Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabexgfGS Structured version   Visualization version   GIF version

Theorem rabexgfGS 32434
Description: Separation Scheme in terms of a restricted class abstraction. To be removed in profit of Glauco's equivalent version. (Contributed by Thierry Arnoux, 11-May-2017.)
Hypothesis
Ref Expression
rabexgfGS.1 𝑥𝐴
Assertion
Ref Expression
rabexgfGS (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)

Proof of Theorem rabexgfGS
StepHypRef Expression
1 nfrab1 3429 . . . 4 𝑥{𝑥𝐴𝜑}
2 rabexgfGS.1 . . . 4 𝑥𝐴
31, 2dfssf 3939 . . 3 ({𝑥𝐴𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ {𝑥𝐴𝜑} → 𝑥𝐴))
4 rabidim1 3431 . . 3 (𝑥 ∈ {𝑥𝐴𝜑} → 𝑥𝐴)
53, 4mpgbir 1799 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
6 elex 3471 . 2 (𝐴𝑉𝐴 ∈ V)
7 ssexg 5280 . 2 (({𝑥𝐴𝜑} ⊆ 𝐴𝐴 ∈ V) → {𝑥𝐴𝜑} ∈ V)
85, 6, 7sylancr 587 1 (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wnfc 2877  {crab 3408  Vcvv 3450  wss 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rab 3409  df-v 3452  df-in 3923  df-ss 3933
This theorem is referenced by:  abrexexd  32444
  Copyright terms: Public domain W3C validator