Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabexgfGS Structured version   Visualization version   GIF version

Theorem rabexgfGS 30247
 Description: Separation Scheme in terms of a restricted class abstraction. To be removed in profit of Glauco's equivalent version. (Contributed by Thierry Arnoux, 11-May-2017.)
Hypothesis
Ref Expression
rabexgfGS.1 𝑥𝐴
Assertion
Ref Expression
rabexgfGS (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)

Proof of Theorem rabexgfGS
StepHypRef Expression
1 nfrab1 3369 . . . 4 𝑥{𝑥𝐴𝜑}
2 rabexgfGS.1 . . . 4 𝑥𝐴
31, 2dfss2f 3934 . . 3 ({𝑥𝐴𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ {𝑥𝐴𝜑} → 𝑥𝐴))
4 rabidim1 3365 . . 3 (𝑥 ∈ {𝑥𝐴𝜑} → 𝑥𝐴)
53, 4mpgbir 1801 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
6 elex 3489 . 2 (𝐴𝑉𝐴 ∈ V)
7 ssexg 5200 . 2 (({𝑥𝐴𝜑} ⊆ 𝐴𝐴 ∈ V) → {𝑥𝐴𝜑} ∈ V)
85, 6, 7sylancr 590 1 (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2115  Ⅎwnfc 2958  {crab 3130  Vcvv 3471   ⊆ wss 3910 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-rab 3135  df-v 3473  df-in 3917  df-ss 3927 This theorem is referenced by:  abrexexd  30255
 Copyright terms: Public domain W3C validator