13052 |
. . . . . . 7
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ*) → (1
∈ (0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧
1 ≤ +∞))) |
8 | 5, 6, 7 | mp2an 688 |
. . . . . 6
⊢ (1 ∈
(0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧ 1 ≤
+∞)) |
9 | 1, 2, 4, 8 | mpbir3an 1339 |
. . . . 5
⊢ 1 ∈
(0[,]+∞) |
10 | | 0e0iccpnf 13120 |
. . . . 5
⊢ 0 ∈
(0[,]+∞) |
11 | 9, 10 | ifcli 4503 |
. . . 4
⊢ if(0
∈ 𝑎, 1, 0) ∈
(0[,]+∞) |
12 | 11 | rgenw 3075 |
. . 3
⊢
∀𝑎 ∈
𝒫 ℝif(0 ∈ 𝑎, 1, 0) ∈
(0[,]+∞) |
13 | | df-dde 32101 |
. . . 4
⊢ δ =
(𝑎 ∈ 𝒫 ℝ
↦ if(0 ∈ 𝑎, 1,
0)) |
14 | 13 | fmpt 6966 |
. . 3
⊢
(∀𝑎 ∈
𝒫 ℝif(0 ∈ 𝑎, 1, 0) ∈ (0[,]+∞) ↔
δ:𝒫 ℝ⟶(0[,]+∞)) |
15 | 12, 14 | mpbi 229 |
. 2
⊢
δ:𝒫 ℝ⟶(0[,]+∞) |
16 | | 0ss 4327 |
. . 3
⊢ ∅
⊆ ℝ |
17 | | noel 4261 |
. . 3
⊢ ¬ 0
∈ ∅ |
18 | | ddeval0 32103 |
. . 3
⊢ ((∅
⊆ ℝ ∧ ¬ 0 ∈ ∅) → (δ‘∅) =
0) |
19 | 16, 17, 18 | mp2an 688 |
. 2
⊢
(δ‘∅) = 0 |
20 | | rabxm 4317 |
. . . . . . . . 9
⊢ 𝑥 = ({𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}) |
21 | | esumeq1 31902 |
. . . . . . . . 9
⊢ (𝑥 = ({𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}) → Σ*𝑦 ∈ 𝑥(δ‘𝑦) = Σ*𝑦 ∈ ({𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎})(δ‘𝑦)) |
22 | 20, 21 | ax-mp 5 |
. . . . . . . 8
⊢
Σ*𝑦
∈ 𝑥(δ‘𝑦) = Σ*𝑦 ∈ ({𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎})(δ‘𝑦) |
23 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑥 ∈ 𝒫 𝒫
ℝ |
24 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑦{𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} |
25 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑦{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} |
26 | | rabexg 5250 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝒫 𝒫
ℝ → {𝑎 ∈
𝑥 ∣ 0 ∈ 𝑎} ∈ V) |
27 | | rabexg 5250 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝒫 𝒫
ℝ → {𝑎 ∈
𝑥 ∣ ¬ 0 ∈
𝑎} ∈
V) |
28 | | rabnc 4318 |
. . . . . . . . . 10
⊢ ({𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} ∩ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}) = ∅ |
29 | 28 | a1i 11 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝒫 𝒫
ℝ → ({𝑎 ∈
𝑥 ∣ 0 ∈ 𝑎} ∩ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}) = ∅) |
30 | | elrabi 3611 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} → 𝑦 ∈ 𝑥) |
31 | 30 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑦 ∈
{𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎}) → 𝑦 ∈ 𝑥) |
32 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑦 ∈
{𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎}) → 𝑥 ∈ 𝒫 𝒫
ℝ) |
33 | | elelpwi 4542 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 𝒫 ℝ) →
𝑦 ∈ 𝒫
ℝ) |
34 | 31, 32, 33 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑦 ∈
{𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎}) → 𝑦 ∈ 𝒫 ℝ) |
35 | 15 | ffvelrni 6942 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝒫 ℝ →
(δ‘𝑦) ∈
(0[,]+∞)) |
36 | 34, 35 | syl 17 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑦 ∈
{𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎}) → (δ‘𝑦) ∈
(0[,]+∞)) |
37 | | elrabi 3611 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} → 𝑦 ∈ 𝑥) |
38 | 37 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑦 ∈
{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑦 ∈ 𝑥) |
39 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑦 ∈
{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑥 ∈ 𝒫 𝒫
ℝ) |
40 | 38, 39, 33 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑦 ∈
{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑦 ∈ 𝒫 ℝ) |
41 | 40, 35 | syl 17 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑦 ∈
{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}) → (δ‘𝑦) ∈
(0[,]+∞)) |
42 | 23, 24, 25, 26, 27, 29, 36, 41 | esumsplit 31921 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝒫 𝒫
ℝ → Σ*𝑦 ∈ ({𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} ∪ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎})(δ‘𝑦) = (Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒
Σ*𝑦 ∈
{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦))) |
43 | 22, 42 | syl5eq 2791 |
. . . . . . 7
⊢ (𝑥 ∈ 𝒫 𝒫
ℝ → Σ*𝑦 ∈ 𝑥(δ‘𝑦) = (Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒
Σ*𝑦 ∈
{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦))) |
44 | 43 | adantr 480 |
. . . . . 6
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) → Σ*𝑦 ∈ 𝑥(δ‘𝑦) = (Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒
Σ*𝑦 ∈
{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦))) |
45 | | esumeq1 31902 |
. . . . . . . . . . . 12
⊢ ({𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ {𝑘} (δ‘𝑦)) |
46 | 45 | adantl 481 |
. . . . . . . . . . 11
⊢
(((((𝑥 ∈
𝒫 𝒫 ℝ ∧ Disj 𝑦 ∈ 𝑥 𝑦) ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) ∧ 𝑘 ∈ 𝑥) ∧ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ {𝑘} (δ‘𝑦)) |
47 | | simp-4l 779 |
. . . . . . . . . . . 12
⊢
(((((𝑥 ∈
𝒫 𝒫 ℝ ∧ Disj 𝑦 ∈ 𝑥 𝑦) ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) ∧ 𝑘 ∈ 𝑥) ∧ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → 𝑥 ∈ 𝒫 𝒫
ℝ) |
48 | | vex 3426 |
. . . . . . . . . . . . . 14
⊢ 𝑘 ∈ V |
49 | 48 | rabsnel 30748 |
. . . . . . . . . . . . 13
⊢ ({𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → 𝑘 ∈ 𝑥) |
50 | 49 | adantl 481 |
. . . . . . . . . . . 12
⊢
(((((𝑥 ∈
𝒫 𝒫 ℝ ∧ Disj 𝑦 ∈ 𝑥 𝑦) ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) ∧ 𝑘 ∈ 𝑥) ∧ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → 𝑘 ∈ 𝑥) |
51 | | eleq2w 2822 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑘 → (0 ∈ 𝑎 ↔ 0 ∈ 𝑘)) |
52 | 48, 51 | rabsnt 4664 |
. . . . . . . . . . . . 13
⊢ ({𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → 0 ∈ 𝑘) |
53 | 52 | adantl 481 |
. . . . . . . . . . . 12
⊢
(((((𝑥 ∈
𝒫 𝒫 ℝ ∧ Disj 𝑦 ∈ 𝑥 𝑦) ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) ∧ 𝑘 ∈ 𝑥) ∧ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → 0 ∈ 𝑘) |
54 | | elelpwi 4542 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 𝒫 ℝ) →
𝑘 ∈ 𝒫
ℝ) |
55 | 54 | ancoms 458 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑘 ∈
𝑥) → 𝑘 ∈ 𝒫
ℝ) |
56 | 55 | adantrr 713 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ (𝑘 ∈
𝑥 ∧ 0 ∈ 𝑘)) → 𝑘 ∈ 𝒫 ℝ) |
57 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ 𝒫 ℝ ∧
𝑦 = 𝑘) → 𝑦 = 𝑘) |
58 | 57 | fveq2d 6760 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝒫 ℝ ∧
𝑦 = 𝑘) → (δ‘𝑦) = (δ‘𝑘)) |
59 | 48 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝒫 ℝ →
𝑘 ∈
V) |
60 | 15 | ffvelrni 6942 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝒫 ℝ →
(δ‘𝑘) ∈
(0[,]+∞)) |
61 | 58, 59, 60 | esumsn 31933 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ 𝒫 ℝ →
Σ*𝑦 ∈
{𝑘} (δ‘𝑦) = (δ‘𝑘)) |
62 | 56, 61 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ (𝑘 ∈
𝑥 ∧ 0 ∈ 𝑘)) →
Σ*𝑦 ∈
{𝑘} (δ‘𝑦) = (δ‘𝑘)) |
63 | 56 | elpwid 4541 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ (𝑘 ∈
𝑥 ∧ 0 ∈ 𝑘)) → 𝑘 ⊆ ℝ) |
64 | | simprr 769 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ (𝑘 ∈
𝑥 ∧ 0 ∈ 𝑘)) → 0 ∈ 𝑘) |
65 | | ddeval1 32102 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ⊆ ℝ ∧ 0 ∈
𝑘) →
(δ‘𝑘) =
1) |
66 | 63, 64, 65 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ (𝑘 ∈
𝑥 ∧ 0 ∈ 𝑘)) → (δ‘𝑘) = 1) |
67 | 62, 66 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ (𝑘 ∈
𝑥 ∧ 0 ∈ 𝑘)) →
Σ*𝑦 ∈
{𝑘} (δ‘𝑦) = 1) |
68 | 47, 50, 53, 67 | syl12anc 833 |
. . . . . . . . . . 11
⊢
(((((𝑥 ∈
𝒫 𝒫 ℝ ∧ Disj 𝑦 ∈ 𝑥 𝑦) ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) ∧ 𝑘 ∈ 𝑥) ∧ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → Σ*𝑦 ∈ {𝑘} (δ‘𝑦) = 1) |
69 | 46, 68 | eqtrd 2778 |
. . . . . . . . . 10
⊢
(((((𝑥 ∈
𝒫 𝒫 ℝ ∧ Disj 𝑦 ∈ 𝑥 𝑦) ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) ∧ 𝑘 ∈ 𝑥) ∧ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 1) |
70 | | df-disj 5036 |
. . . . . . . . . . . . . . 15
⊢
(Disj 𝑦
∈ 𝑥 𝑦 ↔ ∀𝑘∃*𝑦 ∈ 𝑥 𝑘 ∈ 𝑦) |
71 | | c0ex 10900 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
V |
72 | | eleq1 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (𝑘 ∈ 𝑦 ↔ 0 ∈ 𝑦)) |
73 | 72 | rmobidv 3320 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → (∃*𝑦 ∈ 𝑥 𝑘 ∈ 𝑦 ↔ ∃*𝑦 ∈ 𝑥 0 ∈ 𝑦)) |
74 | 71, 73 | spcv 3534 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑘∃*𝑦 ∈ 𝑥 𝑘 ∈ 𝑦 → ∃*𝑦 ∈ 𝑥 0 ∈ 𝑦) |
75 | 70, 74 | sylbi 216 |
. . . . . . . . . . . . . 14
⊢
(Disj 𝑦
∈ 𝑥 𝑦 → ∃*𝑦 ∈ 𝑥 0 ∈ 𝑦) |
76 | | rmo5 3355 |
. . . . . . . . . . . . . . . 16
⊢
(∃*𝑦 ∈
𝑥 0 ∈ 𝑦 ↔ (∃𝑦 ∈ 𝑥 0 ∈ 𝑦 → ∃!𝑦 ∈ 𝑥 0 ∈ 𝑦)) |
77 | 76 | biimpi 215 |
. . . . . . . . . . . . . . 15
⊢
(∃*𝑦 ∈
𝑥 0 ∈ 𝑦 → (∃𝑦 ∈ 𝑥 0 ∈ 𝑦 → ∃!𝑦 ∈ 𝑥 0 ∈ 𝑦)) |
78 | 77 | imp 406 |
. . . . . . . . . . . . . 14
⊢
((∃*𝑦 ∈
𝑥 0 ∈ 𝑦 ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → ∃!𝑦 ∈ 𝑥 0 ∈ 𝑦) |
79 | 75, 78 | sylan 579 |
. . . . . . . . . . . . 13
⊢
((Disj 𝑦
∈ 𝑥 𝑦 ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → ∃!𝑦 ∈ 𝑥 0 ∈ 𝑦) |
80 | | reusn 4660 |
. . . . . . . . . . . . 13
⊢
(∃!𝑦 ∈
𝑥 0 ∈ 𝑦 ↔ ∃𝑘{𝑦 ∈ 𝑥 ∣ 0 ∈ 𝑦} = {𝑘}) |
81 | 79, 80 | sylib 217 |
. . . . . . . . . . . 12
⊢
((Disj 𝑦
∈ 𝑥 𝑦 ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → ∃𝑘{𝑦 ∈ 𝑥 ∣ 0 ∈ 𝑦} = {𝑘}) |
82 | | eleq2w 2822 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑦 → (0 ∈ 𝑎 ↔ 0 ∈ 𝑦)) |
83 | 82 | cbvrabv 3416 |
. . . . . . . . . . . . . . . 16
⊢ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑦 ∈ 𝑥 ∣ 0 ∈ 𝑦} |
84 | 83 | eqeq1i 2743 |
. . . . . . . . . . . . . . 15
⊢ ({𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘} ↔ {𝑦 ∈ 𝑥 ∣ 0 ∈ 𝑦} = {𝑘}) |
85 | 49 | ancri 549 |
. . . . . . . . . . . . . . 15
⊢ ({𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘} → (𝑘 ∈ 𝑥 ∧ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘})) |
86 | 84, 85 | sylbir 234 |
. . . . . . . . . . . . . 14
⊢ ({𝑦 ∈ 𝑥 ∣ 0 ∈ 𝑦} = {𝑘} → (𝑘 ∈ 𝑥 ∧ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘})) |
87 | 86 | eximi 1838 |
. . . . . . . . . . . . 13
⊢
(∃𝑘{𝑦 ∈ 𝑥 ∣ 0 ∈ 𝑦} = {𝑘} → ∃𝑘(𝑘 ∈ 𝑥 ∧ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘})) |
88 | | df-rex 3069 |
. . . . . . . . . . . . 13
⊢
(∃𝑘 ∈
𝑥 {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘} ↔ ∃𝑘(𝑘 ∈ 𝑥 ∧ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘})) |
89 | 87, 88 | sylibr 233 |
. . . . . . . . . . . 12
⊢
(∃𝑘{𝑦 ∈ 𝑥 ∣ 0 ∈ 𝑦} = {𝑘} → ∃𝑘 ∈ 𝑥 {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) |
90 | 81, 89 | syl 17 |
. . . . . . . . . . 11
⊢
((Disj 𝑦
∈ 𝑥 𝑦 ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → ∃𝑘 ∈ 𝑥 {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) |
91 | 90 | adantll 710 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → ∃𝑘 ∈ 𝑥 {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = {𝑘}) |
92 | 69, 91 | r19.29a 3217 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 1) |
93 | | elpwi 4539 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝒫 𝒫
ℝ → 𝑥 ⊆
𝒫 ℝ) |
94 | | sspwuni 5025 |
. . . . . . . . . . . 12
⊢ (𝑥 ⊆ 𝒫 ℝ
↔ ∪ 𝑥 ⊆ ℝ) |
95 | 93, 94 | sylib 217 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝒫 𝒫
ℝ → ∪ 𝑥 ⊆ ℝ) |
96 | | eluni2 4840 |
. . . . . . . . . . . 12
⊢ (0 ∈
∪ 𝑥 ↔ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) |
97 | 96 | biimpri 227 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
𝑥 0 ∈ 𝑦 → 0 ∈ ∪ 𝑥) |
98 | | ddeval1 32102 |
. . . . . . . . . . 11
⊢ ((∪ 𝑥
⊆ ℝ ∧ 0 ∈ ∪ 𝑥) → (δ‘∪ 𝑥) =
1) |
99 | 95, 97, 98 | syl2an 595 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ ∃𝑦
∈ 𝑥 0 ∈ 𝑦) → (δ‘∪ 𝑥) =
1) |
100 | 99 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → (δ‘∪ 𝑥) =
1) |
101 | 92, 100 | eqtr4d 2781 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) ∧ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = (δ‘∪ 𝑥)) |
102 | | nfre1 3234 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦∃𝑦 ∈ 𝑥 0 ∈ 𝑦 |
103 | 102 | nfn 1861 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦 ¬
∃𝑦 ∈ 𝑥 0 ∈ 𝑦 |
104 | 82 | elrab 3617 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} ↔ (𝑦 ∈ 𝑥 ∧ 0 ∈ 𝑦)) |
105 | 104 | exbii 1851 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑦 𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} ↔ ∃𝑦(𝑦 ∈ 𝑥 ∧ 0 ∈ 𝑦)) |
106 | | neq0 4276 |
. . . . . . . . . . . . . . 15
⊢ (¬
{𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = ∅ ↔ ∃𝑦 𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎}) |
