MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralabOLD Structured version   Visualization version   GIF version

Theorem ralabOLD 3622
Description: Obsolete version of ralab 3621 as of 2-Nov-2024. (Contributed by Jeff Madsen, 10-Jun-2010.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ralab.1 (𝑦 = 𝑥 → (𝜑𝜓))
Assertion
Ref Expression
ralabOLD (∀𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∀𝑥(𝜓𝜒))
Distinct variable groups:   𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑥,𝑦)

Proof of Theorem ralabOLD
StepHypRef Expression
1 df-ral 3068 . 2 (∀𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∀𝑥(𝑥 ∈ {𝑦𝜑} → 𝜒))
2 vex 3426 . . . . 5 𝑥 ∈ V
3 ralab.1 . . . . 5 (𝑦 = 𝑥 → (𝜑𝜓))
42, 3elab 3602 . . . 4 (𝑥 ∈ {𝑦𝜑} ↔ 𝜓)
54imbi1i 349 . . 3 ((𝑥 ∈ {𝑦𝜑} → 𝜒) ↔ (𝜓𝜒))
65albii 1823 . 2 (∀𝑥(𝑥 ∈ {𝑦𝜑} → 𝜒) ↔ ∀𝑥(𝜓𝜒))
71, 6bitri 274 1 (∀𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∀𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wcel 2108  {cab 2715  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-v 3424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator