Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabexgfGS | Structured version Visualization version GIF version |
Description: Separation Scheme in terms of a restricted class abstraction. To be removed in profit of Glauco's equivalent version. (Contributed by Thierry Arnoux, 11-May-2017.) |
Ref | Expression |
---|---|
rabexgfGS.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
rabexgfGS | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfrab1 3310 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} | |
2 | rabexgfGS.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 1, 2 | dfss2f 3907 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴)) |
4 | rabidim1 3306 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) | |
5 | 3, 4 | mpgbir 1803 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
6 | elex 3440 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
7 | ssexg 5242 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝐴 ∈ V) → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | |
8 | 5, 6, 7 | sylancr 586 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Ⅎwnfc 2886 {crab 3067 Vcvv 3422 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: abrexexd 30755 |
Copyright terms: Public domain | W3C validator |