107 | | df-rex 3069 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑦 ∈
𝑥 0 ∈ 𝑦 ↔ ∃𝑦(𝑦 ∈ 𝑥 ∧ 0 ∈ 𝑦)) |
108 | 105, 106,
107 | 3bitr4i 302 |
. . . . . . . . . . . . . 14
⊢ (¬
{𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = ∅ ↔ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) |
109 | 108 | biimpi 215 |
. . . . . . . . . . . . 13
⊢ (¬
{𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = ∅ → ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) |
110 | 109 | con1i 147 |
. . . . . . . . . . . 12
⊢ (¬
∃𝑦 ∈ 𝑥 0 ∈ 𝑦 → {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} = ∅) |
111 | 103, 110 | esumeq1d 31903 |
. . . . . . . . . . 11
⊢ (¬
∃𝑦 ∈ 𝑥 0 ∈ 𝑦 → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ ∅(δ‘𝑦)) |
112 | | esumnul 31916 |
. . . . . . . . . . 11
⊢
Σ*𝑦
∈ ∅(δ‘𝑦) = 0 |
113 | 111, 112 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (¬
∃𝑦 ∈ 𝑥 0 ∈ 𝑦 → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 0) |
114 | 113 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) ∧ ¬ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = 0) |
115 | 96 | biimpi 215 |
. . . . . . . . . . . 12
⊢ (0 ∈
∪ 𝑥 → ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) |
116 | 115 | con3i 154 |
. . . . . . . . . . 11
⊢ (¬
∃𝑦 ∈ 𝑥 0 ∈ 𝑦 → ¬ 0 ∈ ∪ 𝑥) |
117 | | ddeval0 32103 |
. . . . . . . . . . 11
⊢ ((∪ 𝑥
⊆ ℝ ∧ ¬ 0 ∈ ∪ 𝑥) → (δ‘∪ 𝑥) =
0) |
118 | 95, 116, 117 | syl2an 595 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ ¬ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → (δ‘∪ 𝑥) =
0) |
119 | 118 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) ∧ ¬ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → (δ‘∪ 𝑥) =
0) |
120 | 114, 119 | eqtr4d 2781 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) ∧ ¬ ∃𝑦 ∈ 𝑥 0 ∈ 𝑦) → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = (δ‘∪ 𝑥)) |
121 | 101, 120 | pm2.61dan 809 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) = (δ‘∪ 𝑥)) |
122 | 40 | elpwid 4541 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑦 ∈
{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}) → 𝑦 ⊆ ℝ) |
123 | 82 | notbid 317 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑦 → (¬ 0 ∈ 𝑎 ↔ ¬ 0 ∈ 𝑦)) |
124 | 123 | elrab 3617 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} ↔ (𝑦 ∈ 𝑥 ∧ ¬ 0 ∈ 𝑦)) |
125 | 124 | simprbi 496 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} → ¬ 0 ∈ 𝑦) |
126 | 125 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑦 ∈
{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}) → ¬ 0 ∈ 𝑦) |
127 | | ddeval0 32103 |
. . . . . . . . . . 11
⊢ ((𝑦 ⊆ ℝ ∧ ¬ 0
∈ 𝑦) →
(δ‘𝑦) =
0) |
128 | 122, 126,
127 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ 𝑦 ∈
{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}) → (δ‘𝑦) = 0) |
129 | 128 | esumeq2dv 31906 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝒫 𝒫
ℝ → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦) = Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}0) |
130 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
