Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabexgfGS | Structured version Visualization version GIF version |
Description: Separation Scheme in terms of a restricted class abstraction. To be removed in profit of Glauco's equivalent version. (Contributed by Thierry Arnoux, 11-May-2017.) |
Ref | Expression |
---|---|
rabexgfGS.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
rabexgfGS | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfrab1 3317 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} | |
2 | rabexgfGS.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 1, 2 | dfss2f 3911 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴)) |
4 | rabidim1 3312 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) | |
5 | 3, 4 | mpgbir 1802 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
6 | elex 3450 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
7 | ssexg 5247 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝐴 ∈ V) → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | |
8 | 5, 6, 7 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Ⅎwnfc 2887 {crab 3068 Vcvv 3432 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: abrexexd 30854 |
Copyright terms: Public domain | W3C validator |