131 | 130 | rabex 5251 |
. . . . . . . . . 10
⊢ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} ∈ V |
132 | 25 | esum0 31917 |
. . . . . . . . . 10
⊢ ({𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} ∈ V → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}0 = 0) |
133 | 131, 132 | ax-mp 5 |
. . . . . . . . 9
⊢
Σ*𝑦
∈ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎}0 = 0 |
134 | 129, 133 | eqtrdi 2795 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝒫 𝒫
ℝ → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦) = 0) |
135 | 134 | adantr 480 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) → Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦) = 0) |
136 | 121, 135 | oveq12d 7273 |
. . . . . 6
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) → (Σ*𝑦 ∈ {𝑎 ∈ 𝑥 ∣ 0 ∈ 𝑎} (δ‘𝑦) +𝑒
Σ*𝑦 ∈
{𝑎 ∈ 𝑥 ∣ ¬ 0 ∈ 𝑎} (δ‘𝑦)) = ((δ‘∪ 𝑥)
+𝑒 0)) |
137 | | vuniex 7570 |
. . . . . . . . . 10
⊢ ∪ 𝑥
∈ V |
138 | 137 | elpw 4534 |
. . . . . . . . 9
⊢ (∪ 𝑥
∈ 𝒫 ℝ ↔ ∪ 𝑥 ⊆ ℝ) |
139 | 138 | biimpri 227 |
. . . . . . . 8
⊢ (∪ 𝑥
⊆ ℝ → ∪ 𝑥 ∈ 𝒫 ℝ) |
140 | | iccssxr 13091 |
. . . . . . . . 9
⊢
(0[,]+∞) ⊆ ℝ* |
141 | 15 | ffvelrni 6942 |
. . . . . . . . 9
⊢ (∪ 𝑥
∈ 𝒫 ℝ → (δ‘∪
𝑥) ∈
(0[,]+∞)) |
142 | 140, 141 | sselid 3915 |
. . . . . . . 8
⊢ (∪ 𝑥
∈ 𝒫 ℝ → (δ‘∪
𝑥) ∈
ℝ*) |
143 | | xaddid1 12904 |
. . . . . . . 8
⊢
((δ‘∪ 𝑥) ∈ ℝ* →
((δ‘∪ 𝑥) +𝑒 0) =
(δ‘∪ 𝑥)) |
144 | 95, 139, 142, 143 | 4syl 19 |
. . . . . . 7
⊢ (𝑥 ∈ 𝒫 𝒫
ℝ → ((δ‘∪ 𝑥) +𝑒 0) =
(δ‘∪ 𝑥)) |
145 | 144 | adantr 480 |
. . . . . 6
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) → ((δ‘∪ 𝑥)
+𝑒 0) = (δ‘∪ 𝑥)) |
146 | 44, 136, 145 | 3eqtrrd 2783 |
. . . . 5
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ Disj 𝑦
∈ 𝑥 𝑦) → (δ‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(δ‘𝑦)) |
147 | 146 | adantrl 712 |
. . . 4
⊢ ((𝑥 ∈ 𝒫 𝒫
ℝ ∧ (𝑥 ≼
ω ∧ Disj 𝑦
∈ 𝑥 𝑦)) → (δ‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(δ‘𝑦)) |
148 | 147 | ex 412 |
. . 3
⊢ (𝑥 ∈ 𝒫 𝒫
ℝ → ((𝑥 ≼
ω ∧ Disj 𝑦
∈ 𝑥 𝑦) → (δ‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(δ‘𝑦))) |
149 | 148 | rgen 3073 |
. 2
⊢
∀𝑥 ∈
𝒫 𝒫 ℝ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (δ‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(δ‘𝑦)) |
150 | | reex 10893 |
. . . 4
⊢ ℝ
∈ V |
151 | | pwsiga 31998 |
. . . 4
⊢ (ℝ
∈ V → 𝒫 ℝ ∈
(sigAlgebra‘ℝ)) |
152 | 150, 151 | ax-mp 5 |
. . 3
⊢ 𝒫
ℝ ∈ (sigAlgebra‘ℝ) |
153 | | elrnsiga 31994 |
. . 3
⊢
(𝒫 ℝ ∈ (sigAlgebra‘ℝ) → 𝒫
ℝ ∈ ∪ ran sigAlgebra) |
154 | | ismeas 32067 |
. . 3
⊢
(𝒫 ℝ ∈ ∪ ran sigAlgebra
→ (δ ∈ (measures‘𝒫 ℝ) ↔
(δ:𝒫 ℝ⟶(0[,]+∞) ∧ (δ‘∅)
= 0 ∧ ∀𝑥 ∈
𝒫 𝒫 ℝ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (δ‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(δ‘𝑦))))) |
155 | 152, 153,
154 | mp2b 10 |
. 2
⊢ (δ
∈ (measures‘𝒫 ℝ) ↔ (δ:𝒫
ℝ⟶(0[,]+∞) ∧ (δ‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝒫 ℝ((𝑥
≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (δ‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(δ‘𝑦)))) |
156 | 15, 19, 149, 155 | mpbir3an 1339 |
1
⊢ δ
∈ (measures‘𝒫 ℝ) |